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SUMMARY

• We consider linear programming (LP) relaxations for the problem
of MAP inference for binary pairwise graphical models.

• We show that a low-treewidth condition obtained by Wainwright
and Jordan (2004) guaranteeing tightness across all models with
a given topology is not necessary.

• We also strengthen an earlier result regarding tightness of the
triplet-consistent polytope L3(G ) for almost-balanced models.

MAP INFERENCE AND LP RELAXATIONS

A binary pairwise graphical model is specified by a graph G = (V ,E ), and a
set of potentials (θi)i∈V , (Wij)ij∈E . This gives a probabiltiy distribution for a
set of binary random variables (Xv)v∈V - for any xV ∈ {0, 1}V :

p(xV ) =
1

Z
exp

∑
i∈V

θixi +
∑
ij∈E

Wijxixj


MAP inference is the problem of finding a most likely configuration.

Combinatorial problem

maxx∈{0,1}V
[∑

i∈V θi1xi=1 +
∑

ij∈E Wij1xi=1,xj=1

]
Equivalent linear program

maxq∈M(G )

[∑
i∈V θiqi +

∑
ij∈E Wijqij

]
Marginal polytope M(G ): enforce global consistency on marginals

(qi)i∈V and (qij)ij∈E
Relaxed linear program

maxq∈Lr(G )

[∑
i∈V θiqi +

∑
ij∈E Wijqij

]
Sherali-Adams polytope Lr(G ): enforce consistency over each

cluster of r variables on (pseudo)marginals (qi)i∈V and (qij)ij∈E

This yields a polytope relaxation M(G ) ⊆ Lr(G ), and we therefore have

max
q∈M(G )

∑
i∈V

θiqi +
∑
ij∈E

Wijqij

 ≤ max
q∈Lr(G )

∑
i∈V

θiqi +
∑
ij∈E

Wijqij


When we have equality above, we say that Lr(G ) is tight for the graphical
model concerned, and MAP inference can be performed efficiently by
optimising over Lr(G ).

Wainwright and Jordan (2004) showed that if a graph G has treewidth ≤ r
then Lr+1(G ) is tight for all binary pairwise models on G . Weller
(2016) showed that this condition is necessary for r = 1, 2. We show that
it is not necessary for r = 3, by investigating graphical models on
minimal forbidden minors.

TREEWIDTH

The treewidth of a graph G is the minimum width over all tree
decompositions of G - intimately connected to the junction tree algorithm.
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A graph of treewidth 2, and an optimal tree decomposition of the graph.

FORBIDDEN MINOR CONDITIONS

A graph G ′ is a minor of another graph G if G ′ is obtainable from G by
deleting vertices and edges, and identifying vertices connected by an edge:

is a minor of

Each of the properties

• G has treewidth ≤ r

• Lr(G ) is tight for all possible binary pairwise graphical
models on G

is minor-closed: true for G =⇒ true for all minors of G .

A powerful result of Robertson and Seymour (2004) states that any graph
property that is minor-closed is characeterised by a finite set of minimal
forbidden minors - “minimal obstructions” to the property.

MINIMAL FORBIDDEN MINORS FOR LP TIGHTNESS AND
LOW TREEWIDTH

Treewidth Min. forbidden minors
1 K3

2 K4

3 K5, O6, M8, Y5

(see below)

LP Relaxation Min. forbidden minors
L2(G ) K3

L3(G ) K4

L4(G ) K5 + ?
(NOT O6, M8, Y5)

K5 Octahedral graph,
O6

Wagner graph, M8 Pentagonal prism
graph, Y5

GEOMETRY OF SHERALI-ADAMS POLYTOPES

For a polytope P ⊂ Rd and an extremal
point v ∈ P , the normal cone to P at v
is

NP(v) =

{
c ∈ Rd

∣∣∣v ∈ arg max
x∈P

〈c, x〉
}

This gives a succinct characterisation of
graphical models for which a
Sherali-Adams relaxation is tight, namely:

∪v∈Vertices(M(G ))NLr(G )(v)

We use this perspective to provide new
proofs of several well-known results for
tightness of L2(G ).

We also have the following decomposition of the entire space of potentials,
which proves useful in our analysis of models over the minimal treewidth 3
forbidden minors:

RV∪E = ∪v∈Vertices(M(G ))NM(G )(v)

DECOMPOSITION AND LP CHECKS

For each of the treewidth 3 minimal forbidden minors G = (V ,E ), we are
interested in whether or not there exists a binary pairwise graphical model
which is not tight for L4(G ). Writing c = ((θi)i∈V , (Wij)ij∈E), this can be
determined by solving the following optimisation problem:

max
c∈RV∪E

[
max

q∈L4(G )
〈c, q〉 − max

q∈M(G )
〈c, q〉

]
Using the geometric considerations described above, we decompose this into
a manageable number of LPs to check, yielding our main result:

The only treewidth 3 minimal forbidden minor that has models
for which L4(G ) is not tight is K5.
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