Uprooting and Rerooting Graphical Models

Adrian Weller University of Cambridge

ICML, New York, NY June 21, 2016

For more information, see http://mlg.eng.cam.ac.uk/adrian

Motivation: undirected graphical models

- Powerful way to represent relationships across variables
- Many applications including: computer vision, social network analysis, deep belief networks, protein folding...
- In this talk, focus on binary pairwise (Ising) models

Example: Grid for computer vision (attractive)

Motivation: undirected graphical models

Example: Part of epinions social network

Figure courtesy of N. Ruozzi

Fundamental problems of inference

- MAP inference: find a global configuration of all variables with highest probability
- Marginal inference: estimate marginal probability distribution of one variable

$$p(x_1) = \sum_{x_2,\ldots,x_n} p(x_1,x_2,\ldots,x_n)$$

Omputing the partition function, requires summing over configurations of all variables

All are computationally intractable (NP-hard)

Fundamental problems of inference

- MAP inference: find a global configuration of all variables with highest probability
- Marginal inference: estimate marginal probability distribution of one variable

$$p(x_1) = \sum_{x_2,\ldots,x_n} p(x_1,x_2,\ldots,x_n)$$

Computing the partition function, requires summing over configurations of all variables

All are computationally intractable (NP-hard) But inference is easier for some models than others

When is inference (relatively) easy?

Attractive model

STRUCTURE

POTENTIALS

When is inference (relatively) easy?

Attractive model

STRUCTURE

POTENTIALS

No mention of singleton potentials!

Can we do better by also examining their properties?

Idea: Uprooting (not new)

- Add a new variable X₀
- Transform singleton potentials \longrightarrow edge potentials to X_0

score for an edge iff its end variables are different

Uprooting

score for an edge iff its end variables are different

- M is M^+ with X_0 clamped to 0, write $M = M_0$
- If we don't clamp, each config of $M \rightarrow 2$ configs of M^+ with the same score

e.g.
$$(x_1, x_2, x_3) = (1, 0, 1) \rightarrow (x_0, x_1, x_2, x_3) = \begin{cases} (0, 1, 0, 1) \\ (1, 0, 1, 0) \end{cases}$$

Uprooted model M^+ , fully symmetric

	M^+ of	config	5	edges: score \checkmark if ends different					erent
<i>x</i> 0	x_1	<i>x</i> ₂	<i>x</i> 3	e ₀₁	e ₀₂	e ₀₃	e_{12}	e_{13}	e ₂₃
0	0	0	0						
0	0	0	1			\checkmark		\checkmark	\checkmark
0	0	1	0		\checkmark		\checkmark		\checkmark
0	0	1	1		\checkmark	\checkmark	\checkmark	\checkmark	
0	1	0	0	\checkmark			\checkmark	\checkmark	
0	1	0	1	\checkmark		\checkmark	\checkmark		\checkmark
0	1	1	0	\checkmark	\checkmark			\checkmark	\checkmark
0	1	1	1	\checkmark	\checkmark	\checkmark			
1	0	0	0	\checkmark	\checkmark	\checkmark			
1	0	0	1	\checkmark	\checkmark			\checkmark	\checkmark
1	0	1	0	\checkmark		\checkmark	\checkmark		\checkmark
1	0	1	1	\checkmark			\checkmark	\checkmark	
1	1	0	0		\checkmark	\checkmark	\checkmark	\checkmark	
1	1	0	1		\checkmark		\checkmark		\checkmark
1	1	1	0			\checkmark		\checkmark	\checkmark
1	1	1	1						

Uprooted model M^+ , fully symmetric

	M^+ of	config	5	edges: score \checkmark if ends different					
<i>x</i> ₀	x_1	<i>x</i> ₂	<i>x</i> 3	e ₀₁	e ₀₂	e ₀₃	e_{12}	e_{13}	e ₂₃
0	0	0	0						
0			1			\checkmark		\checkmark	\checkmark
0					\checkmark		\checkmark		\checkmark
0	0	1	1		\checkmark	\checkmark	\checkmark	\checkmark	
0	1	0	0	\checkmark			\checkmark	\checkmark	
0	1	0	1	\checkmark		\checkmark	\checkmark		\checkmark
0	1	1	0	\checkmark	\checkmark			\checkmark	\checkmark
0	1	1	1	\checkmark	\checkmark	\checkmark			
1	0	0	0	\checkmark	\checkmark	\checkmark			
1	0	0	1	\checkmark	\checkmark			\checkmark	\checkmark
1	0	1	0	\checkmark		\checkmark	\checkmark		\checkmark
1	0	1	1	\checkmark			\checkmark	\checkmark	
1	1	0	0		\checkmark	\checkmark	\checkmark	\checkmark	
1	1		1		\checkmark		\checkmark		\checkmark
1	1	1				\checkmark		\checkmark	\checkmark
1	1	1	1						

