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Abstract

We present an in-depth examination of the effecti-
veness of radial basis function kernel (beyond
Gaussian) estimators based on orthogonal random
feature maps. We show that orthogonal estima-
tors outperform state-of-the-art mechanisms that
use iid sampling under weak conditions for tails
of the associated Fourier distributions. We prove
that for the case of many dimensions, the superi-
ority of the orthogonal transform can be accura-
tely measured by a property we define called the
charm of the kernel, and that orthogonal random
features provide optimal (in terms of mean squa-
red error) kernel estimators. We provide the first
theoretical results which explain why orthogonal
random features outperform unstructured on do-
wnstream tasks such as kernel ridge regression by
showing that orthogonal random features provide
kernel algorithms with better spectral properties
than the previous state-of-the-art. Our results ena-
ble practitioners more generally to estimate the
benefits from applying orthogonal transforms.

1 INTRODUCTION

Kernel methods are a central tool in machine learning, with
many applications including classification (SVMs, Cortes
and Vapnik, 1995), regression (kernel ridge regression),
Gaussian processes (Rasmussen and Williams, 2005), prin-
cipal component analysis, novelty detection, bioinformatics
(graph kernels), predictive state representation and reinfor-
cement learning (Ormoneit and Sen, 2002). An important
drawback is poor scalability with the size of the dataset.
One approach to address this problem is the popular random
feature map method (Rahimi and Recht, 2007), where va-
lues of kernels are approximated by dot products of the
corresponding random feature maps (RFMs), since compact
RFMs lead to much more scalable models.

RFMs can be constructed more efficiently by using struc-
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tured matrices, but typically at the cost of lower accuracy
(Ailon and Chazelle, 2006; Hinrichs and Vybíral, 2011;
Vybíral, 2011; Zhang and Cheng, 2013; Choromanski and
Sindhwani, 2016; Choromanska et al., 2016; Bojarski et al.,
2017). Recent results suggest that in certain settings, structu-
red approaches based on orthogonal transforms outperform
iid methods in terms of accuracy (Yu et al., 2016; Cho-
romanski et al., 2017). These techniques also often lead
to faster routines for the RFM computation if they can be
discretized (Choromanski et al., 2017), yielding triple win
improvements in accuracy, speed and space complexity.

These triple win methods have been used so far only in
very special scenarios such as Gaussian kernel approxima-
tion in the regime of high data dimensionality (Yu et al.,
2016), dimensionality reduction with modified Johnson-
Lindenstrauss transform, angular kernel approximation
(Choromanski et al., 2017) and cross-polytope LSH (Andoni
et al., 2015). Little is known about their theoretical guaran-
tees. The question of how broadly they may be applied is
an important open problem in theory and in practice.

Until recently no theoretical results showing that with num-
ber of random features m � N , where N stands for data
size, one can obtain accurate approximation of the exact ker-
nel method for such tasks as kernel ridge regression or SVM
were known. Most of the theoretical results (including all
mentioned above) considered pointwise kernel approxima-
tion – the question whether these results translate (if at all)
to quantities such as small empirical risk for kernel ridge
regression in the setting m � N was open. One of the
first results here was proposed by Avron et al. (2017), but
this considered unstructured random features. In this paper,
we prove that orthogonal random features for RBF kernels
provide strictly better bounds. Further, we show that this
is a consequence of a more general observation that kernel
algorithms based on orthogonal random features are charac-
terized by better spectral properties than the unstructured
ones. We achieve this by combining our novel pointwise
guarantees with recent work by Avron et al. (2017).

For a practitioner considering an RFM for her particular ker-
nel application, key questions include: How to evaluate the
gains provided by the structured approach (including time
for orthogonalization if required)? How do gains depend on
the region of interest and the choice of the kernel (the high
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dimensionality setting is typically more important)? Whet-
her pointwise gains coming from the orthogonal random
features imply downstream applications gains?

We answer these questions for the prominent class of radial
basis function kernels (RBFs), presenting the first general
approach to the open problem. Our results include the ear-
lier result of Yu et al. (2016) as a special case. An RBF
K : Rn×Rn → R is defined by K(x,y) = φK(‖x−y‖),
for some positive-definite (PD) function φK : R≥0 → R.
RBFs include the Gaussian and Matérn kernel, and play an
important role in machine learning, leading to well establis-
hed architectures such as RBF networks. There are deep
connections between RBFs and function approximation, re-
gularization theory, density estimation and interpolation in
the presence of noise.

We highlight the following contributions:

• In §3: Asymptotic results for fixed ‖x− y‖ and large di-
mensionality n, and also for fixed n and small ‖x−y‖. In
the latter case, we show (under certain conditions) superi-
ority of orthogonal random features relative to iid features
for a large class of RBFs defined by bounded fourth mo-
ments of the corresponding Fourier distributions. In the
former case, we express the benefit of orthogonality in
terms of the charm function of the RBF at a given point
x− y (see §3 for details). We draw particular attention
to Theorems 3.1 and 3.8 as key theoretical results.

• In §4: We show optimality of the random orthogonal
feature method for large classes of RBFs under weak
conditions regarding the geometry of the applied random
feature map mechanism.

• In §5: We provide guarantees that orthogonal random
features for RBFs outperform unstructured ones on such
downstream tasks as kernel ridge regression.

• In §6: We explore empirically the benefits from orthogo-
nal features for pointwise kernel approximation, Gram
matrix approximation and GP regression.

2 RANDOM FOURIER FEATURES

Since an RBF kernel K is shift-invariant, by Bochner’s
theorem (Rahimi and Recht, 2007) there exists a finite Borel
measure µK ∈ M(Rn) (the Fourier measure associated
with K) such that

K(x,y) = Re

(∫
Rn

exp(i〈w,x− y〉)µK(dw)

)
. (1)

In Figure 1, we recall several commonly-used RBFs and
their corresponding Fourier densities, which will be used
throughout the remainder of the paper.

For simplicity, we assume µK(Rn) = 1; the extension
to general non-negative finite measures is straightforward.

Name Positive-definite function

Gaussian σ2 exp

(
− 1

2λ2
z2

)
Matérn σ2 21−ν

Γ(ν)

(√
2νz
)ν
Kν

(√
2νz
)

Name Fourier density
Gaussian σ2

(2πλ2)n/2
exp

(
− 1

2λ2 ‖w‖22
)

Matérn Γ(ν+n/2)
Γ(ν)(2νπ)n/2

(
1 + 1

2ν ‖w‖
2
)−ν−p/2

Figure 1: Common RBF kernels, their corresponding posi-
tive definite functions, and their Fourier transforms.

Bochner’s theorem leads to the Monte Carlo scheme for
approximating values of RBFs and to the random feature
map mechanism, where rows of the random matrix are taken
independently at random from distribution µK .

Using the identity given by Bochner’s theorem (Equation 1),
a standard Monte Carlo approximation yields the pointwise
kernel estimator

K̂ iid
m,n(x,y)=

m∑
i=1

cos(〈wi,x− y〉)
m

=〈Φm,n(x),Φm,n(y)〉,

(2)

where Φm,n : Rn → R2m is a random feature embedding:

Φm,n(x) =

(
1√
m

cos(〈wi,x〉),
1√
m

sin(〈wi,x〉)
)m
i=1

,

for all x ∈ Rn, (wi)
m
i=1

iid∼ µK . Here m stands for the total
number of random features used. Thus, a kernel algorithm
applying a non-linear kernel K on a dataset (xi)

N
i=1 can be

approximated by using the linear (inner product) kernel with
the randomly embedded dataset (Φ(xi))

N
i=1. The special li-

near structure of the approximation can be exploited to yield
fast training algorithms (Joachims, 2006). There has been
much recent work in understanding the errors incurred by
random feature approximations (Sutherland and Schneider,
2015), and in speeding up the computation of the random
embeddings (Le et al., 2013).

2.1 Geometrically Structured Random Fourier
Features

We start by identifying some basic properties of the proba-
bility measures µ associated with an RBF. The following
lemma demonstrates that a random vector w drawn from
the corresponding Fourier measure µ ∈ M(Rn) may be
decomposed as w = Rv̂, where v̂ ∼ Unif(Sn−1), and
R ≥ 0 is the norm of the random vector w.

Lemma 2.1. If K is an RBF, then its Fourier transform
µ ∈M(Rn) is isotropic: µ(A) = µ(M−1A) for all Borel
sets A, and all M ∈ On, the orthogonal group on Rn.
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With this decomposition of the distribution of the frequency
vectors in hand, we can now consider introducing geome-
tric couplings into the joint distribution over (wi)

m
i=1 =

(Riv̂i)
m
i=1. In particular, we shall consider couplings of the

direction vectors (v̂i)
m
i=1 so that marginally each direction

vector v̂i is distributed uniformly over the sphere Sn−1, but
the direction vectors are no longer independent. There are
many ways in which such a coupling can be constructed; for
example, direction vectors could be drawn iteratively, with
the distribution of a direction vector given by a parametric
distribution (such as a von-Mises-Fisher distribution), with
parameters depending on previously drawn directions.

One case of particular interest is when direction vectors
are conditioned to be orthogonal, which was recently
introduced by Yu et al. (2016) in the case of the Gaussian
kernel, defined in greater generality below.

Definition 2.2 (Orthogonal Random Features). Let K :
Rn × Rn → R be an RBF kernel, with associated Fourier
measure µK ∈ M(Rn). The orthogonal random feature
map Φ : Rn → R2m of dimension 2m = 2kn (for some
integer k ∈ N) associated with K is given by

Φort
m,n(x)=

(
1√
m

cos(〈wl
i,x〉),

1√
m

sin(〈wl
i,x〉)

)l=k,i=n
l=1,i=1

,

where the blocks of frequency vectors (wl
1:n)kl=1 are inde-

pendent, and for each frequency vector block, the frequency
vectors wl

1, . . . ,w
l
n are marginally distributed according

to µK , and are jointly almost-surely orthogonal. We denote
the corresponding kernel estimator as follows:

K̂ort
m,n(x,y) =

k∑
l=1

n∑
i=1

cos(〈wl
i,x− y〉)
m

(3)

= 〈Φort
m,n(x),Φort

m,n(y)〉 .

Henceforth we take k = 1. The analysis for a number of
blocks k > 1 is completely analogous.

3 ORTHOGONAL RANDOM FEATURES
FOR GENERAL RBFS AND THE
CHARM FUNCTION

In this section, we establish asymptotically the benefits of
the orthogonal random feature map mechanism for a large
class of RBFsK(x,y). Let z = x−y. We focus mainly on
two regimes: (i) fixed dimensionality n and small ‖z‖; and
(ii) fixed ‖z‖ and large n. We introduce the charm function
defined in Equation (4), and explain its role in assessing the
accuracy of models based on random feature maps for large
n. In particular, we show that for classes of RBFs defined
by positive definite functions φ that are not parametrized
by data dimensionality, charm is always nonnegative. This
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Figure 2: Plots of the charm function ΨK for n = 2
and different RBFs K. On the left: Gaussian kernel, in
the middle: kernel defined by the PD function φ(‖z‖) =(
1 + ‖z‖2

)−1/2
, on the right: kernel defined by the PD

function φ(‖z‖) =
(
1 + ‖z‖2

)−1
. “Warmer” regions indi-

cate larger gains from applying structured approach. Po-
sitive values of ΨK imply asymptotic superiority of the
structured orthogonal estimator. All charm functions plotted
are positive everywhere.

observation leads to the conclusion that when in this setting,
for n large enough, the orthogonal estimator outperforms
the iid estimator K̂ iid

m,n across the entire domain provided
that the tails of the corresponding Fourier distributions are
not too heavy. At the outset, we highlight Theorems 3.1 and
3.8 as key theoretical results.

Charm. We shall show that charm plays a crucial role
in understanding the behavior of orthogonal transforms for
the large dimensionality regime. The charm function ΨK

of an RBF K(x,y) = φK(‖x− y‖) is a function Rn → R
defined at point z = x− y as follows:

ΨK(z) = ‖z‖2 d
2φ2
K

dx2

∣∣∣∣
x=‖z‖

− ‖z‖dφ
2
K

dx

∣∣∣∣
x=‖z‖

. (4)

We shall see that in the large dimensionality regime, the su-
periority of orthogonal transforms follows from the positive
sign of the charm function across the entire domain. This in
turn is a consequence of the intricate connection between
classes of positive definite RBFs not parametrized by data
dimensionality and completely monotone functions. The
benefits from using orthogonal transforms in comparison
to state-of-the-art can be quantitatively measured by the
value of the charm of the kernel at point z = x − y for
large data dimensionality. Large charm values (see Figure
2) indicate regions where the mean-squared error defined as:
MSE(x,y) = E[(K̂(x,y)−K(x,y))2], of the orthogonal
estimator is significantly smaller than for an iid estimator
and thus the geometry of the charm function across the dom-
ain gives strong guidance on the accuracy benefits of the
structured approach.

3.1 The Landscape for Fixed n and Small ‖x− y‖

Our main result of this section compares the mean squared
error (MSE) of the iid random feature estimator based on
independent sampling to the MSE of the estimator applying
random orthogonal feature maps for small enough ‖x− y‖.
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Theorem 3.1. Let K : Rn × Rn → R be an RBF and let
µK ∈M(Rn) be its associated Fourier measure. Suppose
that EµK

[
‖w‖4

]
<∞. Then for sufficiently small ‖x−y‖,

we have

MSE(K̂ iid
m,n(x,y)) > MSE(K̂ort

m,n(x,y)).

The assumptions of the theorem above are satisfied for many
classes of RBFs such as Gaussian, Matérn with smoothness
parameter ν > 2, and Poisson-Bessel kernels. In the Ap-
pendix we present additional results that give an explicit
lower bound on the gap between the MSEs, given additional
assumptions on the tail of µ.

3.2 The Landscape for Fixed ‖x− y‖ and Large n

Having established asymptotic results for small ‖x − y‖,
we now explore the asymptotic behaviour of orthogonal
features for large dimensionality n. We state our main
result below, which first requires a preliminary definition.

Definition 3.2. Let Mµn(k, n) be the k-th moment of the
random variable X = ‖w‖2, for w ∼ µn, where µn ∈
M(Rn). We say that a sequence of measures {µn} is con-
centrated if P[|‖w‖22 −Mµn(2, n)| ≥ Mµn(2, n)g(n)] ≤

1
h(n) for some g(n) = on(1) and h(n) = ωn(1).

Note that the above is a very weak concentration condition
regarding second moments, where no exponentially small
upper bounds are needed. Now the charm function (4) plays
a crucial role. Our key technical result, from which we will
deduce several practical corrollaries, is as follows.

Theorem 3.3. Consider a fixed positive definite radial basis
function φ, a family of RBF kernelsK, whereK on Rn×Rn
for each n ∈ N is defined as K(x,y) = φ(‖x − y‖) for
all x,y ∈ Rn, and an associated concentrated sequence
of Fourier measures {µn}n∈N. Assume also that there exist
constant C > 0 and ξ : N → R such that Mµn(2k, 2n) ≤
(n − 1)(n + 1) · ... · (n + 2k − 3)ξ(k) and |ξ(k)|

k! ≤ Ck

for k large enough. Then the following holds for ‖z‖ =
‖x− y‖ < 1

4
√
C

:

MSE(K̂ iid
m,n(x,y))−MSE(K̂ort

m,n(x,y)) =

m− 1

m

(
1

8n
ΨK(z) + o(n−1)

)
,

(5)

where ΨK is defined as in Equation (4) andm is the number
of random features used. A tight upper bound on the o(n−1)
term and a strengthened version of the above theorem is
given in the Appendix.

