Orthogonal estimation of Wasserstein distances

Mark Rowland^{*}, Jiri Hron^{*}, Yunhao Tang^{*},

Krzysztof Choromanski, Tamas Sarlos, Adrian Weller

Wasserstein distances

A class of metrics between probability distributions
Naturally incorporate spatial information
Applications from economics to machine learning

Def: For a metric space (\mathcal{X}, d) , the *p*-Wasserstein **distance** between distributions $\mu, \nu \in \mathcal{P}(\mathcal{X})$ is

$$W_{p}(\mu,\nu) \coloneqq \left(\inf_{\gamma \in \Gamma(\mu,\nu)} \int d(x,y)^{p} \, \mathrm{d}\gamma(x,y)\right)^{1/p},$$

where $\Gamma(\mu,\nu) \subseteq \mathcal{P}(\mathcal{X} \times \mathcal{X})$ is the set of joint

Projected Wasserstein distance

Idea: Use the coupling σ_v for $v \sim \text{Unif}(S^{d-1})$ as SW_p , but assign cost in $(\mathbb{R}^d, \|\cdot\|_2)$ like W_p .

Def: The *p*-projected Wasserstein distance between $\mu = \frac{1}{n} \sum_{i=1}^{n} \delta_{x_i}$ and $\nu = \frac{1}{n} \sum_{i=1}^{n} \delta_{y_i}$ is

$$\mathrm{PW}_p(\mu,\nu) \coloneqq \left[\mathbb{E}_v \left(\frac{1}{n} \sum_{i=1}^n \|x_i - y_{\sigma_v(i)}\|_2^p \right) \right]^{1/p},$$

where v and σ_v are as in the definition of SW_p .

Idea: View orthogonal coupling of the directions $\{v_j\}_{j=1}^m$ as an approximation to stratification.

distributions with marginals μ and ν .

Source: commons.wikimedia.org/w/index.php?curid=64872543

Unfortunately, computation of $W_p(\mu, \nu)$ is often very **expensive or outright intractable**.

Sliced Wasserstein distance

Computational complexity improves if $\mathcal{X} = \mathbb{R}^d$, $\mu = \frac{1}{n} \sum_{i=1}^n \delta_{x_i}$, $\nu = \frac{1}{n} \sum_{i=1}^n \delta_{y_i}$ and $d(x, y) = \|x - y\|_2$, as computation of W_p reduces to a matching problem with $\mathcal{O}(n^{5/2} \log n)$ complexity.

Properties:

For any two distributions $\mu, \nu \in \mathcal{P}_{(n)}(\mathbb{R}^d) := \{\frac{1}{n} \sum_{i=1}^{n} \delta_{x_i} : \{x_i\}_{i=1}^{n} \subset \mathbb{R}^d\}, n \in \mathbb{N}, \text{ and any } p \geq 1:$

• $\mathrm{PW}_p(\mu, \nu)$ is a metric

• $SW_p(\mu, \nu) \le W_p(\mu, \nu) \le PW_p(\mu, \nu)$

 PW_p shares many properties with W_p and SW_p : • Helps with theoretical analysis of SW_p

• PW_p may be of **independent interest**

MC and orthogonal coupling

The computation of the expectation over $v \sim \text{Unif}(S^{d-1})$ in SW (resp. PW) is often intractable \Rightarrow estimate via **MC integration**:

$$\mathbb{E}_{v}[f_{\mu,\nu}(v)] \approx \frac{1}{m} \sum^{m} f_{\mu,\nu}(v_{j}) ,$$

MSE (SW): d = 2 (left), d = 50 (right); n = 2 (top); n = 10 (bottom)

Prop: Let n = 2, d = 2. Then orthogonal coupling dominates i.i.d. in terms of MSE for the projected Wasserstein, but not sliced Wasserstein distance.

Difference between PW_p and SW_p reveals why orthogonal coupling sometimes hurts SW_p estimation:

Prop: Let $\mathcal{F} \coloneqq \sigma(E_{\sigma}: \sigma \in S_n)$, and $\{v_j\}_{j=1}^m$ be orthogonally coupled. Then $\{\mathbb{E}[f_{\mu,\nu}^{\mathrm{PW}}(v_j) \mid \mathcal{F}]\}_{j=1}^m$ are pairwise independent, but the same is not true with $f_{\mu,\nu}^{\mathrm{SW}}$. Pairwise independence ensures stratification.

