

MONTE CARLO (MC) METHODS

Consider an expectation of the form: $\mathbb{E}_{X \sim \mu} \left[f(X) \right] \,,$

where: $\mu \in \mathscr{P}(\mathbb{R}^d)$ is an isotropic probability distribution, $f : \mathbb{R}^d \to \mathbb{R}$ is measurable, and μ integrable. A **standard MC estimator** is given by:

 $\frac{1}{N} \sum_{i=1}^{N} f(X_i^{\text{iid}}), \text{ where } (X_i^{\text{iid}})_{i=1}^{N} \overset{\text{i.i.d.}}{\sim} \mu.$

Applications in Machine Learning:

- 1. dimensionality reduction techniques (JLTs)
- 2. scaling kernel methods via random features
- 3. locality sensitive hashing algorithms (LSH)
- 4. ES methods for Reinforcement Learning
- 5. and many more...

How to improve **computational complexity** and **accuracy** of the above baseline ?

APPROXIMATE MC METHODS

To improve computational complexity of orthogonal MC estimators, several constructions related to sampling from distributions "close" to Haar distribution on $\mathcal{O}(d)$ were proposed:

Hadamard-Rademacher Chains:

$$\mathbf{X}_T = \prod_{i=1}^T \mathbf{H} \mathbf{D}_i,$$

with i.i.d. random diagonal matrices $(\mathbf{D}_i)_{i=1}^T$ with i.i.d. diagonal entries $Unif(\{\pm 1\})$, and where $\mathbf{H} \in \mathbb{R}^{2^L \times 2^L}$ stands for the normalized *Kroneckerproduct* Hadamard matrix defined as:

L times

for \otimes denoting the Kronecker-product operator.

Computational Complexity: Due to Fast Walsh-Hadamard Transform, $\mathbf{X}_T \mathbf{v}$ for any vector $\mathbf{v} \in \mathbb{R}^{2^L}$ can be computed in time: $\mathcal{O}(T \times L \times 2^L)$.

Many related constructions: e.g. Butterfly matrices generalizing Hadamard-Rademacher chains.

UNIFYING ORTHOGONAL MONTE CARLO METHODS KRZYSZTOF CHOROMANSKI^{1*}, MARK ROWLAND^{2*}, WENYU CHEN³, ADRIAN WELLER^{2,4} ¹Google Brain, ²University of Cambridge, ³Massachusetts Institute of Technology, ⁴The Alan Turing Institute, *EQUAL CONTRIBUTION

ORTHOGONAL MC ESTIMATORS

Consider the following orthogonal MC estimator:

$$\frac{1}{N}\sum_{i=1}^{N} f(X_i^{\text{ort}}), \text{ where } (X_i^{\text{ort}}) \sim \mu \text{ and } X_i^{\text{ort}} \perp X_j^{\text{ort}}.$$

Note that for $N \leq d$:

- if μ is isotropic, it can be constructed via Gram-Schmidt orthogonalization,
- the constructions are expensive: $\mathcal{O}(d^3)$ time
- condition: $X_i^{\text{ort}} \sim \mu$ implies **unbiasedness**.
- $(X_i^{\text{ort}})_{i=1}^N$ are renormalized rows of a matrix sampled from Haar measure on $\mathcal{O}(d)$.

Statistical improvements: It often holds

$$\operatorname{MSE}\left(\frac{1}{N}\sum_{i=1}^{N}f(X_{i}^{\operatorname{ort}})\right) < \operatorname{MSE}\left(\frac{1}{N}\sum_{i=1}^{N}f(X_{i}^{\operatorname{iid}})\right).$$

GIVENS ROTATIONS MATRICES

A *d*-dimensional **Givens rotation** is an orthogonal matrix specified by two distinct indices $i, j \in$ [d], and an angle $\theta \in [0, 2\pi)$. The Givens rotation is then given by the matrix $\mathbf{G}[i, j, \theta]$ satisfying

if $k = l \in \{i, j\}$ $\cos(\theta)$ if k = i, l = j $-\sin(\theta)$ $\mathbf{G}[i,j,\theta]_{k,l} = \mathbf{\zeta}$ $\sin(heta)$ if k = j, l = iif $k = l \notin \{i, j\}$ otherwise.