Theorem 3.3 leads to many important corollaries, as we
show below. In particular, we highlight that the charm
function ΨK associated with the kernel K is central in
determining the relative performance of orthogonal random

features and iid features in high dimensions, due to its place
in Equation (5). As special cases, Theorem 3.3 implies all
earlier theoretical results for orthogonal random features for
a Gaussian kernel (Yu et al., 2016).

Corollary 3.4. If K is a Gaussian kernel then for any fixed
‖z‖ > 0 and n large enough the orthogonal random feature
map outperforms the iid random feature map in MSE. This
is implied by the fact that for this kernel, Mµ(2k, 2n) =

2k (n+k−1)!
(n−1)! and thus one can take: ξ(k) = 2k+1 in the

theorem above. Note that from Stirling’s formula we get:
k! = kk+ 1

2 e−k(1 + ok(1)). Thus the assumptions of The-
orem 3.3 are satisfied for any fixed C > 0. It remains to
observe that the charm function is positive for the Gaus-
sian kernel K, since: ΨK(z) = 4‖z‖4e−‖z‖2 (see Figure
2) and that the sequence of Fourier measures associated
with the class of Gaussian kernels is concentrated (standard
concentration result, see Chernoff, 2011).

The fact that charm is nonnegative across the entire domain
for the family of Gaussian kernels is not a coincidence. In
fact the following is true.

Theorem 3.5 (Positive charm). Let φ : R → R be such
that for every n ∈ N, Kn : Rn × Rn → R defined by
Kn(x,y) = φ(‖x− y‖) is a positive definite kernel. Then
for each such Kn, the charm function ΨKn is non-negative
everywhere.

The result above (details in the Appendix) uses a subtle
connection between positive definite functions φ considered
above and completely monotone functions.

Definition 3.6. A function σ : [0,+∞] → R which is
in C[0,∞] ∩ C∞(0,∞) and which satisfies (−1)r d

rσ
dxr ≥

0 ∀r ∈ N≥0, is called completely monotone on [0,∞].

The connection is given by the following theorem.

Theorem 3.7 (Schoenberg, 1938). A function σ is comple-
tely monotone on [0,+∞] iff the function φ : Rn×Rn → R
defined for x,y ∈ Rn as φ(x,y) = σ(‖x−y‖2) is positive
definite for all n ∈ N.

Combining Theorem 3.3 with Theorem 3.5, we obtain the
following key result.

Theorem 3.8 (Superiority of the orthogonal transform). Un-
der the assumptions of Theorem 3.3, for any fixed z ∈ R>0,
for sufficiently large n, for any x,y ∈ Rn such that
‖x− y‖ = z,

MSE(K̂ iid
m,n(x,y)) > MSE(K̂ort

m,n(x,y)). (6)

3.3 Non-asymptotic Results

Complementing the theoretical asymptotic results presented
above, we provide additional analysis of the behavior of
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(a) Gaussian kernel (b) Matérn-5/2 kernel

Figure 3: Difference between iid MSE and orthogonal MSE,
charm function ΨK , and kernel K for Gaussian and Matérn-
5/2 kernels for a range of dimensionalities. In the top plot
of subplot (a), solid green is n = 4, dotted red is n = 64.

orthogonal random features in non-asymptotic regimes.
The analysis centers on Proposition 3.9, which expresses
the difference in MSE between iid and orthogonal random
features in terms of univariate integrals, which although
generally intractable, can be accurately and efficiently
evaluated by deterministic numerical integration.

Proposition 3.9. For an RBF kernel K on Rn with Fourier
measure µK and x,y ∈ Rn, writing z = x− y, we have:

MSE(K̂ort
m,n(x,y))−MSE(K̂ iid

m,n(x,y)) =

m− 1

m
ER1,R2

[
Jn

2−1(
√
R2

1 +R2
2‖z‖)Γ(n/2)

(
√
R2

1 +R2
2‖z‖/2)

n
2−1

]
−

m− 1

m
ER1

[
Jn

2−1(R1‖z‖)Γ(n/2)

(R1‖z‖/2)
n
2−1

]2

,

(7)

whereR1, R2 are independent scalar random variables with
the distribution of the norm of a vector drawn from µK , and
Jα is the Bessel function of the first kind of degree α.

Firstly, In Figure 3, we plot the difference in MSE between
iid random features and orthogonal random features for a
range of kernels, noting that orthogonal features provide
superior MSE across a wide range of values of ‖z‖. In
the same plots, we show the value of the kernel K and
of the charm function ΨK , noting that the charm function
describes the benefits of orthogonal features accurately, even
in the case of low dimensions. In all plots in this section, we
write ∆MSE for MSE(K̂ iid

m (x,y)) − MSE(K̂ort
m (x,y)),

so that ∆MSE > 0 corresponds to superior performance of
orthogonal features over iid features.

Secondly, we illustrate the broad applicability of Theorem
3.1 by plotting the relative performance of orthogonal and
iid features for the Matérn-5/2 kernel around the origin, see
Figure 4.

Finally, we consider an RBF K(x,y) = φ(‖x− y‖) which
does not correspond to a completely monotone function. Let
n = 3, and consider the Fourier measure µ that puts unit
mass uniformly on the sphere S2 ⊆ R3. As this is a finite

Figure 4: Difference in
MSE for orthogonal and
iid random features for the
Matérn-5/2 kernel over R64,
which satisfies the moment
condition of Theorem 3.1.

Figure 5: Difference in MSE
for orthogonal and iid fe-
atures for the sinc kernel,
which does not correspond
to a completely monotone
positive definite function.

isotropic measure on R3, there exists a corresponding RBF
kernelK, which by performing an inverse Fourier transform
can be shown to be

K(x,y) = sin(‖x− y‖)/‖x− y‖ .

We term this the sinc kernel. Since the kernel takes on
negative values for certain inputs, it does not correspond to
a completely monotone function. Given the particular form
of the Fourier measure, we may compute the difference in
MSEs as given in Proposition 3.9 exactly, which yields

MSE(K̂ort
m,n(x,y))−MSE(K̂ iid

m,n(x,y)) =

2

3

(
sin(
√

2‖z‖)√
2‖z‖

− sin2(‖z‖)
‖z‖2

)
.

(8)

We plot this function in Figure 5, noting there are large
regions where orthogonal features are outperformed by iid
features. Thus it may not be possible to relax the require-
ment in Theorem 3.8 that the pd function φK corresponds
to a completely monotone function, as in Theorem 3.7.

4 OPTIMALITY OF THE RANDOM
ORTHOGONAL FEATURE MAP
MECHANISM

In this section, we consider unbiased estimators of RBFs
introduced in Subsection 2.1. We show that for a significant
family of random feature based estimators which we call
smooth, asymptotically for large n, the orthogonal estimator
is optimal in the sense of minimizing mean squared error.
We will now identify a particular estimator E with a
collection of probabilistic distributions on m-length
n-dimensional tuples (each for different dimensionality n
and number of random features m), each defining a set of
sampled vectors wn

1 , ...,w
n
m.

Definition 4.1 (smooth estimators). A random feature ba-
sed estimator E is smooth if for a fixed m,n lengths of
directions of sampled vectors are chosen independently and
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furthermore, there exists a function q : N → R such that
q(x)

x→∞−−−−→ 0 and for sampled vectors wn
1 , ...,w

n
m the fol-

lowing is true:

E[| cos(θni,j)|3] ≤ q(n) · E[| cos(θni,j)|2],

where θni,j is an angle between wn
i and wn

j and i 6= j.

Note that many useful estimators are smooth, including
state-of-the-art estimators based on independent sampling,
and also structured orthogonal estimators (note that for struc-
tured orthogonal estimators we have: cos(θi,j) = 0 with
probability 1). Further, it is not hard to see that other estima-
tors which can be obtained from general von Mises–Fisher
distributions (Navarro et al., 2017) are also smooth. Von
Mises-Fisher distributions generalize uniform distributions
on the sphere with concentration parameters which are not
too large – for example, the first sampled direction might
define the mean direction then other directions could be sam-
pled from a von Mises–Fisher distribution with the mean
direction determined by the first sample.

We are ready to present our main result of this section,
which shows that orthogonal random features are asympto-
tically optimal for the family of smooth estimators from
Definition 4.1.

Theorem 4.2. Consider a fixed positive definite radial basis
function φ, a family of RBF kernelsK, whereK on Rn×Rn
for each n ∈ N is defined as K(x,y) = φ(‖x − y‖) for
all x,y ∈ Rn, and an associated concentrated sequence of
Fourier measures {µn}n∈N. Denote by Eort an orthogonal
estimator and by Esmooth some smooth estimator. Denote
z = x − y. Then, under assumptions of Theorem 3.3, for
any fixed ‖z‖ and n large enough the following is true:

MSE(K̂ort
m,n(x,y)) ≤ MSE(K̂smooth

m,n (x,y)), (9)

where K̂ort
m,n is an instance of Eort for dimensionality n

and using m random features (as in Theorem 3.3) and furt-
hermore, K̂smooth

m,n stands for the analogous instance of
Esmooth.

5 SUPERIORITY OF ORTHOGONAL
RANDOM FEATURES FOR
DOWNSTREAM APPLICATIONS

One of the key applications of random feature maps is ker-
nel ridge regression (KRR), where they lead to a scalable
version of the algorithm. The KRR algorithm is a subject
of intense research since ridge regression is one of the most
fundamental machine learning methods that can be kerneli-
zed (Avron et al., 2016; Zhang et al., 2015). For this section
we will borrow some notation from Avron et al. (2017). In
the first subsection we give an overview and in the next one,
present our new results.

5.1 Background: Ridge Regression with
Approximate Kernel Methods

We must first introduce a few definitions.

Definition 5.1. We say that a matrix A ∈ RN×N is a ∆-
spectral approximation of another matrix B ∈ RN×N for
∆ ∈ R+ if the following holds:

(1−∆)B � A � (1 + ∆)B, (10)

where X � Y stands for Y−X being positive semidefinite.

Definition 5.2. For a dataset X = {x1, ...,xN} and a
given kernel K, we define the kernel matrix K as

K = {K(xi,xj)}i,j∈{1,...,N}.

The random matrix obtained from K by replacing exact va-
lues of the kernel by the approximate values computed with
iid features is denoted as K̂iid, whereas the matrix where
values are replaced by the approximate values computed
with orthogonal features is K̂ort.

We show that for N ∈ N, an RBF kernel K (under assump-
tions of Theorem 3.3), an identity matrix IN ∈ RN×N and
λ > 0, matrix K̂ort + λNIN provides a strictly tighter
spectral approximation of K + λNIN than K̂iid + λNIN .
It was shown by Avron et al. (2017) that the tightness of
the spectral approximation of K + λNIN implies accu-
racy guarantees of random feature based kernel methods
on such downstream tasks as kernel ridge regression and
kernel k-means clustering; for the reader’s convenience we
explain this in more detail below on the example of ker-
nel ridge regression. Thus our results on the tightness of
spectral approximation of orthogonal versus iid features
will immediately imply the superiority of the orthogonal
features approach on these downstream tasks. The matrix
K̂ort + λNIN will be our central object of study in this
section.

We consider here the following model of data generation:

yi = f∗(xi) + νi , i = 1, . . . , N , (11)

where f∗ is the unknown groundtruth function to be le-
arnt, (yi)

N
i=1 are values assigned to data points (xi)

N
i=1 and

(νi)
N
i=1 are i.i.d noise terms distributed as mean-zero normal

variables with standard deviation σ. The empirical risk of
an estimator f of the groundtruth f∗ obtained with the use
of perturbed groundtruth values yi is defined as:

R(f) ≡ Eνi

 1

N

N∑
j=1

(f(xi)− f∗(xi))2

 , (12)

where N is the number of data points. Denote by fKRR the
kernel ridge regression estimator based on the groundtruth
kernel matrix K and by f∗ ∈ Rn the vector whose jth entry
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is f∗(xj). In (Alaoui and Mahoney, 2015; Bach, 2013) it
was proven that: R(fKRR) = λ2

N (f∗)>(K+λNIN )−2f∗+
σ2

N Tr(K2(K + λNIN )−2), where λ stands for the regula-
rization parameter, and K and IN are as above.

As Avron et al. (2017) notice, the risk bound R(fKRR)

is upper-bounded by R̂K(f∗), where R̂K(f∗) is given as:
R̂K(f∗) ≡ λ(f∗)>

N (K + λNIN )−1f∗ + σ2

N sλ(K),

for sλ(K) ≡ Tr((K + λNIN )−1K). The expression
R̂K(f∗) played a crucial role in the analysis of Avron et al.
(2017), leading to a compact formula on the upper bound
on the risk of the general estimator in terms of the quality
of the spectral approximation of K + λNIN :

Lemma 5.3. Consider KRR estimator f̂ based on the ma-
trix K̂ approximating groundtruth kernel matrix K. Assume
furthermore that K̂ +λNIN is a ∆-spectral approximation
of K + λNIN for some 0 ≤ ∆ < 1 and that ‖K‖2 ≥ 1.
Then the following is true:

R(f̂) ≤ 1

1−∆
R̂K(f∗) +

∆

1 + ∆

rank(K̂)

N
σ2. (13)

5.2 New Results: Kernal Ridge Regression with
Orthogonal Features

We are ready to present our results. For simplicity we will
give it for one random block (see: Section 2) however the
result can be straightforwardly generalized to any number
k of blocks. We show that orthogonal features lead to
tighter spectral approximation of K + λNIN for the class
of considered RBFs and n large enough. We will borrow
notation from the analysis above and Theorem 3.3.

Theorem 5.4. Subject to the conditions of Theorem 3.3,
consider RBFs (in particular Gaussian kernels). Let ∆̂ de-
note the smallest positive number such that K̂ + λNIN is a
∆-approximation of K+λNIN , where K̂ is an approximate
kernel matrix obtained by using certain random feature map
based kernel estimator. Then for any a > 0:

P[∆̂ > a] ≤ B

a2σ2
min

, (14)

where: B =
∑
i,j∈{1,...,N}MSE(K̂(xi,xj)) and σmin is

the smallest singular value of K + λNIN . In particular, if
if Bort refers to the value of B for the estimator K̂ort and
Biid to the one for the estimator K̂ iid then

Biid −Bort =
m− 1

m

( 1

8n
·∑

i,j∈{1,...,N}

[
ΨK(‖xi − xj‖+ o

(
1

n

)])
,

(15)

where n is the data dimensionality and m is the number of
random features used.

Note that for these RBFs, Biid > Bort for n large enough,
and thus orthogonal random features provide strictly better
bound than iid features. To understand better the order of the
magnitude of the upper bound on P[∆̂ > a] from Theorem
5.4, it suffices to notice that if a datasetX = {x1, ...,xN} is
taken from some bounded region then random feature based
estimators under consideration satisfy MSE(K̂(xi,xj)) =
O( 1

m ). For a constant a > 0 the upper bound is thus of
the order O( N2

mσ2
min

). For λN � 1 (which is the case for

all practical applications) we have: σ4
min = Ω(λ2N2), thus

the upper bound on P[∆̂ > a] is of the order of magnitude
O( 1

mλ2 ). Thus for λ� 1√
N

(a reasonable practical choice),
it suffices to take m� N random features to get an upper
bound of order o(1) as N →∞.

