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Introduction

Machine learning (ML) algorithms optimized:

e Not only for task performance, e.g. accuracy.
e But also other criteria, e.g. safety, interpretability, fairness.
e Here, our aim 1s to build an accurate as well as fair learner.

e Fairness: the outcome of a system should not discriminate between sub-
groups characterized by sensitive attributes such as gender or race.

Motivation

e Our Fair Adversarial Discriminative (FAD) learner adds a hidden layer, and
an extra classifier at the network’s top.

e This leads to a neural network (NN) that 1s:

—maximally uninformative about the sensitive attributes; and

—predictive of the class labels.
e The whole adversarial game happens 1n one single NN, leading to:

—a much less tricky adversarial optimization; and

—minimal overhead on the original model (slight modifications).

Contributions

e A fairness algorithm (FAD) that slightly modifies an unfair model’s archi-
tecture to simultaneously optimize for accuracy and fairness.

e F'AD also quantifies the tradeoff between accuracy and fairness.

e A variation of the algorithm in which diversity among minibatch elements
1s increased (FFAD—MD).

e A novel generalization bound illustrating the theoretical relationship be-
tween the label classifier and the fair adversary.

e Experiments on two datasets demonstrate state-of-the-art effectiveness.

FAD with Minibatch diversity (FAD-MD)

We form minibatch elements as follows to make them as diverse as possible:

e Randomly choose few points to belong to the minibatch.

e From a pool of points, select the point via the score resulting from a one-
class SVM. The class consists of the current minibatch elements.

e The next added data point 1s the point with the lowest score, 1.e. the point
least likely to be similar to the current minibatch elements.

e Continue this process until reaching the prespecified minibatch size.

Conclusion

e We introduced a fair adversarial framework applicable to any differentiable
discriminative model.

e Instead of having to establish the architecture from scratch, we make slight
adjustments to an existing differentiable classifier by:

—adding a new hidden layer; and

—adding a new classifier above it,

to concurrently optimize for fairness and accuracy 1n one network.
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OL((f (x)).y)
~ OL((¢ (x)).8) ow,, N OL((f (x))y) Wy owp f;
0W¢" awg awf’ 4awg ------ ) v y
ﬁ arbit. number of layers | ® E; g ,-—f-
S gl=r >~ X
8 25
/ ‘
OL((¢ (x)).s) %] S
ow Qb —

Figure 1: Architecture of the proposed FAD. The parts added, due to FAD, to an
unfair deep architecture with input x are (shown 1n red): 1) the layer g where
r’ is learned and; 2) the sensitive attribute s predictor ¢’ at the network’s top.

Experiments
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Conclusion (contd.)

e We analyzed and evaluated the tradeoif between fairness and accuracy.

e We proposed a minibatch diversity variation of the learning procedure
which 1s of independent interest for adversarial frameworks 1n general.

e We provided a theoretical interpretation of the two classifiers (adversaries)
constituting the model.

e We demonstrated strong empirical performance of our methods compared
to previous leading approaches.



