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MONTE CARLO (MC) METHODS
Consider an expectation of the form:

EX∼µ [f(X)] ,

where: µ ∈ P(Rd) is an isotropic probability
distribution, f : Rd → R is measurable, and µ-
integrable. A standard MC estimator is given by:

1

N

N∑
i=1

f(X iid
i ), where (X iid

i )Ni=1
i.i.d.∼ µ.

Applications in Machine Learning:
1. dimensionality reduction techniques (JLTs)
2. scaling kernel methods via random features
3. locality sensitive hashing algorithms (LSH)
4. ES methods for Reinforcement Learning
5. and many more...

How to improve computational complexity and
accuracy of the above baseline ?

ORTHOGONAL MC ESTIMATORS
Consider the following orthogonal MC estimator:

1

N

N∑
i=1

f(Xort
i ), where (Xort

i ) ∼ µ andXort
i ⊥ Xort

j .

Note that for N ≤ d:
• if µ is isotropic, it can be constructed via

Gram-Schmidt orthogonalization,
• the constructions are expensive: O(d3) time
• condition: Xort

i ∼ µ implies unbiasedness.

• (Xort
i )Ni=1 are renormalized rows of a matrix

sampled from Haar measure on O(d).

Statistical improvements: It often holds

MSE

(
1

N

N∑
i=1

f(Xort
i )

)
< MSE

(
1

N

N∑
i=1

f(X iid
i )

)
.

ON THE HUNT FOR UNIFYING APPROXIMATE ORTHOGONAL MCS

Figure 1: Row 1: the matrix F̃1,3 expressed as a com-
muting product of Givens reflections. Row 2: As above,
but for matrix F̃2,3. Row 3: the matrix F̃3,3 expressed as
a product of commuting Givens rotations. Row 4: the
normalised Hadamard matrix H3 written as a product
of F̃1,3, F̃2,3 and F̃3,3. White/black represent 0/1 ele-
ments and grey/blue - elements in (0, 1) and (−1, 0).

Kac’s random walk matrices (random It,Jt, θt):

KT =
T∏
t=1

G[It, Jt, θt] ,

The Hadamard-Rademacher Chains: Each block

HDi of the chain can be rewritten as:

HDt =

(
L−1∏
i=1

F̃i,L

)
(F̃L,LDt) .

where:

F̃j,L =
∏
λ∈FL

2
λj=0

G̃[λ,λ+ ej , π/4] ∈ O(2L) .

for the canonical basis e1, . . . , eL of FL2 .
In this expression, we may interpret F̃L,LDt as a
product of random Givens transformations with a
deterministic, structured choice of rotation axes.

Hadamard-MultiRademacher matrices:

L∏
i=1

(
F̃i,LDi

)
.

Denote the kernel estimator using Kac’s random
walk matrices with k Givens rotations as: K̂k

kac

and the unstructured baseline as K̂base. We have:

Theorem 1 (Kac’s random walk for RBF kernels)
Let Kd : Rd × Rd → R be a Gaussian kernel. Then
there exists a constant C > 0 such that for x,y,
k = C · d log d and d large enough we have:

MSE(K̂k
kac(x,y)) < MSE(K̂base(x,y)).
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EXPERIMENTS: FROM KERNEL APPROXIMATION TO RL

Figure 2: Comparison of different Monte Carlo meth-
ods on the task of Gaussian kernel approximation.

Figure 3: Comparison of different Monte Carlo meth-
ods for gradient estimation in ES algorithms for RL.

APPROXIMATE MC METHODS
To improve computational complexity of orthog-
onal MC estimators, several constructions related
to sampling from distributions “close” to Haar
distribution on O(d) were proposed:

Hadamard-Rademacher Chains:

XT =

T∏
i=1

HDi,

with i.i.d. random diagonal matrices (Di)
T
i=1 with

i.i.d. diagonal entries Unif({±1}), and where
H ∈ R2L×2L stands for the normalized Kronecker-
product Hadamard matrix defined as:

H =

(
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2
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2
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2
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⊗ · · · ⊗

(
1√
2

1√
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)
︸ ︷︷ ︸

L times

,

for ⊗ denoting the Kronecker-product operator.

Computational Complexity: Due to Fast Walsh-
Hadamard Transform, XTv for any vector
v ∈ R2L can be computed in time: O(T ×L× 2L).

Many related constructions: e.g. Butterfly matri-
ces generalizing Hadamard-Rademacher chains.

GIVENS ROTATIONS MATRICES
A d-dimensional Givens rotation is an orthogo-
nal matrix specified by two distinct indices i, j ∈
[d], and an angle θ ∈ [0, 2π). The Givens rotation
is then given by the matrix G[i, j, θ] satisfying

G[i, j, θ]k,l =



cos(θ) if k = l ∈ {i, j}
− sin(θ) if k = i, l = j

sin(θ) if k = j, l = i

1 if k = l 6∈ {i, j}
0 otherwise .

A Givens rotation G[i, j, θ] composed on the
right with a reflection in the j coordinate will be
termed a Givens reflection and written G̃[i, j, θ].
Givens rotations and reflections will be generi-
cally referred to as Givens transformations.

Lemma 1 (Pillai, Smith 2016) There exists C > 0
such that the total variation distance TV between dis-
tribution DdGiv on the d-sphere induced by the prod-
uct ofCd log(d) independent Givens random rotations
acting on the L2-normalized input vector x and the
distribution DdHaar related to Haar measure on that
sphere satisfies:

lim
d→∞

TV(DdGiv,DdHaar) = 0.