The above result immediately leads to the following
regarding risk bounds for kernel ridge regression.

Theorem 5.5. Under the assumptions of Theorem 5.4, the
following holds for the kernel ridge regression risk and any
c > 0 if m-dimensional random feature maps are used to
approximate a kernel: P[R(f̂) > c] ≤ B

a2cσ
2
min
, where ac is

given as: ac = 1− R̂K(f∗)

c−mσ22N

and the probability is taken in

respect to the random choices of features.

Note that in the above bound the only term that depends
on the choice of the random feature mechanism is B and
thus as before, we conclude that orthogonal random features
provide strictly stronger guarantees (this time in terms of
the empirical risk of the random feature based kernel ridge
regression estimator) than iid features. However, as we have
noted before, the applications of spectral results given in
Theorem 5.4 go beyond kernel ridge regression and can be
applied in other kernelized algorithms.

6 EXPERIMENTS

We complement the theoretical results for pointwise kernel
approximations in earlier sections with empirical studies of
the effectiveness and limits of orthogonal random features
in a variety of downstream applications. We also compare
against structured orthogonal random features (SORF, first
introduced only in the Gaussian case by Yu et al., 2016),
where instead of drawing the directions of feature margi-
nally from Unif(Sn−1), we use the rows of the random
matrix HD1HD2HD3. Here, H is the normalized Hada-
mard matrix, and D1,D2,D3 are iid diagonal matrices with
independent Unif({±1}) entries on the diagonals. Such
matrices have recently been investigated as approximations
to uniform orthogonal matrices, both empirically (Andoni
et al., 2015) and analytically (Choromanski et al., 2017). We
examine various numbers m of random features, while n is
the dimensionality of the data. There is a one-time cost in
constructing orthogonal features, which is small in practice.
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(a) Gaussian, pointwise (b) Gaussian, Gram matrix

(c) Matérn-5/2, pointwise (d) Matérn-5/2, Gram matrix

(e) Laplace, pointwise (f) Laplace, Gram matrix

Figure 6: Pointwise kernel evaluation MSE (left column)
and normalized Frobenius norm error for Gram matrix ap-
proximation (right column) for the UCI “wine” dataset for
Gaussian (top), Matérn-5/2 (center) and Laplace (bottom)
kernels. Estimators are iid random features (blue), ortho-
gonal random features (green) and approximate Hadamard-
Rademacher random features (red).

6.1 Pointwise kernel and Gram matrix estimation

In this experiment, we study the estimation, via random
feature maps, of kernel Gram matrices. We use MSE as
an error measure for pointwise estimation, and normalized
Frobenius norm as a measure of error for Gram matrices
(so that the error incurred by estimating the Gram matrix
X with the matrix X̂ is ‖X − X̂‖F/‖X‖F). Kernel band-
widths are set via the median trick (Yu et al., 2016). We
estimate pointwise kernel values and Gram matrices on a
variety of full UCI regression datasets; see Figure 6 for ex-
amples. We plot the estimated mean Frobenius norm error,
and bootstrapped estimates of standard error of the mean
error estimates; in Figure 6, these error bars are extremely
small. Full results are given in the Appendix, and have si-
milar qualitative behaviour to that shown in Figure 6. Note
that the orthogonal and approximate-orthogonal approaches
are in general superior to iid random features, and that the
improvement in performance is most pronounced for kernels
with light-tailed Fourier distributions, as suggested by the

theoretical developments in Section 3. Note that the Laplace
kernel is a special case of the Matérn kernel in Figure 1.

6.2 Gaussian processes

We consider random feature approximations to Gaussian
processes (GPs) for regression, and report (i) KL divergen-
ces between approximate predictive distributions versions
obtained via random feature approximations against the pre-
dictive distribution obtained by an exactly-trained GP, and
(ii) predictive RMSE on test sets. Experiments were run
on a variety of UCI regression datasets - full experimental
details are given in the Appendix. In Figures 7 and 8, results
are shown for regression on the Boston housing dataset (Li-
chman, 2013). We use Gaussian, Matérn-5/2, and Laplace
covariance kernels for the GP. Importantly, note that the
posterior mean of the Gaussian process exactly corresponds
to a kernel ridge regression estimator, so the RMSE results
also serve to illustrate the theory in Section 5.

Kernel Feature map m/n = 1 m/n = 2 m/n = 3 m/n = 4

Gaussian
IID 104.2 (10.0) 34.21 (1.5) 15.6 (0.87) 11.05 (0.73)
ORF 100.4 (5.6) 26.62 (1.5) 15.1 (1.1) 8.707 (0.42)
SORF 108.9 (12.0) 32.29 (2.9) 16.25 (1.3) 10.15 (0.73)

Matérn-5/2
IID 160.3 (19.0) 47.88 (2.6) 25.87 (1.3) 18.61 (1.2)
ORF 123.2 (6.3) 41.66 (1.3) 21.78 (0.89) 16.66 (0.85)
SORF 166.4 (21.0) 44.74 (3.1) 25.14 (0.91) 16.89 (1.1)

Laplace
IID 337.2 (19.0) 126.4 (4.1) 69.66 (3.6) 50.99 (1.7)
ORF 299.5 (17.0) 117.7 (3.1) 68.4 (2.6) 44.25 (1.7)
SORF 298.3 (7.6) 121.1 (2.5) 70.56 (1.9) 47.88 (1.5)

Figure 7: Approximate GP regression results on Boston
dataset. Reported numbers are average KL divergence from
true posterior, along with bootstrap estimates of standard
error (in parentheses).

Kernel Feature map m/n = 1 m/n = 2 m/n = 3 m/n = 4

Gaussian
IID 0.54 (0.02) 0.48 (0.01) 0.43 (0.008) 0.4 (0.01)
ORF 0.59 (0.01) 0.44 (0.008) 0.43 (0.009) 0.39 (0.006)
SORF 0.6 (0.02) 0.5 (0.02) 0.44 (0.009) 0.41 (0.008)

Matérn-5/2
IID 0.63 (0.02) 0.49 (0.008) 0.45 (0.01) 0.43 (0.006)
ORF 0.57 (0.02) 0.47 (0.02) 0.42 (0.006) 0.42 (0.008)
SORF 0.61 (0.04) 0.47 (0.02) 0.44 (0.01) 0.43 (0.01)

Laplace
IID 0.69 (0.04) 0.56 (0.02) 0.51 (0.01) 0.48 (0.01)
ORF 0.65 (0.04) 0.54 (0.02) 0.51 (0.01) 0.48 (0.01)
SORF 0.62 (0.02) 0.53 (0.01) 0.49 (0.02) 0.47 (0.01)

Figure 8: Approximate GP regression results on Boston
dataset. Reported numbers are average test RMSE, along
with bootstrap estimates of standard error (in parentheses).

7 CONCLUSION

We have explained the phenomenon of structured random
features based on geometric conditions for RBF kernels. We
showed the superiority of estimators based on orthogonal
random feature maps for a large class of RBFs, substantially
extending previously known results. Further, we showed in
the high dimensionality regime that superiority comes from
the shape of the introduced RBF-related charm function.
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APPENDIX: The Geometry of Random Features

We present here proofs of all the theoretical results presented in the main body of the paper. Following the proofs, in Section
12 we provide additional experimental results.

8 Proof of result from Section 2

8.1 Proof of Lemma 2.1

Proof. Recall that characteristic functions uniquely characterise measures. Let M ∈ On be arbitrary, and consider the
push-forward measure M#µ, defined by M#µ(A) = µ(M−1A) for all A ∈ B(Rn). Our goal is to show that M#µ = µ.
Let s ∈ Rn, and observe that ∫

Rn
exp(i〈s,w〉)M#µ(dw) =

∫
Rn

exp(i〈s,M−1w〉)µ(dw)

=

∫
Rn

exp(i〈Ms,w〉)µ(dw)

= φ(‖Ms‖)
= φ(‖s‖)

=

∫
Rn

exp(i〈s,w〉)µ(dw) ,

so the characteristic functions of µ and µ#M agree everywhere on Rn, and the conclusion follows.

9 Proof of results from Section 3

We begin by establishing the following result, which will be useful in the proofs of Theorems 3.1 and 9.4.
Proposition 9.1. The difference in mean squared error MSE between the estimator K̂ iid

m,n(x,y) and K̂ort
m,n(x,y) for

x,y ∈ Rn is given by the formula below.

MSE(K̂ort
m,n(x,y))−MSE(K̂ iid

m,n(x,y)) =

m− 1

m

(
E [cos(R1‖z‖〈v, ẑ〉)]2 − E

[
cos(

√
R2

1 +R2
2‖z‖ 〈v, ẑ〉)

])
where w1,w2 are independent samples from the corresponding probabilistic measure µK and m is the number of random
features used.

Proof. From now on we will often drop index n while referring to the probability measure µn if from the context it will be
always clear what the dimesionality under consideration is. By independence of the (wp)

m
p=1 in the case of the estimator

K̂ iid
m,n(z), we have

MSE(K̂ iid
m,n(z)) =

1

m
Var(cos(〈w1, z〉)).

Considering the analogous quantity for K̂ort
m,n(z), we note that it differs from the expression above by the sum of m(m− 1)

equal covariance terms. The covariance term is of the form

1

m2
E
[
cos(〈wort

1 , z〉) cos(〈wort
2 , z〉)

]
− E

[
cos(〈wort

1 , z〉)
]2
, (16)

where wort
1 ,wort

2 are both marginally distributed according to µ, and are conditioned to be almost-surely orthogonal.
Consider the first term of Equation (16). We use the product-to-sum trigonometric identity

cos(a) cos(b) =
1

2
(cos(a+ b) + cos(a− b)) ∀a, b ∈ R ,
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to obtain that

E
[
cos(〈wort

1 , z〉) cos(〈wort
2 , z〉)

]
=

1

2

(
E
[
cos(〈wort

1 + wort
2 , z〉)

]
+ E

[
cos(〈wort

1 −wort
2 , z〉)

])
.

Note that wort
1 + wort

2
d
= wort

1 −wort
2 , so it is sufficient to deal with the first term in the final expression above. Since µ is

rotationally-invariant, each w drawn from µ can be decomposed as

w = Rv, (17)

where v ∼ Unif(Sn−1), and independently, R is a scalar random variable drawn from the distribution of the norm induced
by µ. The key observation now is that we have a similar decomposition to Equation (17) for wort

1 + wort
2 ; indeed, we have

wort
1 + wort

2 =
√
R2

1 +R2
2v ,

with v ∼ Unif(Sn−1), and independently, R1 and R2 are the norms of wort
1 and wort

2 respectively (the norm of the sum is
given by this form due to almost-sure orthogonality and Pythagoras’ theorem). The covariance term can therefore be written

1

m2

(
E
[
cos

(√
R2

1 +R2
2〈v, z〉

)]
− E [cos (R1〈v, z〉)]2

)
, (18)

which completes the proof.

9.1 Proof of Theorem 3.1

By Proposition 9.1, the statement of the theorem is equivalent to showing that the following term is negative:

E
[
cos

(√
R2

1 +R2
2‖z‖〈v, ẑ〉

)]
− E [cos(R1‖z‖〈v, ẑ〉)]2 . (19)

We may regard this is a function f : R≥0 → R of ‖z‖, noting that the value of the expectations does not depend on ẑ, as it
appears only in the inner product with the random unit vector v, which has an isotropic distribution. We will write z = ‖z‖
for the argument of f in what follows for convenience:

f(z) = E
[
cos

(√
R2

1 +R2
2z〈v, ẑ〉

)]
− E [cos(R1z〈v, ẑ〉)]2 , z ∈ R≥0

Observe trivially that f(0) = 0. We will show that f is decreasing in a neighbourhood around 0, from which the statement
of the theorem immediately follows.

First observe that f is well-defined on all of R≥0, since the expectations are of bounded, measureable functions of random
variables. A priori, it is not clear that f is differentiable, but we will see that by the dominated convergence theorem, if the
random variable R has a finite kth moment, for some k ∈ N, then f is k times differentiable everywhere, and moreover, the
kth derivative is continuous. Specifically, recall the following corollary of the dominated convergence theorem:

Proposition 9.2. Let µ be a probability measure, and let g : R× R→ R be such that

• x 7→ g(t, x) is in L1(µ) for all t

• t 7→ g(t, x) is differentiable for all x

• For some function h ∈ L1(µ), we have ∣∣∣∣∂g∂t (t, x)

∣∣∣∣ ≤ h(x) ∀t, x ∈ R

Then
d

dt
EX∼µ [g(t,X)] = E

[
∂g

∂t
(t,X)

]
.
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By the assumption that R has a finite 4th moment, we have R,R2, R3, R4 ∈ L1(µ), and we may therefore use these as the
dominating functions in Proposition 9.2 to establish fourth-order differentiability of the expectation E [cos(R1z〈v, ẑ〉)].
We note further that since

√
R2

1 +R2
2 ≤ R1 +R2 almost-surely, we may use (R1 +R2)k for k = 1, . . . , 4 as dominating

functions in Proposition 9.2 to establish the fourth-order differentiability of the expectation E
[
cos
(√

R2
1 +R2

2z〈v, ẑ〉
)]

.
We therefore derive that f is 4 times differentiable, and we obtain the following (by Taylor’s theorem with Lagrange’s
remainder):

f(h) = f(0) + hf ′(0) +
h2

2!
f (2)(0) +

h3

3!
f (3)(0) +

h4

4!
f (4)(s) .

Direct computation leveraging Proposition 9.2 yields

f (1)(z) =− E
[√

R2
1 +R2

2〈v, ẑ〉 sin
(
z
√
R2

1 +R2
2〈v, ẑ〉

)]
+ 2E [cos(zR1〈v, ẑ〉)]E [R1〈v, ẑ〉 sin(zR1〈v, ẑ〉)]

f (2)(z) =− E
[
(R2

1 +R2
2)〈v, ẑ〉2 cos

(
z
√
R2

1 +R2
2〈v, ẑ〉

)]
− 2E [R1〈v, ẑ〉 sin(zR1〈v, ẑ〉)]2

+ 2E [cos(zR1〈v, ẑ〉)]E
[
R2

1〈v, ẑ〉2 cos(zR1〈v, ẑ〉)
]

f (3)(z) =E
[
(R2

1 +R2
2)3/2〈v, ẑ〉3 sin

(
z
√
R2

1 +R2
2〈v, ẑ〉

)]
− 4E [R1〈v, ẑ〉 sin(zR1〈v, ẑ〉)]E

[
R2

1〈v, ẑ〉2 cos(zR1〈v, ẑ〉)
]

− 2E [R1〈v, ẑ〉 sin(zR1〈v, ẑ〉)]E
[
R2

1〈v, ẑ〉2 cos(zR1〈v, ẑ〉)
]

− 2E [cos(zR1〈v, ẑ〉)]E
[
R3

1〈v, ẑ〉3 sin(zR1〈v, ẑ〉)
]

f (4)(z) =E
[
(R2

1 +R2
2)2〈v, ẑ〉4 cos

(
z
√
R2

1 +R2
2〈v, ẑ〉

)]
− 6E

[
R2

1〈v, ẑ〉2 cos(zR1〈v, ẑ〉)
]2

+ 6E [R1〈v, ẑ〉 sin(zR1〈v, ẑ〉)]E
[
R3

1〈v, ẑ〉3 sin(zR1〈v, ẑ〉)
]

+ 2E [R1〈v, ẑ〉 sin(zR1〈v, ẑ〉)]E
[
R3

1〈v, ẑ〉3 sin(zR1〈v, ẑ〉)
]

− 2E [cos(zR1〈v, ẑ〉)]E
[
R4

1〈v, ẑ〉4 cos(zR1〈v, ẑ〉)
]
.