Givens rotation $\mathbf{G}[i, j, \theta]$ composed on the right with a reflection in the j coordinate will be termed a **Givens reflection** and written $G[i, j, \theta]$. Givens rotations and reflections will be generically referred to as **Givens transformations**.

Lemma 1 (Pillai, Smith 2016) There exists C > 0such that the total variation distance TV between distribution \mathcal{D}_{Giv}^d on the d-sphere induced by the product of $Cd \log(d)$ independent Givens random rotations acting on the L_2 -normalized input vector \mathbf{x} and the distribution $\mathcal{D}^d_{\mathrm{Haar}}$ related to Haar measure on that *sphere satisfies:*

 $\lim_{d \to \infty} \mathrm{TV}(\mathcal{D}_{\mathrm{Giv}}^d, \mathcal{D}_{\mathrm{Haar}}^d) = 0.$

Figure 1: Row 1: the matrix $\widetilde{\mathbf{F}}^{1,3}$ expressed as a commuting product of Givens reflections. Row 2: As above, but for matrix $\widetilde{\mathbf{F}}^{2,3}$. Row 3: the matrix $\widetilde{\mathbf{F}}^{3,3}$ expressed as a product of commuting Givens rotations. Row 4: the normalised Hadamard matrix H_3 written as a product of $\tilde{\mathbf{F}}^{1,3}$, $\tilde{\mathbf{F}}^{2,3}$ and $\tilde{\mathbf{F}}^{3,3}$. White/black represent 0/1 elements and grey/blue - elements in (0, 1) and (-1, 0).

Figure 2: Comparison of different Monte Carlo methods on the task of Gaussian kernel approximation.

ON THE HUNT FOR UNIFYING APPROXIMATE ORTHOGONAL MCS

Kac's random walk matrices (random I_t, J_t, θ_t): $\mathbf{K}_T = \prod \mathbf{G}[I_t, J_t, \theta_t],$

The Hadamard-Rademacher Chains: Each block

where: $\widetilde{\mathbf{F}}^{j,L}$

Hadamard-MultiRademacher matrices:

EXPERIMENTS: FROM KERNEL APPROXIMATION TO RL

Figure 3: Comparison of different Monte Carlo methods for gradient estimation in ES algorithms for RL.

The Alan Turing Institute

 HD_i of the chain can be rewritten as:

$$\mathbf{H}\mathbf{D}_t = \left(\prod_{i=1}^{L-1} \widetilde{\mathbf{F}}^{i,L}\right) \left(\widetilde{\mathbf{F}}^{L,L}\mathbf{D}_t\right).$$

$$= \prod_{\substack{\lambda \in \mathbb{F}_2^L \\ \lambda_j = 0}} \widetilde{\mathbf{G}}[\boldsymbol{\lambda}, \boldsymbol{\lambda} + \mathbf{e}_j, \pi/4] \in \mathscr{O}(2^L) \,.$$

for the canonical basis $\mathbf{e}_1, \ldots, \mathbf{e}_L$ of \mathbb{F}_2^L .

In this expression, we may interpret $\widetilde{\mathbf{F}}^{L,L}\mathbf{D}_t$ as a product of random Givens transformations with a deterministic, structured choice of rotation axes.

$$\prod_{i=1}^{L} \left(\widetilde{\mathbf{F}}^{i,L} \mathbf{D}_i \right)$$

Denote the kernel estimator using Kac's random walk matrices with k Givens rotations as: \widehat{K}_{kac}^k and the unstructured baseline as $\widehat{K}_{\text{base}}$. We have:

Theorem 1 (Kac's random walk for RBF kernels) Let $K_d : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ be a Gaussian kernel. Then there exists a constant C > 0 such that for \mathbf{x}, \mathbf{y} , $k = C \cdot d \log d$ and d large enough we have:

