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Motivation: undirected graphical models

@ Powerful way to represent relationships across variables

@ Many applications including: computer vision, social network
analysis, deep belief networks, protein folding...

e In this talk, focus on binary pairwise (Ising) models
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Example: Grid for computer vision (attractive)
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Motivation: undirected graphical models

Example: Part of epinions social network

Figure courtesy of N. Ruozzi
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Fundamental problems of inference

@ MAP inference: find a global configuration of all variables
with highest probability

@ Marginal inference: estimate marginal probability distribution
of one variable

p(x1) = Z p(x1, X2, ...y Xn)

X255 Xn

© Computing the partition function, requires summing over
configurations of all variables

All are computationally intractable (NP-hard)
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© Computing the partition function, requires summing over
configurations of all variables

All are computationally intractable (NP-hard)

But inference is easier for some models than others



When is inference (relatively) easy?
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When is inference (relatively) easy?
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No mention of singleton potentials!

Can we do better by also examining their properties?




|dea: Uprooting (not new)

@ Add a new variable Xj

@ Transform singleton potentials — edge potentials to Xp

Original model M Uprooted model M™*
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iff var takes value 1

score for an edge iff its end variables are different
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Original model M Uprooted model M+
+2

2
-1 @—@ -3 >

score for a sing var
iff var takes value 1

score for an edge iff its end variables are different

@ Mis MT with Xg clamped to 0, write M = My
@ If we don't clamp, each config of M — 2 configs of M™ with

the same score
(0,1,0,1)

e.g. (x1,x,x3)=(1,0,1) = (x0,x1,%2,X3) = {(1 0,1,0)
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Uprooted model M, fully symmetric

M config edges: score v' if ends different

Xo X1 Xo X3 | €1 €2 €3 €12 €13 €23




Original model M = My is M™ ‘rooted at’ xg = 0

X0

= = R e e e

M config
X1 X2

PR PP OOOO
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X3

RO HRORORO

edges: score v' if ends different
€1 €2 €3 €12 €13 €3
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|dea: Reroot to form M; as M™ ‘rooted at’ x; =0

X0

1
1
1
1

M config
X1 X2

= = O O

X3

edges: score v' if ends different
€1 €2 €3 €12 €13 €3
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|ldea: Reroot to form M, as M™ ‘rooted at’ x, =0

M config edges: score v' if ends different
Xo X Xo X3 | €1 €2 €3 €1 €3 €3
0O 0 1 o0 v v v
0 0 1 1 v o v v v
0o 1 0 1|V v 7 v
o 1 1 0|V V v v
o 1 1 1|v v Vv
1 0 1 0]V v v v
1 0 1 1|V v v
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|dea: Reroot to form M; as M™ ‘rooted at’ x3 =0

M config edges: score v' if ends different
Xo X Xo X3 | €1 €2 €3 €1 €3 €3

12/19




Rerooting observations

@ Rerooted models {M;} form an equivalence class, each has
the same ‘parent’ uprooted model M

@ Simple score-preserving 1-1 correspondence
Vi, configs of M; < configs of My

@ Inference (exact or approx) on any M; — recover info for My

e Each M; has the same partition function as My
e MAP config of M; — recover MAP config of My
e Marginals of M;  — recover marginals of M

@ Inference may be much faster / more accurate on some M;

@ Singleton and edge potentials are essentially the same, only
appear different due to choice of rooting
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Rerooting example

Original model M = M

-1

+5
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xQ) +2

Rerooted model M»
attractive model

uproot

l t
reroo

Uprooted model M™
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Rerooting: How to pick a good root variable?

@ Same as choosing a good variable to clamp in M*

@ Rerooting substitutes an implicit initial clamp choice for a well
chosen one ‘for free’

Several existing good methods, including maxW
Idea: break heavy cycles
Will lead to picking a root to form high singleton potentials

We introduce maxtW: strength of an edge weight saturates,
works well in our context
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Implications of Rerooting

@ Rerooting allows us to generalize or improve many results

@ e.g. max flow / min cut can now be used for models where
Ji s.t. M; is attractive < MT is almost attractive
(balanced) (almost balanced)

@ e.g. bounds (on marginals, partition function) can be
improved by considering different rerootings

@ Reveals intriguing perspective: TRI is universally rooted
(TRI is the triplet-consistent polytope)
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Experiments (Bethe
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Experiments (Bethe):
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Conclusion

@ We can uproot and then reroot any binary pairwise graphical
model

@ Obtain an equivalence class of models

o Generalizes earlier theoretical results

@ Useful in practice, particularly for dense models with strong
edges and weak singleton potentials

@ Comparison to clamping in Mg -
e Clamping requires performing one inference run for each value
of the variable clamped
e Here we get a clamping ‘for free'
@ Rerooting reveals intriguing perspectives such as TRl is
universally rooted

Thank you

Poster #49 tomorrow 10am-1pm
http://mlg.eng.cam.ac.uk/adrian
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