Directly substituing z = 0 into these expressions, we obtain

f(0) = f ′(0) = f (2)(0) = f (3)(0) = 0 , f (4)(0) = E
[
R2

1

]2
(2E

[
〈v, ẑ〉4

]
− 6E

[
〈v, ẑ〉2

]2
) .

To establish the sign of f (4)(0), we compute the expectations E
[
〈v, ẑ〉4

]
, E
[
〈v, ẑ〉2

]
directly. Firstly, note that 〈v, ẑ〉 can

be written cos(θ), where θ is the angle a uniformly random direction makes with a fixed direction in Rn. by considering
hyperspherical coordinates, the density of the angle on the interval [0, π] is deduced to be

sinn−2(θ)∫ π
0

sinn−2(θ′)dθ′
.

Therefore, we have

E
[
〈v, ẑ〉2

]
=

∫ π
0

cos2(θ) sinn−2(θ)dθ∫ π
0

sinn−2(θ)dθ
=

√
π

Γ(n−1
2 )

Γ(n2 ) −
√
π

Γ(n+1
2 )

Γ(n2 +1)

√
π

Γ(n−1
2 )

Γ(n2 )

=
1

n

E
[
〈v, ẑ〉4

]
=

∫ π
0

cos4(θ) sinn−2(θ)dθ∫ π
0

sinn−2(θ)dθ
=

√
π

Γ(n−1
2 )

Γ(n2 ) − 2
√
π

Γ(n+1
2 )

Γ(n2 +1) +
√
π

Γ(n+3
2 )

Γ(n2 +2)

√
π

Γ(n−1
2 )

Γ(n2 )

=
3

n(n+ 2)
,

which yields f (4)(0) = 6E
[
R2

1

]2
( 1
n(n+2) −

1
n2 ) < 0.

Finally, again by applying the dominated convergence theorem to each expectation in the expression above for f (4)(z), we
obtain that this function is continuous. Hence, we have:

f(h) =
h4

4!
f (4)(s) ,
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for some s ∈ (0, h), and by continuity of f (4), for sufficiently small h, the right-hand side above is negative, completing the
proof.

9.2 Proof of Theorem 3.3

We prove the following theorem from which Theorem 3.3 follows. This result provides us also with the explicit gap between
the MSEs from Theorem 3.1 if the tails of the corresponding distributions are not too heavy (for instance distributions for
Gaussian or Poisson-Bessel kernels).

Definition 9.3. Let ηµ(k) be defined as follows:

ηµ(k) = max
l1+...+ls=k

∏
j=1,...,s

E[w
2lj
i ],

where (w1, ..., wn)> ∼ µ and the maximum goes over all positive integer-sets {l1, ..., ls} such that l1 + ...+ ls = k.
Theorem 9.4. Consider a family of radial basis function kernels K on Rn × Rn defined as K(x,y) = φ(‖x − y‖) for
some fixed positive definite radial basis function φ that is not parametrized by data dimensionality n. Denote the associated
probabilistic measures as {µn}. Denote by K̂ iid

m,n its random feature map based estimator applying state-of-the-art
independent sampling from µ with m samples (random features) and by K̂ort

m,n its estimator based on the random orthogonal

feature map mechanism. Assume that there exists some c > 0 such that Mµn(2k, 2n) ≤ 2(n−1)(n+1)...(n+2k−3)k!
ck

or
η(k) ≤ k!

(2c)k
for k = 1, 2, .... Then the following holds for x,y ∈ Rn satisfying ‖z‖ = ‖x− y‖ <

√
2c:

MSE(K̂ iid
m,n(x,y))−MSE(K̂ort

m,n(x,y)) ≥ m− 1

m
τµ(‖x− y‖, n, c), (20)

where τµ(‖x− y‖, n, c) = ‖x− y‖4 M2
µn

(2,n)

2n2(n+2) −
‖x−y‖6

8 (
Mµn (2,n)Mµ(4,n)

n2(n+2) + 6

c3(1− ‖x−y‖2
2c )

). Now assume that there exist

some c,K(c) > 0, ξ : N → R such that Mµn(2k, 2n) ≤ (n − 1)(n + 1) · ... · (n + 2k − 3)ξ(k) or η(k) ≤ ξ(k) and
|ξ(k)| ≤ k!

(2c)k
for k > K(c). Assume furthermore that the corresponding sequence of Fourier measures is concentrated.

Then the following holds for ‖z‖ = ‖x− y‖ <
√

c
8 :

MSE(K̂ iid
m,n(x,y))−MSE(K̂ort

m,n(x,y)) =
m− 1

m
(

1

8n
ΨK(z) + κ(‖z‖, n, c)), (21)

where ΨK is defined as in Equation 4 and |κ(‖z‖, n, c)| ≤ ( 1
2n2 + 3

n3 + 5g2(n)
2n + 1

nh′(n) ) 2
1− 8

c ‖z‖2
− 6

n2 (
∑K(c)
k=0

‖z‖2kξ(k)
k! +

‖z‖2
c−‖z‖2 ) for some functions g(n), h′(n) such that: g(n) = on(1) and h′(n) = ωn(1).

Proof. As before, we will use Proposition 9.1. We start by proving the first part of the statement.

Part I: Proof of Inequality 20 We use the expression for the difference in MSEs derived in Proposition 9.1. Denote
ẑ = z

‖z‖2 . Using the series expansion of cos(x), we get:

E
[
cos(

√
R2

1 +R2
2v>z)

]
= E

[ ∞∑
k=0

‖z‖2k(−1)k(R2
1 +R2

2)k〈v, ẑ〉2k

(2k)!

]
. (22)

Similarly,

E
[
cos(Riv

>
i z)
]

= E

[ ∞∑
k=0

‖z‖2k(−1)k(Ri)
2k〈v, ẑ〉2k

(2k)!

]
(23)

for i = 1, 2. Denote: A(k, n) = E[〈v, ẑ〉k], where v ∼ Unif(Sn−1) and S(k,m) = Mµ(2k,m) = E[(
∑m
i=1 w

2
i )
k], where

(w1, ..., wm)> ∼ µm.

Let us start by calculating A(2k, n).
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Lemma 9.5. The following is true:

A(2k, n) =
(n− 2)(n− 4) · ... · δ(n = 2)

(n− 3)(n− 5) · ... · γ(n = 2)
· (2k − 1)!!

(n− 1)(n+ 1)...(n+ 2k − 3)
·

(n+ 2k − 3)(n+ 2k − 5)... · γ(n = 2)

(n+ 2k − 2)(n+ 2k − 4)... · δ(n = 2)
,

(24)

where: δ(n = 2) = 2 if n = 2 and δ(n = 2) = 1 otherwise and: γ(n = 2) = 1 if n = 2 and γ(n = 2) = 2 otherwise. In
particular, the following is true:

|A(2k, n)| ≤ (2k − 1)!!

(n− 1)(n+ 1) · ... · (n+ 2k − 3)
.

Proof. Note that:

A(k, n) =
1∫ π

0
sinn−2(θ)dθ

∫ π

0

cosk(θ) sinn−2(θ)dθ, (25)

where the formula comes from the well known fact that the density function pn(θ) of the angle θ between a vector r ∈ Rn
chosen uniformly at random from the unit sphere and some fixed vector q ∈ Rn is of the form:

pn(θ) =
1∫ π

0
sinn−2(θ)dθ

sinn−2(θ). (26)

Denote F (k, n) =
∫ π

0
cosk(θ) sinn(θ)dθ. We have:∫ π

0

cosk(θ) sinn(θ)dθ =

∫ π

0

cosk−1(θ) sinn(θ)(sin(θ))′dθ =

cosk−1(θ) sinn+1(θ)|π0 −
∫ π

0

sin(θ)((k − 1) cosk−2(θ)(− sin(θ)) sinn(θ) + n cosk(θ) sinn−1(θ))dθ

(27)

That leads us to the recursive formula on F (k, n) which is:

F (k, n) =
k − 1

n+ 1
F (k − 2, n+ 2). (28)

Thus we get:

F (n, 2k) =
(2k − 1)!!

(n+ 1)(n+ 3) · ... · (n+ 2k − 1)

∫ π

0

sinn+2k(θ)dθ. (29)

Again, by partial differentiation formula we get:∫ π

0

sinn(x)dx = − 1

n
sinn−1(x) cos(x)|π0 +

n− 1

n

∫ π

0

sinn−2(x)dx =
n− 1

n

∫ π

0

sinn−2(x)dx. (30)

Thus we get:

A(2k, n) =
1

n−3
n−2 ·

n−5
n−4 · ...

· (2k − 1)!!

(n− 1)(n+ 1) · ... · (n+ 2k − 3)
· n+ 2k − 3

n+ 2k − 2
· n+ 2k − 5

n+ 2k − 4
· ... (31)

That, after simplification, proves the first part of the statement. The second part is implied by the above formula on
A(2k, n).

The following is true:

E[cos(
√
R2

1 +R2
2v>z)] = 1− ‖z‖

2

2!
S(1, 2n)A(2, n) +

‖z‖4

4!
S(2, 2n)A(4, n)+

E[

∞∑
k=3

‖z‖2k(−1)k(R2
1 +R2

2)k〈v, ẑ〉2k

(2k)!
].

(32)
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Similarly, we have

E[cos(R1v
>
1 z)]E[cos(R2v

>
2 z)] =

(1− ‖z‖
2

2!
S(1, n)A(2, n) +

‖z‖4

4!
S(2, n)A(4, n) + E[

∞∑
k=3

‖z‖2k(−1)k(R1)2k〈v, ẑ〉2k

(2k)!
])×

(1− ‖z‖
2

2!
S(1, n)A(2, n) +

‖z‖4

4!
S(2, n)A(4, n) + E[

∞∑
k=3

‖z‖2k(−1)k(R2)2k〈v, ẑ〉2k

(2k)!
]).

(33)

Therefore we have:

E[cos(R1v
>
1 z)]E[cos(R2v

>
2 z)] =

1− ‖z‖
2

2!
2S(1, n)A(2, n) +

‖z‖4

4!
(2S(2, n)A(4, n) + 6S2(1, n)A2(2, n))+

2E[

∞∑
k=3

‖z‖2k(−1)k(R1)2k〈v, ẑ〉2k

(2k)!
]E[cos(R1v

>
1 z)]− ‖z‖

6

24
S(1, n)S(2, n)A(2, n)A(4, n)+

‖z‖8

242
S2(2, n)A2(4, n).

(34)

Let us focus now on the infinite sums that appear in the expressions above. For any given N ≥ 3, we have (by the dominated
convergence theorem):

|E[

N∑
k=3

‖z‖2k(−1)k(Ri)
2k〈vi, ẑ〉2k

(2k)!
]| ≤

N∑
k=3

‖z‖2kE[(Ri)
2k]E[〈vi, ẑ〉2k]

(2k)!

≤
N∑
k=3

‖z‖2kE[(R2
1 +R2

2)k]E[〈v, ẑ〉2k]

(2k)!
≤

N∑
k=3

‖z‖2k S(k, 2n)A(2k, n)

(2k)!

=

N∑
k=3

‖z‖2kMµ(2k, 2n)A(2k, n)

(2k)!

(35)

for i = 1, 2, where we use the fact that random variables Ri and 〈vi, ẑ〉2k are independent.

Now note that: (2k − 1)!! · 2 · 4.. · 2k = (2k)!. Thus we have: (2k − 1)!! = (2k)!
2kk!

. Therefore, from the previously derived
bound on |A(2k, n)|, we get:

Mµ(2k, 2n)A(2k, n)

(2k)!
≤ Mµ(2k, 2n)

2kk!(n− 1)(n+ 1)...(n+ 2k − 3)
. (36)

If the first condition on Mµ(2k, 2n) from the statement of the theorem is satisfied, then we get:

Mµ(2k, 2n)A(2k, n)

(2k)!
≤ 2

(2c)k
. (37)

Thus in this scenario we obtain

|E[

N∑
k=3

‖z‖2k(−1)k(Ri)
2k〈vi, ẑ〉2k

(2k)!
]| ≤

N∑
k=3

‖z‖2kE[(Ri)
2k〈vi, ẑ〉2k]

(2k)!

≤
N∑
k=3

‖z‖2kE[(R2
1 +R2

2)k]E[〈v, ẑ〉2k]

(2k)!
≤ 2

N∑
k=3

‖z‖2k(
1

2c
)k =

2‖z‖6

(2c)3

N−3∑
k=0

(
‖z‖2

2c
)k

(38)

for i = 1, 2. In particular, we conclude that for ‖z‖ <
√

2c all the infinite sums introduced above all well-defined and we
have:

|E[

N∑
k=3

‖z‖2k(−1)k(Ri)
2k〈vi, ẑ〉2k

(2k)!
]|, |E[

N∑
k=3

‖z‖2k(−1)k(R2
1 +R2

2)k〈v, ẑ〉2k

(2k)!
]| ≤ 2‖z‖6

(2c)3

1

1− ‖z‖
2

2c

(39)
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for i = 1, 2.

Notice that we also have the following trivial upper bound on S(k, 2n):

S(k, 2n) ≤ (2n)kη(k). (40)

Thus we get:
Mµ(2k, 2n)A(2k, n)

(2k)!
≤ (2n)kη(k)

2kk!(n− 1)(n+ 1)...(n+ 2k − 3)
≤ 2η(k)

k!
. (41)

Thus if the condition on η(k) is satisfied, we get:

Mµ(2k, 2n)A(2k, n)

(2k)!
≤ 2

(2c)k
. (42)

Thus, as in the previous case, we get inequalities (39) for ‖z‖ ≤
√

2c.

Thus we conclude that for ‖z‖ ≤
√

2c we have:

ρ ≥ 1− ‖z‖
2

2!
2S(1, n)A(2, n) +

‖z‖4

4!
(2S(2, n)A(4, n) + 6S2(1, n)A2(2, n))+

2E[

∞∑
k=3

‖z‖2k(−1)k(R1)2k〈v, ẑ〉2k

(2k)!
]E[cos(R1v

>
1 z)]− ‖z‖

6

24
S(1, n)S(2, n)A(2, n)A(4, n)+

‖z‖8

242
S2(2, n)A2(4, n)− (1− ‖z‖

2

2!
S(1, 2n)A(2, n) +

‖z‖4

4!
S(2, 2n)A(4, n)+

E[

∞∑
k=3

‖z‖2k(−1)k(R2
1 +R2

2)k〈v, ẑ〉2k

(2k)!
])

(43)

Notice that we have: S(1, 2n) = 2S(1, n). Thus we get:

ρ ≥ ‖z‖
4

4!
(2S(2, n)A(4, n) + 6S2(1, n)A2(2, n)− S(2, 2n)A(4, n))−

‖z‖6

24
S(1, n)S(2, n)A(2, n)A(4, n) +

‖z‖8

242
S2(2, n)A2(4, n)+

2E[

∞∑
k=3

‖z‖2k(−1)k(R1)2k〈v, ẑ〉2k

(2k)!
]E[cos(R1v

>
1 z)]− E[

∞∑
k=3

‖z‖2k(−1)k(R2
1 +R2

2)k〈v, ẑ〉2k

(2k)!
].

