

Motivation and Notation

Dilemma in Fair Learning

U.S. law requires decisions in credit, education, employment, and housing do not cause:

disparate treatment

solution: discard sensitive attributes

solution: require sensitive attributes

To enforce fairness, sensitive attributes must be examined. Yet, users may feel **uncomfortable in revealing these attributes** or modelers may be **legally restricted in utilizing them** [1, 2].

Notation

- Solution the users, i.e., individuals using a service
- the modeler providing a service, e.g., bank, insurance company, etc.
- **1** the regulator, e.g., governmental institution, non-profit, etc.
- **x** are the non-sensitive **features**, e.g., GPA, salary, etc.
- y is the (non-sensitive) label, e.g., paid back loan, recidivism, etc.
- z are the sensitive attributes, e.g., gender, race, etc.
- θ are model parameters
- $s_{\mathbb{F}}(\theta)$ is a signature of a model

Secure Multi-Party Computation (MPC)

MPC allows two (or more) parties holding secret values to evaluate an agreedupon function without learning anything besides the outcome and what can be inferred from it [3].

Remark: Here, privacy and secrecy constraints are separate from setupdependent attacks, like model extraction or inversion (see differential privacy).

Challenges

fixed-point arithmetic may lead to under- and overflow **approximate non-linearities** may lead to loss of accuracy

Theoretical Guarantees

Proposition. For non-colluding modeler and regulator, our protocols implements the functionality of each setting 1), 2), 3) satisfying cryptographic privacy of sensitive user data and model secrecy in the presence of a semihonest adversary.

Remark: Certification and verification are sub-processes of model training.

arXiv:1806.03281

secret models, and users to retain control over sensitive data.

	Adult	Bank	COMPAS	German	SQF
	2 ¹⁴	2 ¹⁵	2 ¹²	2 ⁹	2 ¹⁶
	51	62	7	24	23
	1	1	7	1	1
	802 ms	827 ms	288 ms	250 ms	765 ms
ochs)	43 min	51 min	7 min	1 min	111 min