Effect on downstream tasks

Sampling orthogonally coupled vectors *Exact:* Sample i.i.d. and apply Gram-Schmidt *Approximate:* Use $\prod_{l}^{L} H_{l}D_{l}$, H_{l} a scaled Hadamard matrix, D_{l} a diagonal Rademacher matrix

If d = 1, problem further reduces to sorting with complexity $O(n \log n)$. Sliced Wasserstein distances take advantage of this **computational speed up**.

 SW_p : Illustration of a single projection of μ, ν with n = 4 and d = 2

Def: The *p*-sliced Wasserstein distance between $\mu = \frac{1}{n} \sum_{i=1}^{n} \delta_{x_i}$ and $\nu = \frac{1}{n} \sum_{i=1}^{n} \delta_{y_i}$ is $SW_p(\mu, \nu) \coloneqq \left[\mathbb{E}_v \left(\frac{1}{n} \sum_{i=1}^{n} |\langle v, x_i \rangle - \langle v, y_{\sigma_v(i)} \rangle|^p \right) \right]^{1/p},$ j=1

with $f_{\mu,\nu}$: $S^{d-1} \to \mathbb{R}$ defined as in SW (resp. PW).

Idea: Instead of i.i.d., sample $\{v_j\}_{j=1}^m$ uniformly at random from the space of orthogonal matrices.

Mean squared error analysis

MSE can be understood through a σ_v induced partition of $S^{d-1} = \bigcup_{\sigma \in S_n} E_{\sigma}, E_{\sigma} := \{v : \sigma_v = \sigma\}.$

Lem: E_{σ} is a finite union of simply connected sets.

Sliced Wasserstein AE (Kolouri et al.)

Set-up: Encoder $h_{\theta} \colon \mathbb{R}^{d} \to \mathbb{R}^{k}$, decoder $g_{\phi} \colon \mathbb{R}^{k} \to \mathbb{R}^{d}$, empirical distribution P_{X} (MNIST), prior P_{Z} . $\mathbb{E}_{P_{X}}[\|g_{\phi}(h_{\theta}(X)) - X\|^{2}] + \mathrm{SW}_{1}((h_{\theta})_{\#}P_{X}, P_{Z}).$

SGD training: Orthogonality reduces gradient variance

Trust region policy optimisation (Schulman et al.) Set-up: Policy $\pi_{\theta} \colon s_t \mapsto a_t$ and a fixed MDP. Maximise $J(\pi_{\theta}) = \mathbb{E}_{\pi_{\theta}}[\sum_{t=0}^{\infty} \gamma^t r_t]$. Each step constrained by $D(\theta_t, \theta_{t+1}) \leq \varepsilon$ with $D = SW_1, PW_1$.

 $v \sim \text{Unif}(S^{d-1})$, and $\sigma_v \colon [n] \to [n]$ the bijective mapping with the property that

 $\langle v, x_i \rangle < \langle v, x_j \rangle \Rightarrow \langle v, y_{\sigma_v(i)} \rangle \le \langle v, y_{\sigma_v(j)} \rangle.$

Our contributions

Analysis of an estimator of sliced Wasserstein distance based on orthogonal coupling
Exploration of a new Wasserstein-like metric, projected Wasserstein distance S^{d-1} partition: σ_v changes whenever $\langle v, x_i - x_j \rangle = 0$ or $\langle v, y_i - y_j \rangle = 0$

Prop: An unbiased estimator for which

 $\mathbb{P}(v_i \in E_{\sigma}, v_j \in E_{\tau}) > \mathbb{P}(v_i \in E_{\sigma}) \mathbb{P}(v_j \in E_{\tau}),$

 $i \neq j, \sigma \neq \tau$, has MSE strictly lower than i.i.d.

 \Rightarrow Stratification w.r.t. the σ_v induced partition leads to improved MSE. The number of possible $\sigma \in S_n$ is n! though, making direct stratification computationally infeasible. Training curves: Hopper (left), HalfCheetah (right); 5 random seeds

Summary & future work

Orthogonal coupling often improves MSE
MSE improvement linked to stratified sampling
Experimentally, reduced variance can help with downstream tasks but more research needed