(44)

Since S(2, 2n) = 2S(2, n) + 2S2(1, n), we obtain:

ρ ≥ ‖z‖
4

12
S2(1, n)(3A2(2, n)−A(4, n))− ‖z‖

6

24
S(1, n)S(2, n)A(2, n)A(4, n)

+
‖z‖8

242
S2(2, n)A2(4, n) + 2E[

∞∑
k=3

‖z‖2k(−1)k(R1)2k〈v, ẑ〉2k

(2k)!
]E[cos(R1v

>
1 z)]

−E[

∞∑
k=3

‖z‖2k(−1)k(R2
1 +R2

2)k〈v, ẑ〉2k

(2k)!
].

(45)

Now we can use derived earlier upper bounds on the absolute values of the infinite sums under considerations and we obtain:

ρ ≥ ‖z‖
4

12
S2(1, n)(3A2(2, n)−A(4, n))− ‖z‖

6

24
S(1, n)S(2, n)A(2, n)A(4, n)

+
‖z‖8

242
S2(2, n)A2(4, n)− 6‖z‖6

(2c)3

1

1− ‖z‖
2

2c

≥

‖z‖4

12
S2(1, n)(

3

n2
− 3

n(n+ 2)
)− ‖z‖

6

24

3Mµ(2, n)Mµ(4, n)

n2(n+ 2)
− 6‖z‖6

(2c)3

1

1− ‖z‖
2

2c

≥

‖z‖4
M2
µ(2, n)

2n2(n+ 2)
− ‖z‖

6

8
(
Mµ(2, n)Mµ(4, n)

n2(n+ 2)
+

6

c3(1− ‖z‖
2

2c )
).

(46)
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Applying Proposition 9.1, we complete the proof of the first part of the theorem.

Part II: Proof of Equality 21

We will borrow notation and several observations from the first part of the proof. Note first that

E[cos(R1v
>z)]E[cos(R2v

>z)] = E[cos(R1v
>
1 z)]E[cos(R2v

>
2 z)] =

E[cos(R1v
>
1 z) cos(R2v

>
2 z)] = E[

1

2
cos((R1v1 +R2v2)>z) +

1

2
cos((R1v1 −R2v2)>z)] =

E[cos((R1v1 +R2v2)>z)],

(47)

where v1,v2 ∼ v, v1,v2 are independent and the last equality follows from the fact that R1v1 +R2v2 ∼ R1v1 −R2v2.
Note that R1v1 +R2v2 ∼ R̂v for some R̂.

Thus the negative covariance term ρ is of the form

ρ =

∞∑
k=0

‖z‖2k(−1)kE[(v>ẑ)2k]

(2k)!
E[R̂2k]−

∞∑
k=0

‖z‖2k(−1)kE[(v>ẑ)2k]

(2k)!
E[R2k], (48)

where R2 = R2
1 +R2

2. We can replace the expectations of the sum with the sum of expectations in the expressions above by
the assumptions of the theorem, the convergence analysis given by us in the previous part and a simple observation that:

R̂2 = R2
1 +R2

2 + 2R1R2 cos(v1,v2) ≤ R2
1 +R2

2 + 2R1R2 ≤ 2(R2
1 +R2

2) = 2R2. (49)

Thus the upper bounds on the absolute values on the infinite sums considered now contain one additional multiplicative
factor of 22k = 4k in comparison to these that were considered in the first part of the proof. That does not affect the

convergence if ‖z‖ <
√

2c
4 =

√
c
2 .

Thus the negative covariance term is of the form

ρ =

∞∑
k=0

‖z‖2k(−1)kA(2k, n)

(2k)!
(E[R̂2k]− E[R2k]). (50)

Note that R̂2 = R2 + 2R1R2〈v1,v2〉 and that 〈v1,v2〉
d
= 〈v, ẑ〉. Thus we get:

ρ =

∞∑
k=0

‖z‖2k(−1)kA(2k, n)

(2k)!
αk, (51)

where

αk =

k∑
i=1

(
k

i

)
E[(R2)k−i(2R1R2)i]A(i, n). (52)

Note that since A(2, n) = 1
n and furthermore A(i, n) = 0 for odd i, we get:

αk =
k(k − 1)

2n
E[(R2)k−2(2R1R2)2] + βk, (53)

where:

βk =

b k2 c∑
j=2

(
k

2j

)
E[(R2)k−2j(2R1R2)2j ]A(2j, n). (54)

Now note that A(2j, n) is a non-increasing function of j (from the definition of A(k, n)) and furthermore
E[(R2)k−2j(2R1R2)2j ] ≤ E[(R2)k−2j(R2)j ] = E[(R2)k].

Thus we get:
0 ≤ βk ≤ 2kA(4, n)E[(R2)k]. (55)
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Since A(4, n) = 3
n(n+2) , we get:

0 ≤ βk ≤
3 · 2k

n2
E[R2k]. (56)

Thus we get:

E[R̂2k]− E[R2k] =
k(k − 1)

2n
E[(R2)k−2(2R1R2)2] + βk. (57)

Therefore we obtain:

ρ =

∞∑
k=0

‖z‖2k(−1)kA(n, 2k)

(2k)!

k(k − 1)

2n
E[(R2)k−2(2R1R2)2] +

3

n2
Λ(‖z‖) =

1

2n

∞∑
k=0

‖z‖2k(−1)kA(n, 2k)

(2k)!
k(k − 1)E[(R2)k−2(2R1R2)2] +

3

n2
Λ(‖z‖).

(58)

where Λ(‖z‖) satisfies

|Λ(‖z‖)| ≤
∞∑
k=0

‖z‖2kA(n, 2k)

(2k)!
2kE[R2k] (59)

Therefore by the similar analysis as before, and from the definition of K(c), we have:

|Λ(‖z‖)| ≤ 2

K(c)∑
k=0

‖z‖2kξ(k)

k!
+ 2

∞∑
k=K(c)+1

‖z‖2k(
1

2c
)k2k. (60)

As before, we obtain this inequality if the condition regarding Mµ(2k, 2n) or the inequality regarding η(k) is satisfied.

We conclude that the following is true:

|Λ(‖z‖)| ≤ 2

K(c)∑
k=0

‖z‖2kξ(k)

k!
+

2‖z‖2

c− ‖z‖2
. (61)

Denote

λk =
E[R2k−4(2R1R2)2]

E[R̂2k]
− 1. (62)

Note that

ρ =
1

2n

∞∑
k=0

‖z‖2k(−1)kA(2k, n)

(2k)!
k(k − 1)E[R̂2k] +A+

3

n2
Λ(‖z‖), (63)

where

A =
1

2n

∞∑
k=0

‖z‖2k(−1)kA(2k, n)

(2k)!
k(k − 1)E[R̂2k]λk. (64)

We have:

λk =
E[R2k−4(2R1R2)2]

E[R2k]

E[R2k]

E[R̂2k]
− 1. (65)

Note first that

|E[R̂2k]

E[R2k]
− 1| = |E[R̂2k]− E[R2k]

E[R2k]
| ≤ k(k − 1)

2n
+

3 · 2k

n2
(66)

where the last inequality comes from Equation 57 and the inequality R2 = R2
1 + R2

2 ≥ 2R1R2. Now let us consider
expression E[R2k−4(2R1R2)2]

E[R2k]
. Notice first that:

E[R2k−4(2R1R2)2]

E[R2k]
≤ 1, (67)
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where the inequality comes from the fact that R2
1 +R2

2 ≥ 2R1R2.

We know that there exist functions g(n) = on(1) and h(n) = ωn(1) such that

P[|‖w‖22 −Mµ(2, n)| ≥ Mµ(2, n)g(n)] ≤ 1

h(n)
, w ∼ µ ∈M(Rn)

With this concentration bound in hand, we now denote by Ωn the event that: |‖wort
i ‖22 −Mµ(2, n)| ≤ Mµ(2, n)g(n) for

i = 1 and i = 2. Note that P[Ωn] ≥ 1− 2
h(n) . Denote Ω = Rn × Rn. We have:

E[
R2k−4(2R1R2)2

E[R2k]
] =

∫
Ω

R2k−4(2R1R2)2

E[R2k]
µ(d(R1, R2)) =∫

Ωn

R2k−4(2R1R2)2

E[R2k]
µ(d(R1, R2)) +

∫
Ω\Ωn

R2k−4(2R1R2)2

E[R2k]
µ(d(R1, R2))

(68)

Our first observation is that ∫
Ω\Ωn

R2k−4(2R1R2)2

E[R2k]
µ(d(R1, R2)) ≤ 2

h′(n)
. (69)

for some function h′(n) = ωn(1). This comes from the form of the function we are integrating (note that its expected value
is bounded by 1) and from the fact that a measure of the set over which we are integrating is at most 2

h(n) for h(n) = ωn(1).
Without loss of generality we can assume that h(n) ≥ 4. Now let us focus on∫

Ωn

R2k−4(2R1R2)2

E[R2k]
µ(d(R1, R2)). (70)

Now note than on Ωn we have: R2
i ∈ [Mµ(2, n)(1− g(n)),Mµ(2, n)(1 + g(n))] for i = 1, 2. Thus we obtain

|R4 − (2R1R2)2|
R4

1

=
|(R2

1 +R2
2)2 − 4R2

1R
2
2|

R4
1

= |(1− R2
2

R2
1

)2| ≤ (1− 1 + g(n)

1− g(n)
)2 =

4g2(n)

(1− g(n))2
(71)

Therefore we get:

|R4 − (2R1R2)2| ≤ R4
1 ·

4g2(n)

(1− g(n))2
. (72)

Therefore we get:∫
Ωn

R2k−4(2R1R2)2

E[R2k]
µ(d(R1, R2)) ≥

∫
Ωn

R2k

E[R2k]
µ(d(R1, R2))− T (n)

∫
Ωn

R2k−4(R1)4

E[R2k]
µ(d(R1, R2))

≥
∫

Ωn

R2k

E[R2k]
µ(d(R1, R2))− T (n),

(73)

where T (n) = 4g2(n)
(1−g(n))2 and the last inequality comes from the fact that R2

1 ≤ R2. Therefore we obtain:∫
Ωn

R2k−4(2R1R2)2

E[R2k]
µ(d(R1, R2)) ≥ 1−

∫
Ω\Ωn

R2k

E[R2k]
µ(d(R1, R2))− T (n). (74)

Now note that ∫
Ω\Ωn

R2k

E[R2k]
µ(d(R1, R2)) ≤ 2

h′(n)
. (75)

for some h′(n) = ωn(1). The analysis is the same as before. As before, without loss of generality we can assume that
h(n) ≥ 4. Therefore, by combining Equality 68, Inequality 74 and Inequality 75, we get:

1− 4g2(n)

(1− g2(n))
− 2

h(n)
≤ E[

R2k−4(2R1R2)2

E[R2k]
] ≤ 1 (76)
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Since g(n) = on(1), without loss of generality we can assume that g(n) ≤ 1
3 . Therefore we obtain the following bound on

|λk|:

|λk| ≤ (
k(k − 1)

2n
+

3 · 2k

n2
) + (

4g2(n)

1− g2(n)
+

2

h′(n)
)+

(
k(k − 1)

2n
+

3 · 2k

n2
) · ( 4g2(n)

1− g2(n)
+

2

h′(n)
)

(77)

From the assumptions on g(n) and h′(n) we get: 0 ≤ 4g2(n)
1−g2(n) + 2

h′(n) ≤ 1. We obtain:

|λk| ≤
k(k − 1)

n
+

6 · 2k

n2
+ 5g2(n) +

2

h′(n)
. (78)

Now, we are ready to find an upper bound on the term |A| from Equation 63. We have:

|A| ≤ 1

2n2

∞∑
k=0

‖z‖2kA(2k, n)

(2k)!
k2(k − 1)2E[R̂2k] +

6

2n3

∞∑
k=0

‖z‖2kA(2k, n)

(2k)!
k(k − 1)2kE[R̂2k]

+(5g2(n) +
2

h′(n)
)

1

2n

∞∑
k=0

‖z‖2kA(2k, n)

(2k)!
k(k − 1)E[R̂2k]

(79)

Now, by the same analysis as before, from the assumptions of the theorem and from the observation that 2k ≥ k(k − 1), we
obtain for ‖z‖ <

√
c
8 :

∞∑
k=0

‖z‖2kA(2k, n)

(2k)!
k2(k − 1)2E[R̂2k],

∞∑
k=0

‖z‖2kA(2k, n)

(2k)!
k(k − 1)2kE[R̂2k],

∞∑
k=0

‖z‖2kA(2k, n)

(2k)!
k(k − 1)E[R̂2k] ≤

2

∞∑
k=0

‖z‖2k(
1

2c
)k · 4k · (2k)2 ≤ 2

1− 8
c‖z‖2

.

(80)

Therefore we obtain:

|A| ≤ (
1

2n2
+

3

n3
+

5g2(n)

2n
+

1

nh′(n)
) · 2

1− 8
c‖z‖2

. (81)

Therefore, using Equation 63 and the derived earlier bound on |Λ(‖z‖)|, we conclude that

ρ ≥ 1

2n

∞∑
k=0

‖z‖2k(−1)kA(2k, n)

(2k)!
k(k − 1)E[R̂2k]− (

1

2n2
+

3

n3
+

5g2(n)

2n
+

1

nh′(n)
) · 2

1− 8
c‖z‖2

− 3

n2
(2

K(c)∑
k=0

‖z‖2kξ(k)

k!
+

2‖z‖2

c− ‖z‖2
).

(82)

Note that
∞∑
k=0

‖z‖2k(−1)kA(2k, n)

(2k)!
E[R̂2k] = φ2(‖z‖). (83)

Note that:
d(φ2(x))

dx
|x=‖z‖ =

∞∑
k=0

2k‖z‖2k−1(−1)kA(2k, n)

(2k)!
E[R̂2k] (84)
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and similarly
d2(φ2(x))

dx2
|x=‖z‖ =

∞∑
k=0

2k(2k − 1)‖z‖2k−2(−1)kA(2k, n)

(2k)!
E[R̂2k] (85)

Since k(k − 1) = 2k(2k−1)−2k
4 , we get:

ρ ≥ 1

8n
((‖z‖2 d

2(φ2(x))

dx2
)|x=‖z‖ − (‖z‖d(φ2(x))

dx
)|x=‖z‖)

−(
1

2n2
+

3

n3
+

5g2(n)

2n
+

1

nh′(n)
) · 2

1− 8
c‖z‖2

− 3

n2
(2

K(c)∑
k=0

‖z‖2kξ(k)

k!
+

2‖z‖2

c− ‖z‖2
).

(86)

As before, by applying Proposition 9.1, we complete the proof of the second part of the theorem.

9.3 Proof of Theorem 3.5

Proof. Note that from Theorem 3.7, we knot that φ(z) = ψ(z2) for some completely monotone function ψ. Thus we obtain:

dφ2(x)

dx
= 4xψ(x2)

dψ(y)

dy

∣∣∣∣
y=x2

, (87)

and
d2φ2(x)

dx2
= 4

[
ψ(x2)

dψ(y)

dy

∣∣∣∣
y=x2

+ 2x2(
dψ(y)

dy

∣∣∣∣
y=x2

)2 + 2x2ψ(x2)
d2ψ(y)

dy2

∣∣∣∣
y=x2

]
. (88)

Therefore we obtain:

ΨK(z) = 8z4

[
(
dψ(y)

dy

∣∣∣∣
y=z2

)2 + ψ(z2)
d2ψ(y)

dy2

∣∣∣∣
y=z2

]
. (89)

That completes the proof since every completely monotone function is nonnegative and convex.

