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Why orthogonal random features ? Our theoretical results

>|n practice they are very effective

O applied successfully in many ML settings:

Free-lunch JLTs

/Estimators: \

LSH, kernel ridge regression, RNNs and more...
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: : >sub: different subsampling strategies for row
Discrete constructions selection to reduce dimensionality

o first/last m rows

o sample uniformly at random with repetitions ¥
o sample uniformly at random without repetitions
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>|mplies that discrete ROMs provide more
accurate JLT mechanisms than state-of-the-
art, with better time and space complexity

e orthogonal rows

e many examples:
Kronecker-product
matrices, Walsh-
Hadamard matrices,

guadratic residue
\ constructions /

>x2 smaller MSEs for complex discrete ROMs

A0 0 -\ . 11 >strictly better accuracy also for the angular kernel
0 M O o~ Unifi=1,+1} approximation with Gaussian orthogonal matrices
D — O 0 A Az ~ U’I’L’Lf{_l, _|_17 —1, _|_Z} /Kang . zgx,y Kernel THEOREM Y
3 )\ U . S]_ (C , randOm (X7Y) — - definition MSE(I?ang,ort(X y)) <
i TL’Lf( ) C complex R, (x.y) = is n(Mx) T sgn(M )- general m ;
matrices || @ MY e S estimator, MSE(K2'8"¢(x, y))

Gort Continuous constructions

>@Gaussian orthogonal matrices
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O correspond to truly random
rotations in n-dimensional spaces
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(with one-time extra cost) via the
Gram-Schmidt orthogonalization
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