MONTE CARLO (MC) METHODS

Consider an expectation of the form:

aX ~H [f (X )] 9

where: © € 2(RY) is an isotropic probability
distribution, f : R — R is measurable, and u-
integrable. A standard MC estimator is given by:

N
1 H H i.i.d.
N § FXF9), where (X;'9);L, "~ pu.
1=1

Applications in Machine Learning:
. dimensionality reduction techniques (JLTs)
. scaling kernel methods via random features
. locality sensitive hashing algorithms (LSH)
. ES methods for Reinforcement Learning
. and many more...

How to improve computational complexity and
accuracy of the above baseline ?

APPROXIMATE MC METHODS

To improve computational complexity of orthog-
onal MC estimators, several constructions related
to sampling from distributions “close” to Haar
distribution on &'(d) were proposed:

Hadamard-Rademacher Chains:

T
X = H HD;,
i—1

with i.i.d. random diagonal matrices (D;)/_, with
i.i.d. diagonal entries Unif({+1}), and where

H c R2"*2" gtands for the normalized Kronecker-
product Hadamard matrix defined as:

1
H(VP
NG

for ® denoting the Kronecker-product operator.

L times

Computational Complexity: Due to Fast Walsh-
Hadamard Transform, Xyv for any vector

v € R?" can be computed in time: O(T x L x 2%).

Many related constructions: e.g. Buttertly matri-
ces generalizing Hadamard-Rademacher chains.

ORTHOGONAL MC ESTIMATORS

Consider the following orthogonal MC estimator:

N
1 E or or or or
1=1

Note that for N < d:

o if p 1is isotropic, it can be constructed via
Gram-Schmidt orthogonalization,

e the constructions are expensive: O(d”) time
e condition: X" ~ i implies unbiasedness.

o (X2)N . are renormalized rows of a matrix
sampled from Haar measure on &'(d).

Statistical improvements: It often holds

MSE (;f ;f(xg)“)) < MSE (]‘b ;:lf(Xgid)) .

GIVENS ROTATIONS MATRICES

A d-dimensional Givens rotation is an orthogo-
nal matrix specified by two distinct indices i, j €
d|, and an angle 6 € |0, 27). The Givens rotation
is then given by the matrix G|i, 7, 0] satisfying

cos(f) iftk=1€e{ij}

_sin(f) ifk=1d,l=3j
Gli,j, 00k, = < sin(0)  ifk=j,1=1i

1 iftk=1¢&{i,j}

0 otherwise .

A Givens rotation Gli,,0] composed on the
right with a reflection in the j coordinate will be

termed a Givens reflection and written G[i, 7, 6].
Givens rotations and reflections will be generi-
cally referred to as Givens transformations.

Lemma 1 (Pillai, Smith 2016) There exists C' > 0
such that the total variation distance TV between dis-
tribution D& on the d-sphere induced by the prod-
uct of C'dlog(d) independent Givens random rotations
acting on the Lo-normalized input vector x and the
distribution D¢, . related to Haar measure on that

Haar

sphere satisfies:
lim TV(Déi\m D%aar) = 0.

d— oo
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Figure 1: Row 1: the matrix F*% expressed as a com-
muting product of Givens reflections. Row 2: As above,

but for matrix F2:3. Row 3: the matrix F>® expressed as
a product of commuting Givens rotations. Row 4: the
normalised Hadamard matrix H3z written as a product

of F13, F23 and F*2. White/black represent 0/1 ele-
ments and grey /blue - elements in (0, 1) and (—1, 0).

Kac’s random walk matrices (random 1;,J;, 6;):

T
KT — H G[Lﬁ? Jt7 (975] 9

t=1

The Hadamard-Rademacher Chains: Each block

HD, of the chain can be rewritten as:

L—1
HDt _ (H fwl,L) (f\L,LDt) .

i=1
where:
Fil = T] GIAMA+ej,m/4 € 0(2").
AEFZ
A; =0

for the canonical basis eq, .. ., ey, of FZ.

In this expression, we may interpret F-1D; as a
product of random Givens transtormations with a
deterministic, structured choice of rotation axes.

Hadamard-MultiRademacher matrices:

L

I (f‘i’LDi) |

1=1

Denote the kernel estimator using Kac’s random

walk matrices with k& Givens rotations as: Kffac

and the unstructured baseline as K base. We have:

Theorem 1 (Kac’s random walk for RBF kernels)
Let K; : R x RY — R be a Gaussian kernel. Then
there exists a constant C' > 0 such that for x,y,
k= C -dlogdand d large enough we have:

MSE(KFE,.(%,¥)) < MSE(Kpase(x,¥)).

EXPERIMENTS: FROM KERNEL APPROXIMATION TO RL
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Figure 2: Comparison of different Monte Carlo meth-
ods on the task of Gaussian kernel approximation.
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Figure 3: Comparison of different Monte Carlo meth-
ods for gradient estimation in ES algorithms for RL.