9.4 Proof of Proposition 3.9

This result follows first by recalling the result of Proposition 9.1, namely that:

MSE(K̂ort
m,n(x,y))−MSE(K̂ iid

m,n(x,y)) = (90)

m− 1

m

(
E [cos(R1‖z‖〈v, ẑ〉)]2 − E

[
cos(

√
R2

1 +R2
2‖z‖ 〈v, ẑ〉)

])
Note that both expectations appearing in the expression above have the form

E [cos(A〈v, ẑ〉)] ,

for some non-negative scalar random variable A. We rewrite this as a nested conditional expectation over the uniform
direction:

E [E [cos(A〈v, ẑ〉)|A]] .

Next, we recall from the proof of Proposition 9.1 that the random variable 〈v, ẑ〉 may be written cos(θ), for a random angle
θ distributed on [0, π] with density

sinn−2(θ)∫ π
0

sinn−2)θ′dθ′
.

Therefore, we can write:

E [E [cos(A〈v, ẑ〉)|A]] = E

[∫ π
0

cos(A cos(θ)) sinn−2(θ)dθ∫ π
0

sinn−2(θ′)dθ′

]
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For the integral in the denominator of the fraction, we recall that∫ π

0

sinn−2(θ)dθ =
πΓ(n−1

2 )

Γ(n2 )
.

For the integral in the numerator, we use the Poisson-Bessel identity:

Jν(w) =
(w

2

)ν 2
√
πΓ(ν − 1

2 )

∫ π/2

0

cos(w cos(t)) sin2ν(t)dt .

Substituting these expressions into Equation (90) yields the statement of the proposition.

10 Proof of result in Section 4

10.1 Proof of Theorem 4.2

Proof. We will heavily rely on the observations made in the proof of Theorem 9.4. In particular, we use notation from the
proof of Theorem 9.4. Fix m and n. Let us take some random feature based smooth estimator K̂smooth,n and denote by
µsmooth the corresponding probabilistic measure used to create the full sample for estimation. Take two vectors wi = R1v1

and wj = R2v2, where ‖v1‖ = ‖v2‖ = 1, from the full set of vectors w sampled from µsmooth. Consider the negative
covariance term ρort for the orthogonal estimator, as in the proof of Theorem 9.4 and the negative covariance term ρsmooth

for K̂smooth,n. Note that it suffices to show that:

ρdiff = ρort − ρsmooth ≥ 0 (91)

for n large enough. We have:

ρdiff =

∞∑
k=0

‖z‖2k(−1)kA(2k, n)

(2k)!
(
1

2
(E[V 2k

1 ] + E[V 2k
2 ])− E[R2k]), (92)

where
V 2

1 = R2
1 − 2R1R2v

>
1 v2 +R2

2 = R2 − 2R1R2v
>
1 v2, (93)

and
V 2

1 = R2
1 + 2R1R2v

>
1 v2 +R2

2 = R2 + 2R1R2v
>
1 v2, (94)

where R2 = R2
1 +R2

2.

Denote αk = 1
2 (E[V 2k

1 ] + E[V 2k
2 ])− E[R2k]. Note that we have:

αk =
1

2

k∑
i=0

E[(R2)k−i(−2R1R2v
>
1 v2)i] +

1

2

k∑
i=0

E[(R2)k−i(2R1R2v
>
1 v2)i]− E[R2k]. (95)

From the assumption that samples’ lengths are chosen independently from their directions, we get:

αk =
1

2

k∑
i=0

E[(R2)k−i(−2R1R2)i]E[(v>1 v2)i] +
1

2

k∑
i=0

E[(R2)k−i(2R1R2)i]E[(v>1 v2)i]− E[R2k]. (96)

Now by the same analysis as in the proof of Theorem 9.4, and from the smooth property we get:

αk =
k(k − 1)

2
E[R2k−4(2R1R2)2]E[(v>1 v2))2] + ·2k · E[R2k]q(n)E[(v>1 v2))2]. (97)

Note that for a fixed k, from the property of function q we see that as n goes to infinity, the dominating term in the expression
above is the first one. Now we can repeat the analysis from the second part of the proof of Theorem 9.4 with factor 1

n in the
first expression from the formula on αk replaced by E[(v>1 v2))2] and factor 3

n2 in the second expression from the same
formula replaced by q(n)E[(v>1 v2))2]. By then we see that asymptotically, as n is large enough, the sign of ρdiff is is the
same as the sign of λ(‖z‖). But the latter one has to be positive, since otherwise, the orthogonal estimator would not be
superior over the default one based on independent sampling. Therefore we have: ρdiff ≥ 0 and that, according to our
previous observations, completes the proof.
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11 Proof of result from Section 5

11.1 Proof of Theorem 5.4

Proof. Denote K + λNIN = V>Σ2V, where an orthonormal matrix V ∈ RN×N and a diagonal matrix Σ ∈ RN×N

define the eigendecomposition of K + λNIN . Following Avron et al. (2017), we notice that in order to prove the desired
spectral bound, it suffices to show that:

‖Σ−1VK̂V>Σ−1 −Σ−1VKV>Σ−1‖2 ≤ a. (98)

From basic properties of the spectral norm ‖‖2 and the Frobenius norm ‖‖F we have:

P[‖Σ−1VK̂V>Σ−1 −Σ−1VKV>Σ−1‖2 > a] ≤ P[‖Σ−1V‖2‖K̂−K‖F ‖V>Σ−1‖2 > a] (99)

The latter probability is equal to p = P[‖K̂−K‖2F > a2

‖Σ−1V‖22·‖V>Σ−1‖22
].

Now note that E[‖K̂−K‖2F ] is equal to
∑
i,j∈{1,...,N}MSE(K̂(xi,xj)) (from the definition of the mean squared error).

Furthermore, since V is an isometry matrix, we have: ‖Σ−1V‖22 ≤ 1
σmin

and ‖V>Σ−1‖22 ≤ 1
σmin

. Now, we use Markov’s
inequality to get:

P[‖K̂−K‖2F >
a2

‖Σ−1V‖22 · ‖V>Σ−1‖22
] <

E[‖K̂−K‖2F ]‖Σ−1V‖22‖V>Σ−1‖22
a2

, (100)

substitute the above formula for E[‖K̂−K‖2F ] as well as the upper bounds on ‖Σ−1V‖22 and ‖V>Σ−1‖22 and the result
follows.

11.2 Proof of Theorem 5.5

Proof. The theorem follows straightforwardly from Theorem 5.4, Lemma 5.3 and the observation that for 0 ≤ ∆ < 1 we
have: ∆

1+∆ ≤
1
2 and furthermore, rank(K̂) ≤ m. The latter one is true, since if a kernel is approximated by m-dimensional

feature maps, then the corresponding kernel matrix can be written as a product of two matrices of sizes N ×m and m×N
respectively.

12 Additional experimental results

12.1 Pointwise kernel and Gram matrix estimation

Here, we provide results for the pointwise kernel and Gram matrix estimation experiments described in Section 6.1 for a
larger range of UCI regression datasets. The results for pointwise estimation are given in Figure 9, and the results for Gram
matrix estimation are displayed in Figure 10; see the caption for full details.



The Geometry of Random Features

(a) Boston - Gaussian (b) Boston - Matérn-5/2 (c) Boston - Laplace

(d) Wine - Gaussian (e) Wine - Matérn-5/2 (f) Wine - Laplace

(g) Parkinson’s - Gaussian (h) Parkinson’s - Matérn-5/2 (i) Parkinson’s - Laplace

(j) CPU - Gaussian (k) CPU - Matérn-5/2 (l) CPU - Laplace

(m) Insurance Company - Gaus-
sian

(n) Insurance Company - Matérn-
5/2

(o) Insurance Company - Laplace

Figure 9: MSE for pointwise kernel estimation for a variety of UCI datasets and kernels. Two randomly selected datapoints
from each dataset are chosen, and the kernel evaluated at these points is estimated. Estimators are iid random features (blue),
orthogonal random features (green) and approximate Hadamard-Rademacher random features (red). In several plots, the red
and green curves lie on top of one another.
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(a) Boston - Gaussian (b) Boston - Matérn-5/2 (c) Boston - Laplace

(d) Wine - Gaussian (e) Wine - Matérn-5/2 (f) Wine - Laplace

(g) Parkinson’s - Gaussian (h) Parkinson’s - Matérn-5/2 (i) Parkinson’s - Laplace

(j) CPU - Gaussian (k) CPU - Matérn-5/2 (l) CPU - Laplace

(m) Insurance Company - Gaus-
sian

(n) Insurance Company - Matérn-
5/2

(o) Insurance Company - Laplace

Figure 10: Normalized Frobenius norm error for Gram matrix estimation for a variety of UCI datasets and kernels. Estimators
are iid random features (blue), orthogonal random features (green) and approximate Hadamard-Rademacher random features
(red). In several plots, the red and green curves lie on top of one another.
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12.2 Gaussian process regression experiments

In this section we give full results for the Gaussian process regression experiments described in Section 6.2 for a larger
range of UCI regression datasets. We report KL divergence against predictions obtained from exact inference (i.e. GP
regression without random feature approximation), RMSE prediction error, and wall-clock runtimes; we report the mean
and (a bootstrapped estimate of the standard error of this estimate in parentheses) of each of these quantities across 10 runs
of the experiment. Experiments were run on a cluster without full control of other processes running on the cluster; timing
results should therefore be interpreted cautiously. We emphasise also that a fully-optimised fast Hadamard transform was
not used in these experiments, and that the runtime of SORF methods may therefore be an underestimate of the achievable
runtimes for these methods.

We observe that the structured methods, ORF and SORF, typically outperform on KL measures. On RMSE, there is little
consistent advantage. On timing, we expect that the fast Hadamard transform for rapidly computing matrix multiplications
will enable SORF to perform best when dimensionality is high. We do not observe that here, which we believe is due to the
use of highly optimized code for (regular) dense matrix multiplication. Runtime performance does start to improve as the
dimensionality increases, see results for insurancecompany.

Dataset: boston. Kernel: Gaussian. Metric: KL divergence against exact GP predictions.
m/n 1 2 3 4 5 6 7 8
IID 104.2 (10.0) 34.21 (1.5) 15.6 (0.87) 11.05 (0.73) 7.946 (0.66) 6.936 (0.41) 5.403 (0.37) 4.349 (0.15)
ORF 100.4 (5.6) 26.62 (1.5) 15.1 (1.1) 8.707 (0.42) 7.648 (0.57) 4.994 (0.21) 4.493 (0.3) 3.832 (0.24)
SORF 108.9 (12.0) 32.29 (2.9) 16.25 (1.3) 10.15 (0.73) 7.037 (0.31) 5.783 (0.37) 5.091 (0.37) 3.501 (0.26)

Dataset: boston. Kernel: Gaussian. Metric: RMSE on test set.
m/n 1 2 3 4 5 6 7 8
IID 0.54 (0.02) 0.48 (0.01) 0.43 (0.008) 0.4 (0.01) 0.4 (0.008) 0.39 (0.009) 0.37 (0.005) 0.38 (0.006)
ORF 0.59 (0.01) 0.44 (0.008) 0.43 (0.009) 0.39 (0.006) 0.4 (0.01) 0.38 (0.009) 0.38 (0.004) 0.38 (0.006)
SORF 0.6 (0.02) 0.5 (0.02) 0.44 (0.009) 0.41 (0.008) 0.39 (0.008) 0.4 (0.005) 0.39 (0.004) 0.36 (0.005)

Dataset: boston. Kernel: Gaussian. Metric: Run time (in seconds).
m/n 1 2 3 4 5 6 7 8
IID 0.00317 (0.0017) 0.00274 (5.5e-05) 0.00409 (2.8e-05) 0.00556 (2.6e-05) 0.00732 (5e-05) 0.00948 (0.00018) 0.0139 (0.0005) 0.0192 (0.00022)
ORF 0.00293 (3e-05) 0.00532 (1.8e-05) 0.00784 (1.9e-05) 0.0137 (0.00064) 0.0196 (8.7e-05) 0.0218 (0.00031) 0.0234 (0.00036) 0.0287 (0.0013)
SORF 0.00217 (2.7e-05) 0.00373 (1.1e-05) 0.00545 (6.7e-05) 0.00858 (0.0008) 0.00949 (0.00016) 0.0154 (0.00059) 0.0196 (0.00019) 0.0229 (0.00018)

Dataset: boston. Kernel: Laplace. Metric: KL divergence against exact GP predictions.
m/n 1 2 3 4 5 6 7 8
IID 337.2 (19.0) 126.4 (4.1) 69.66 (3.6) 50.99 (1.7) 35.94 (1.3) 29.81 (1.1) 23.67 (1.1) 18.16 (0.95)
ORF 299.5 (17.0) 117.7 (3.1) 68.4 (2.6) 44.25 (1.7) 39.21 (2.2) 27.12 (0.99) 23.79 (1.7) 16.78 (0.78)
SORF 298.3 (7.6) 121.1 (2.5) 70.56 (1.9) 47.88 (1.5) 33.45 (1.1) 27.88 (1.8) 20.32 (1.1) 19.87 (0.75)

Dataset: boston. Kernel: Laplace. Metric: RMSE on test set.
m/n 1 2 3 4 5 6 7 8
IID 0.69 (0.04) 0.56 (0.02) 0.51 (0.01) 0.48 (0.01) 0.48 (0.009) 0.46 (0.006) 0.46 (0.01) 0.45 (0.009)
ORF 0.65 (0.04) 0.54 (0.02) 0.51 (0.01) 0.48 (0.01) 0.45 (0.01) 0.45 (0.01) 0.46 (0.007) 0.44 (0.01)
SORF 0.62 (0.02) 0.53 (0.01) 0.49 (0.02) 0.47 (0.01) 0.45 (0.01) 0.45 (0.01) 0.48 (0.01) 0.43 (0.01)

Dataset: boston. Kernel: Laplace. Metric: Run time (in seconds).
m/n 1 2 3 4 5 6 7 8
IID 0.0017 (1.5e-05) 0.00301 (0.00011) 0.00491 (0.0004) 0.00603 (6.2e-05) 0.00785 (6.4e-05) 0.00967 (2.5e-05) 0.0163 (0.00051) 0.02 (0.00022)
ORF 0.00363 (0.00038) 0.00571 (0.00011) 0.00822 (4.3e-05) 0.0158 (0.00038) 0.0193 (9.4e-05) 0.0214 (9.3e-05) 0.023 (0.00025) 0.0295 (0.00084)
SORF 0.00224 (9.8e-06) 0.00392 (9.3e-05) 0.00567 (9.1e-05) 0.00821 (0.0006) 0.0102 (0.00043) 0.0166 (0.00034) 0.0195 (0.00014) 0.0224 (9.4e-05)

Dataset: boston. Kernel: Matérn-5/2. Metric: KL divergence against exact GP predictions.
m/n 1 2 3 4 5 6 7 8
IID 160.3 (19.0) 47.88 (2.6) 25.87 (1.3) 18.61 (1.2) 12.71 (0.88) 9.837 (0.56) 8.072 (0.45) 7.082 (0.42)
ORF 123.2 (6.3) 41.66 (1.3) 21.78 (0.89) 16.66 (0.85) 12.24 (0.5) 9.43 (0.49) 7.726 (0.34) 6.594 (0.18)
SORF 166.4 (21.0) 44.74 (3.1) 25.14 (0.91) 16.89 (1.1) 11.44 (0.38) 10.25 (0.59) 7.73 (0.38) 6.493 (0.32)

Dataset: boston. Kernel: Matérn-5/2. Metric: RMSE on test set.
m/n 1 2 3 4 5 6 7 8
IID 0.63 (0.02) 0.49 (0.008) 0.45 (0.01) 0.43 (0.006) 0.4 (0.007) 0.39 (0.006) 0.39 (0.009) 0.39 (0.006)
ORF 0.57 (0.02) 0.47 (0.02) 0.42 (0.006) 0.42 (0.008) 0.41 (0.008) 0.41 (0.007) 0.39 (0.009) 0.38 (0.005)
SORF 0.61 (0.04) 0.47 (0.02) 0.44 (0.01) 0.43 (0.01) 0.42 (0.008) 0.42 (0.008) 0.4 (0.009) 0.39 (0.01)

Dataset: boston. Kernel: Matérn-5/2. Metric: Run time (in seconds).
m/n 1 2 3 4 5 6 7 8
IID 0.00274 (0.0011) 0.00271 (5.9e-05) 0.00407 (1.7e-05) 0.00565 (5.8e-05) 0.00734 (2.9e-05) 0.00952 (0.00025) 0.0144 (0.00081) 0.0191 (0.00015)
ORF 0.00319 (0.00024) 0.00544 (2.4e-05) 0.00803 (8.4e-05) 0.0128 (0.00035) 0.0193 (8.3e-05) 0.0218 (0.00052) 0.0236 (0.0004) 0.0288 (0.001)
SORF 0.00277 (0.00059) 0.00366 (1.5e-05) 0.0054 (7e-05) 0.00798 (0.0006) 0.00976 (0.00044) 0.014 (0.00066) 0.0193 (0.00014) 0.0222 (0.00013)

Dataset: cpu. Kernel: Gaussian. Metric: KL divergence against exact GP predictions.
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m/n 1 2 3 4 5 6 7 8
IID 10640.0 (360.0) 3541.0 (130.0) 1723.0 (44.0) 1111.0 (21.0) 770.6 (22.0) 575.0 (14.0) 456.5 (12.0) 367.6 (7.1)
ORF 10620.0 (310.0) 3252.0 (90.0) 1778.0 (40.0) 1078.0 (23.0) 737.1 (18.0) 551.9 (8.5) 421.6 (5.1) 338.9 (8.0)
SORF 11200.0 (470.0) 3386.0 (120.0) 1801.0 (58.0) 1153.0 (43.0) 805.3 (13.0) 598.7 (14.0) 479.8 (12.0) 363.5 (7.8)

Dataset: cpu. Kernel: Gaussian. Metric: RMSE on test set.
m/n 1 2 3 4 5 6 7 8
IID 0.69 (0.02) 0.57 (0.01) 0.51 (0.01) 0.48 (0.007) 0.44 (0.007) 0.43 (0.007) 0.41 (0.008) 0.41 (0.007)
ORF 0.7 (0.01) 0.56 (0.02) 0.5 (0.01) 0.47 (0.007) 0.44 (0.009) 0.43 (0.006) 0.42 (0.006) 0.39 (0.006)
SORF 0.72 (0.01) 0.59 (0.01) 0.52 (0.01) 0.5 (0.01) 0.47 (0.007) 0.45 (0.007) 0.43 (0.005) 0.41 (0.005)

Dataset: cpu. Kernel: Gaussian. Metric: Run time (in seconds).
m/n 1 2 3 4 5 6 7 8
IID 0.0408 (0.0008) 0.0753 (0.0009) 0.112 (0.00037) 0.156 (0.00058) 0.2 (0.00088) 0.256 (0.0013) 0.305 (0.00074) 0.364 (0.00069)
ORF 0.0434 (0.00026) 0.0805 (0.00088) 0.125 (0.0012) 0.171 (0.00066) 0.218 (0.00071) 0.282 (0.00052) 0.334 (0.001) 0.393 (0.0012)
SORF 0.0413 (0.00081) 0.0748 (0.00082) 0.115 (0.00039) 0.158 (0.00083) 0.204 (0.0011) 0.263 (0.00098) 0.312 (0.0012) 0.37 (0.00069)

Dataset: cpu. Kernel: Laplace. Metric: KL divergence against exact GP predictions.
m/n 1 2 3 4 5 6 7 8
IID 32220.0 (820.0) 12710.0 (150.0) 8092.0 (110.0) 5571.0 (64.0) 4354.0 (55.0) 3593.0 (53.0) 3069.0 (52.0) 2600.0 (36.0)
ORF 31460.0 (710.0) 12530.0 (140.0) 7861.0 (63.0) 5720.0 (58.0) 4400.0 (54.0) 3581.0 (53.0) 2991.0 (36.0) 2614.0 (21.0)
SORF 31170.0 (700.0) 12550.0 (100.0) 8001.0 (160.0) 5735.0 (40.0) 4317.0 (28.0) 3593.0 (41.0) 2983.0 (53.0) 2527.0 (46.0)

Dataset: cpu. Kernel: Laplace. Metric: RMSE on test set.
m/n 1 2 3 4 5 6 7 8
IID 0.76 (0.03) 0.56 (0.01) 0.48 (0.01) 0.44 (0.008) 0.42 (0.01) 0.36 (0.007) 0.36 (0.008) 0.36 (0.004)
ORF 0.74 (0.01) 0.53 (0.02) 0.48 (0.01) 0.41 (0.01) 0.4 (0.01) 0.37 (0.007) 0.35 (0.008) 0.35 (0.009)
SORF 0.7 (0.02) 0.52 (0.01) 0.48 (0.01) 0.44 (0.01) 0.42 (0.01) 0.38 (0.01) 0.36 (0.008) 0.35 (0.008)

Dataset: cpu. Kernel: Laplace. Metric: Run time (in seconds).
m/n 1 2 3 4 5 6 7 8
IID 0.0427 (0.00057) 0.0801 (0.0006) 0.121 (0.00086) 0.169 (0.00085) 0.214 (0.00069) 0.272 (0.0016) 0.325 (0.00078) 0.385 (0.001)
ORF 0.0458 (0.0003) 0.0847 (0.00054) 0.133 (0.0011) 0.183 (0.0007) 0.23 (0.00072) 0.297 (0.001) 0.349 (0.00074) 0.413 (0.0019)
SORF 0.0431 (0.00021) 0.0801 (0.00055) 0.122 (0.0013) 0.169 (0.0011) 0.217 (0.00086) 0.29 (0.012) 0.326 (0.0016) 0.39 (0.0014)

Dataset: cpu. Kernel: Matérn-5/2. Metric: KL divergence against exact GP predictions.
m/n 1 2 3 4 5 6 7 8
IID 14100.0 (500.0) 4806.0 (130.0) 2574.0 (38.0) 1784.0 (41.0) 1276.0 (15.0) 979.7 (19.0) 791.1 (18.0) 646.0 (9.4)
ORF 13750.0 (400.0) 4653.0 (120.0) 2578.0 (48.0) 1684.0 (20.0) 1227.0 (21.0) 946.1 (13.0) 773.0 (13.0) 666.2 (12.0)
SORF 14460.0 (580.0) 4649.0 (82.0) 2482.0 (62.0) 1693.0 (21.0) 1202.0 (18.0) 954.4 (14.0) 773.4 (7.8) 675.5 (6.9)

Dataset: cpu. Kernel: Matérn-5/2. Metric: RMSE on test set.
m/n 1 2 3 4 5 6 7 8
IID 0.7 (0.01) 0.57 (0.02) 0.49 (0.008) 0.45 (0.008) 0.44 (0.005) 0.4 (0.008) 0.4 (0.006) 0.38 (0.006)
ORF 0.7 (0.01) 0.54 (0.01) 0.47 (0.009) 0.43 (0.009) 0.43 (0.01) 0.4 (0.008) 0.38 (0.01) 0.37 (0.007)
SORF 0.71 (0.03) 0.54 (0.01) 0.47 (0.01) 0.44 (0.006) 0.39 (0.009) 0.4 (0.007) 0.38 (0.01) 0.39 (0.01)

Dataset: cpu. Kernel: Matérn-5/2. Metric: Run time (in seconds).
m/n 1 2 3 4 5 6 7 8
IID 0.041 (0.00084) 0.0737 (0.00072) 0.115 (0.0006) 0.158 (0.0008) 0.201 (0.00084) 0.259 (0.0015) 0.312 (0.0015) 0.369 (0.00062)
ORF 0.0449 (0.00031) 0.0805 (0.00089) 0.127 (0.0008) 0.173 (0.00064) 0.218 (0.0011) 0.286 (0.00081) 0.337 (0.00062) 0.397 (0.0013)
SORF 0.0415 (0.0016) 0.0748 (0.001) 0.117 (0.00074) 0.162 (0.0011) 0.205 (0.00072) 0.265 (0.0012) 0.316 (0.0013) 0.376 (0.0017)

Dataset: insurancecompany. Kernel: Gaussian. Metric: KL divergence against exact GP predictions.
m/n 1 2 3 4 5 6 7 8
IID 329.1 (2.6) 144.9 (2.3) 90.02 (1.8) 68.0 (1.3) 51.9 (0.88) 42.84 (0.7) 36.57 (0.39) 31.15 (0.62)
ORF 292.3 (5.7) 132.3 (1.2) 83.06 (1.3) 60.39 (1.2) 49.0 (0.85) 39.28 (0.87) 33.74 (0.5) 28.24 (0.36)
SORF 295.4 (5.2) 131.2 (2.5) 83.47 (0.9) 60.84 (1.0) 48.12 (1.0) 39.79 (0.9) 33.82 (0.54) 29.86 (0.49)

Dataset: insurancecompany. Kernel: Gaussian. Metric: RMSE on test set.
m/n 1 2 3 4 5 6 7 8
IID 0.99 (0.001) 0.98 (0.0009) 0.98 (0.0005) 0.98 (0.0007) 0.98 (0.0008) 0.98 (0.0005) 0.98 (0.0006) 0.98 (0.0006)
ORF 0.99 (0.0007) 0.98 (0.001) 0.98 (0.0008) 0.98 (0.0005) 0.98 (0.0007) 0.98 (0.0008) 0.98 (0.0006) 0.98 (0.0006)
SORF 0.99 (0.001) 0.98 (0.001) 0.98 (0.001) 0.98 (0.0006) 0.98 (0.0005) 0.98 (0.0006) 0.98 (0.0006) 0.98 (0.0007)

Dataset: insurancecompany. Kernel: Gaussian. Metric: Run time (in seconds).
m/n 1 2 3 4 5 6 7 8
IID 0.141 (0.00066) 0.316 (0.00087) 0.524 (0.0012) 0.809 (0.0012) 1.13 (0.0022) 1.57 (0.0025) 2.09 (0.0018) 2.84 (0.0037)
ORF 0.183 (0.0019) 0.393 (0.0012) 0.634 (0.00079) 0.953 (0.0018) 1.32 (0.0022) 1.79 (0.0028) 2.36 (0.0085) 3.15 (0.0038)
SORF 0.143 (0.001) 0.315 (0.00065) 0.526 (0.0014) 0.813 (0.0051) 1.13 (0.0023) 1.58 (0.003) 2.1 (0.002) 2.84 (0.0032)

Dataset: insurancecompany. Kernel: Laplace. Metric: KL divergence against exact GP predictions.
m/n 1 2 3 4 5 6 7 8
IID 1297.0 (28.0) 618.1 (10.0) 378.9 (4.9) 292.8 (3.2) 233.6 (3.9) 189.9 (6.0) 161.9 (2.0) 139.2 (2.2)
ORF 1310.0 (23.0) 592.0 (12.0) 396.3 (5.9) 285.8 (5.1) 235.0 (3.2) 189.0 (3.7) 156.1 (2.9) 137.3 (2.2)
SORF 1294.0 (27.0) 600.9 (17.0) 385.2 (5.8) 278.9 (3.2) 227.0 (2.9) 188.3 (3.4) 165.2 (2.7) 137.9 (2.8)

Dataset: insurancecompany. Kernel: Laplace. Metric: RMSE on test set.



The Geometry of Random Features

m/n 1 2 3 4 5 6 7 8
IID 0.99 (0.002) 0.99 (0.001) 1.0 (0.002) 0.99 (0.001) 0.99 (0.001) 0.99 (0.001) 0.99 (0.002) 0.99 (0.001)
ORF 0.99 (0.002) 0.99 (0.002) 0.99 (0.002) 1.0 (0.001) 0.99 (0.001) 0.99 (0.002) 0.99 (0.001) 0.99 (0.001)
SORF 0.99 (0.001) 1.0 (0.002) 1.0 (0.001) 0.99 (0.002) 0.99 (0.001) 0.99 (0.002) 0.99 (0.001) 0.99 (0.002)

Dataset: insurancecompany. Kernel: Laplace. Metric: Run time (in seconds).
m/n 1 2 3 4 5 6 7 8
IID 0.154 (0.0011) 0.33 (0.00087) 0.554 (0.001) 0.852 (0.0019) 1.19 (0.0016) 1.64 (0.0047) 2.16 (0.0012) 2.9 (0.0015)
ORF 0.196 (0.00076) 0.412 (0.0011) 0.672 (0.0062) 1.0 (0.0017) 1.38 (0.0027) 1.86 (0.0029) 2.43 (0.0027) 3.2 (0.0022)
SORF 0.153 (0.0011) 0.333 (0.00087) 0.556 (0.0013) 0.854 (0.0013) 1.19 (0.0043) 1.64 (0.0022) 2.16 (0.0025) 2.92 (0.0043)

Dataset: insurancecompany. Kernel: Matérn-5/2. Metric: KL divergence against exact GP predictions.
m/n 1 2 3 4 5 6 7 8
IID 589.9 (6.4) 277.1 (6.3) 185.7 (4.1) 138.6 (2.3) 109.8 (2.6) 88.9 (2.1) 79.41 (1.8) 69.9 (1.1)
ORF 561.7 (4.8) 257.9 (6.2) 174.6 (2.8) 129.5 (2.2) 101.3 (2.1) 87.41 (2.1) 74.41 (1.5) 65.53 (1.1)
SORF 552.3 (7.4) 264.8 (4.8) 183.0 (3.4) 129.1 (2.1) 104.5 (1.3) 83.74 (1.7) 75.23 (1.6) 64.51 (1.2)

Dataset: insurancecompany. Kernel: Matérn-5/2. Metric: RMSE on test set.
m/n 1 2 3 4 5 6 7 8
IID 0.99 (0.002) 0.99 (0.0008) 0.98 (0.0008) 0.98 (0.001) 0.98 (0.0009) 0.98 (0.001) 0.98 (0.001) 0.98 (0.0008)
ORF 0.99 (0.001) 0.98 (0.0009) 0.99 (0.001) 0.99 (0.001) 0.98 (0.0007) 0.98 (0.0009) 0.98 (0.001) 0.98 (0.0008)
SORF 0.99 (0.001) 0.99 (0.002) 0.99 (0.0008) 0.98 (0.0008) 0.98 (0.0007) 0.98 (0.001) 0.98 (0.0006) 0.98 (0.001)

Dataset: insurancecompany. Kernel: Matérn-5/2. Metric: Run time (in seconds).
m/n 1 2 3 4 5 6 7 8
IID 0.143 (0.00072) 0.315 (0.00044) 0.528 (0.0015) 0.818 (0.0013) 1.14 (0.0026) 1.59 (0.0013) 2.11 (0.0056) 2.82 (0.004)
ORF 0.184 (0.00071) 0.392 (0.00058) 0.642 (0.0011) 0.969 (0.0015) 1.33 (0.0029) 1.81 (0.0017) 2.36 (0.0033) 3.12 (0.0031)
SORF 0.145 (0.0007) 0.316 (0.0013) 0.533 (0.003) 0.818 (0.00078) 1.14 (0.0021) 1.59 (0.0032) 2.1 (0.0032) 2.83 (0.0059)

Dataset: parkinson. Kernel: Gaussian. Metric: KL divergence against exact GP predictions.
m/n 1 2 3 4 5 6 7 8
IID 7421.0 (360.0) 3148.0 (150.0) 1632.0 (70.0) 1061.0 (52.0) 848.7 (38.0) 670.7 (20.0) 541.6 (16.0) 521.0 (21.0)
ORF 6854.0 (300.0) 2692.0 (96.0) 1550.0 (51.0) 964.2 (38.0) 798.7 (28.0) 629.7 (21.0) 529.1 (19.0) 429.0 (16.0)
SORF 7537.0 (310.0) 2776.0 (95.0) 1548.0 (60.0) 1041.0 (55.0) 767.5 (24.0) 623.0 (22.0) 514.5 (24.0) 427.8 (15.0)

Dataset: parkinson. Kernel: Gaussian. Metric: RMSE on test set.
m/n 1 2 3 4 5 6 7 8
IID 0.87 (0.004) 0.84 (0.004) 0.81 (0.004) 0.79 (0.004) 0.79 (0.003) 0.78 (0.003) 0.77 (0.002) 0.78 (0.002)
ORF 0.87 (0.005) 0.83 (0.004) 0.81 (0.003) 0.79 (0.002) 0.78 (0.003) 0.77 (0.004) 0.77 (0.002) 0.77 (0.003)
SORF 0.88 (0.002) 0.84 (0.003) 0.81 (0.003) 0.79 (0.002) 0.79 (0.002) 0.78 (0.002) 0.77 (0.002) 0.77 (0.002)

Dataset: parkinson. Kernel: Gaussian. Metric: Run time (in seconds).
m/n 1 2 3 4 5 6 7 8
IID 0.0332 (0.00088) 0.0586 (0.00049) 0.091 (0.00042) 0.127 (0.0008) 0.164 (0.00066) 0.203 (0.0007) 0.246 (0.0013) 0.302 (0.0015)
ORF 0.0378 (0.00048) 0.0674 (0.00078) 0.103 (0.00067) 0.143 (0.00093) 0.18 (0.00077) 0.227 (0.00083) 0.273 (0.0011) 0.334 (0.0016)
SORF 0.0356 (0.00044) 0.0612 (0.00073) 0.0944 (0.001) 0.13 (0.00087) 0.168 (0.00076) 0.207 (0.00074) 0.249 (0.0012) 0.311 (0.00096)

Dataset: parkinson. Kernel: Laplace. Metric: KL divergence against exact GP predictions.
m/n 1 2 3 4 5 6 7 8
IID 18120.0 (420.0) 8041.0 (170.0) 4966.0 (140.0) 3668.0 (100.0) 2677.0 (56.0) 2224.0 (44.0) 1855.0 (33.0) 1554.0 (31.0)
ORF 17860.0 (350.0) 8145.0 (220.0) 5159.0 (170.0) 3478.0 (68.0) 2713.0 (77.0) 2231.0 (58.0) 1727.0 (27.0) 1501.0 (33.0)
SORF 17970.0 (350.0) 7760.0 (170.0) 5162.0 (100.0) 3448.0 (97.0) 2765.0 (83.0) 2217.0 (49.0) 1941.0 (54.0) 1541.0 (31.0)

Dataset: parkinson. Kernel: Laplace. Metric: RMSE on test set.
m/n 1 2 3 4 5 6 7 8
IID 0.9 (0.005) 0.85 (0.006) 0.83 (0.007) 0.82 (0.005) 0.81 (0.006) 0.8 (0.005) 0.79 (0.004) 0.77 (0.004)
ORF 0.91 (0.006) 0.86 (0.005) 0.83 (0.005) 0.82 (0.002) 0.8 (0.002) 0.79 (0.003) 0.78 (0.005) 0.78 (0.003)
SORF 0.91 (0.007) 0.86 (0.004) 0.85 (0.002) 0.81 (0.004) 0.81 (0.004) 0.79 (0.005) 0.79 (0.003) 0.78 (0.002)

Dataset: parkinson. Kernel: Laplace. Metric: Run time (in seconds).
m/n 1 2 3 4 5 6 7 8
IID 0.0375 (0.00081) 0.0661 (0.00077) 0.0997 (0.00094) 0.14 (0.00096) 0.18 (0.00066) 0.22 (0.0012) 0.262 (0.0013) 0.317 (0.0013)
ORF 0.0402 (0.00083) 0.0708 (0.001) 0.109 (0.00069) 0.152 (0.001) 0.197 (0.0012) 0.252 (0.012) 0.292 (0.0013) 0.352 (0.00071)
SORF 0.0388 (0.00056) 0.0685 (0.00085) 0.103 (0.0015) 0.141 (0.0016) 0.182 (0.00057) 0.224 (0.0011) 0.265 (0.00091) 0.328 (0.00089)

Dataset: parkinson. Kernel: Matérn-5/2. Metric: KL divergence against exact GP predictions.
m/n 1 2 3 4 5 6 7 8
IID 12070.0 (410.0) 4711.0 (110.0) 2882.0 (77.0) 2053.0 (81.0) 1531.0 (58.0) 1364.0 (47.0) 1047.0 (33.0) 911.2 (24.0)
ORF 10540.0 (320.0) 4787.0 (160.0) 2853.0 (100.0) 2070.0 (36.0) 1497.0 (60.0) 1235.0 (29.0) 1042.0 (44.0) 950.1 (33.0)
SORF 11520.0 (280.0) 5035.0 (130.0) 2742.0 (85.0) 1999.0 (71.0) 1604.0 (58.0) 1214.0 (28.0) 1090.0 (36.0) 915.2 (36.0)

Dataset: parkinson. Kernel: Matérn-5/2. Metric: RMSE on test set.
m/n 1 2 3 4 5 6 7 8
IID 0.88 (0.006) 0.83 (0.003) 0.8 (0.003) 0.79 (0.004) 0.77 (0.004) 0.77 (0.003) 0.76 (0.003) 0.75 (0.003)
ORF 0.87 (0.003) 0.83 (0.002) 0.81 (0.004) 0.79 (0.003) 0.78 (0.004) 0.77 (0.003) 0.76 (0.004) 0.76 (0.003)
SORF 0.88 (0.004) 0.84 (0.003) 0.8 (0.004) 0.79 (0.003) 0.78 (0.003) 0.77 (0.002) 0.77 (0.002) 0.76 (0.003)

Dataset: parkinson. Kernel: Matérn-5/2. Metric: Run time (in seconds).
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m/n 1 2 3 4 5 6 7 8
IID 0.0331 (0.00078) 0.0594 (0.00028) 0.0925 (0.00076) 0.128 (0.00043) 0.168 (0.0005) 0.207 (0.0013) 0.248 (0.00094) 0.304 (0.0013)
ORF 0.0379 (0.00047) 0.0656 (0.00048) 0.103 (0.00048) 0.144 (0.00038) 0.185 (0.00083) 0.228 (0.0011) 0.274 (0.0011) 0.336 (0.0012)
SORF 0.0337 (0.00087) 0.0602 (0.00035) 0.0934 (0.00068) 0.13 (0.0005) 0.17 (0.0011) 0.209 (0.00078) 0.252 (0.00098) 0.313 (0.00064)

Dataset: wine. Kernel: Gaussian. Metric: KL divergence against exact GP predictions.
m/n 1 2 3 4 5 6 7 8
IID 30940.0 (820.0) 11470.0 (180.0) 6677.0 (100.0) 4362.0 (59.0) 3083.0 (25.0) 2415.0 (34.0) 1906.0 (28.0) 1529.0 (12.0)
ORF 28010.0 (550.0) 11020.0 (120.0) 6313.0 (110.0) 4192.0 (47.0) 3023.0 (57.0) 2337.0 (22.0) 1847.0 (31.0) 1546.0 (26.0)
SORF 31700.0 (680.0) 12520.0 (300.0) 7011.0 (210.0) 4635.0 (72.0) 3330.0 (57.0) 2514.0 (39.0) 1979.0 (33.0) 1665.0 (27.0)

Dataset: wine. Kernel: Gaussian. Metric: RMSE on test set.
m/n 1 2 3 4 5 6 7 8
IID 0.86 (0.005) 0.82 (0.002) 0.82 (0.002) 0.81 (0.002) 0.8 (0.002) 0.8 (0.002) 0.8 (0.002) 0.79 (0.002)
ORF 0.85 (0.003) 0.82 (0.002) 0.81 (0.003) 0.8 (0.003) 0.8 (0.002) 0.8 (0.002) 0.79 (0.002) 0.79 (0.002)
SORF 0.86 (0.004) 0.83 (0.002) 0.82 (0.002) 0.81 (0.002) 0.8 (0.002) 0.8 (0.002) 0.8 (0.001) 0.8 (0.002)

Dataset: wine. Kernel: Gaussian. Metric: Run time (in seconds).
m/n 1 2 3 4 5 6 7 8
IID 0.0183 (0.00064) 0.0399 (0.00069) 0.0529 (0.00049) 0.0693 (0.0006) 0.0897 (0.001) 0.11 (0.00085) 0.126 (0.00099) 0.148 (0.00066)
ORF 0.0198 (0.00045) 0.0419 (0.00058) 0.0567 (0.00077) 0.0747 (0.00068) 0.097 (0.0007) 0.118 (0.00094) 0.137 (0.00091) 0.162 (0.00066)
SORF 0.0194 (8.6e-05) 0.0411 (0.00026) 0.055 (0.00095) 0.0715 (0.00076) 0.0911 (0.00063) 0.112 (0.00059) 0.132 (0.0008) 0.152 (0.0011)

Dataset: wine. Kernel: Laplace. Metric: KL divergence against exact GP predictions.
m/n 1 2 3 4 5 6 7 8
IID 198300.0 (1500.0) 96220.0 (810.0) 62890.0 (850.0) 47220.0 (550.0) 38770.0 (460.0) 31470.0 (450.0) 27440.0 (400.0) 23730.0 (270.0)
ORF 197400.0 (1700.0) 95470.0 (570.0) 62140.0 (440.0) 46260.0 (550.0) 37030.0 (360.0) 31290.0 (230.0) 27180.0 (290.0) 23130.0 (260.0)
SORF 198600.0 (2400.0) 96500.0 (960.0) 64060.0 (740.0) 46880.0 (530.0) 38490.0 (400.0) 32190.0 (390.0) 27260.0 (330.0) 23470.0 (280.0)

Dataset: wine. Kernel: Laplace. Metric: RMSE on test set.
m/n 1 2 3 4 5 6 7 8
IID 0.88 (0.01) 0.84 (0.006) 0.82 (0.002) 0.82 (0.004) 0.81 (0.002) 0.8 (0.003) 0.8 (0.002) 0.8 (0.003)
ORF 0.89 (0.01) 0.83 (0.004) 0.82 (0.003) 0.81 (0.002) 0.8 (0.003) 0.8 (0.001) 0.8 (0.003) 0.8 (0.002)
SORF 0.88 (0.007) 0.84 (0.004) 0.82 (0.004) 0.81 (0.003) 0.8 (0.002) 0.8 (0.003) 0.8 (0.002) 0.8 (0.003)

Dataset: wine. Kernel: Laplace. Metric: Run time (in seconds).
m/n 1 2 3 4 5 6 7 8
IID 0.0198 (0.00018) 0.0394 (0.00064) 0.0586 (0.00047) 0.0773 (0.00041) 0.0959 (0.00072) 0.117 (0.00094) 0.14 (0.00066) 0.162 (0.0011)
ORF 0.0205 (3.5e-05) 0.0415 (0.00051) 0.0625 (0.00061) 0.0833 (0.0008) 0.104 (0.00057) 0.129 (0.00073) 0.152 (0.0012) 0.174 (0.00087)
SORF 0.0202 (0.00014) 0.0411 (0.00038) 0.0592 (0.00067) 0.0785 (0.00067) 0.101 (0.00093) 0.12 (0.00086) 0.143 (0.0011) 0.165 (0.0011)

Dataset: wine. Kernel: Matérn-5/2. Metric: KL divergence against exact GP predictions.
m/n 1 2 3 4 5 6 7 8
IID 62860.0 (1200.0) 26610.0 (240.0) 16740.0 (160.0) 12030.0 (130.0) 9344.0 (50.0) 7519.0 (110.0) 6424.0 (51.0) 5483.0 (67.0)
ORF 57660.0 (250.0) 26110.0 (190.0) 16390.0 (110.0) 12020.0 (100.0) 9344.0 (100.0) 7584.0 (120.0) 6474.0 (39.0) 5561.0 (66.0)
SORF 60670.0 (760.0) 26500.0 (260.0) 16810.0 (140.0) 12300.0 (160.0) 9557.0 (71.0) 7708.0 (42.0) 6495.0 (97.0) 5494.0 (43.0)

Dataset: wine. Kernel: Matérn-5/2. Metric: RMSE on test set.
m/n 1 2 3 4 5 6 7 8
IID 0.87 (0.005) 0.83 (0.003) 0.81 (0.001) 0.81 (0.002) 0.8 (0.002) 0.8 (0.002) 0.8 (0.002) 0.79 (0.002)
ORF 0.84 (0.003) 0.82 (0.003) 0.81 (0.003) 0.81 (0.002) 0.8 (0.002) 0.8 (0.002) 0.79 (0.002) 0.79 (0.002)
SORF 0.86 (0.005) 0.82 (0.004) 0.81 (0.002) 0.8 (0.002) 0.8 (0.002) 0.8 (0.001) 0.79 (0.002) 0.79 (0.002)

Dataset: wine. Kernel: Matérn-5/2. Metric: Run time (in seconds).
m/n 1 2 3 4 5 6 7 8
IID 0.0188 (0.00024) 0.038 (0.00072) 0.0553 (0.00045) 0.0732 (0.00066) 0.0933 (0.00091) 0.113 (0.00073) 0.131 (0.00076) 0.153 (0.0011)
ORF 0.02 (0.00018) 0.0407 (0.00064) 0.0588 (0.00087) 0.0781 (0.00081) 0.0974 (0.00074) 0.122 (0.00092) 0.143 (0.00067) 0.165 (0.0011)
SORF 0.0192 (0.00041) 0.0402 (0.00048) 0.0574 (0.0008) 0.0746 (0.00057) 0.0944 (0.00064) 0.113 (0.0012) 0.135 (0.00071) 0.156 (0.00088)
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