Original model $M = M_0$ is M^+ 'rooted at' $x_0 = 0$

	M^+ c	config	g	edges: score \checkmark if ends different					
<i>x</i> ₀	x_1	<i>x</i> ₂	<i>x</i> 3	e ₀₁	e ₀₂	e ₀₃	e_{12}	e_{13}	e ₂₃
0	0	0	0						
0			1			\checkmark		\checkmark	\checkmark
0					\checkmark		\checkmark		\checkmark
0	0	1	1		\checkmark	\checkmark	\checkmark	\checkmark	
0	1	0	0	\checkmark			\checkmark	\checkmark	
0	1	0	1	\checkmark		\checkmark	\checkmark		\checkmark
0	1	1	0	\checkmark	\checkmark			\checkmark	\checkmark
0	1	1	1	\checkmark	\checkmark	\checkmark			
1	0	0	0	\checkmark	\checkmark	\checkmark			
1	0	0	1	\checkmark	\checkmark			\checkmark	\checkmark
1	0	1	0	\checkmark		\checkmark	\checkmark		\checkmark
1	0	1	1	\checkmark			\checkmark	\checkmark	
1	1	0	0		\checkmark	\checkmark	\checkmark	\checkmark	
1	1	0	1		\checkmark		\checkmark		\checkmark
1	1	1	0			\checkmark		\checkmark	\checkmark
1	1	1	1						

Idea: Reroot to form M_1 as M^+ 'rooted at' $x_1 = 0$

	M^+ c	config	g	edge	edges: score \checkmark if ends differe				erent
<i>x</i> ₀	x_1	<i>x</i> ₂	<i>x</i> 3	e ₀₁	e ₀₂	e ₀₃	e_{12}	<i>e</i> ₁₃	e ₂₃
0	0	0	0						
0	0		1			\checkmark		\checkmark	\checkmark
0	0				\checkmark		\checkmark		\checkmark
0	0	1	1		\checkmark	\checkmark	\checkmark	\checkmark	
0	1	0	0	\checkmark			\checkmark	\checkmark	
0	1	0	1	\checkmark		\checkmark	\checkmark		\checkmark
0	1	1	0	\checkmark	\checkmark			\checkmark	\checkmark
0	1	1	1	\checkmark	\checkmark	\checkmark			
1	0	0	0	\checkmark	\checkmark	\checkmark			
1	0	0	1	\checkmark	\checkmark			\checkmark	\checkmark
1	0	1	0	\checkmark		\checkmark	\checkmark		\checkmark
1	0	1	1	\checkmark			\checkmark	\checkmark	
1	1	0	0		\checkmark	\checkmark	\checkmark	\checkmark	
1	1	0	1		\checkmark		\checkmark		\checkmark
1	1	1	0			\checkmark		\checkmark	\checkmark
1	1	1	1						

Idea: Reroot to form M_2 as M^+ 'rooted at' $x_2 = 0$

	M^+ of	config	g	edges: score \checkmark if ends different					
<i>x</i> 0	x_1	<i>x</i> ₂	<i>x</i> 3	e ₀₁	<i>e</i> ₀₂	e ₀₃	e_{12}	<i>e</i> ₁₃	e ₂₃
0	0	0	0						
0		0	1			\checkmark		\checkmark	\checkmark
0	0	1	0		\checkmark		\checkmark		\checkmark
0	0	1	1		\checkmark	\checkmark	\checkmark	\checkmark	
0	1	0	0	\checkmark			\checkmark	\checkmark	
0	1	0	1	\checkmark		\checkmark	\checkmark		\checkmark
0	1	1	0	\checkmark	\checkmark			\checkmark	\checkmark
0	1	1	1	\checkmark	\checkmark	\checkmark			
1	0	0	0	\checkmark	\checkmark	\checkmark			
1	0	0	1	\checkmark	\checkmark			\checkmark	\checkmark
1	0	1	0	\checkmark		\checkmark	\checkmark		\checkmark
1	0	1	1	\checkmark			\checkmark	\checkmark	
1	1	0	0		\checkmark	\checkmark	\checkmark	\checkmark	
1	1	0	1		\checkmark		\checkmark		\checkmark
1	1	1	0			\checkmark		\checkmark	\checkmark
1	1	1	1						

Idea: Reroot to form M_3 as M^+ 'rooted at' $x_3 = 0$

	M^+ c	config	g	edges: score \checkmark if ends different					erent
<i>x</i> 0	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>e</i> ₀₁	<i>e</i> ₀₂	<i>e</i> 03	e_{12}	e_{13}	e ₂₃
0	0	0	0						
0	0	0	1			\checkmark		\checkmark	\checkmark
0			0		\checkmark		\checkmark		\checkmark
0	0	1	1		\checkmark	\checkmark	\checkmark	\checkmark	
0	1	0	0	\checkmark			\checkmark	\checkmark	
0	1	0	1	\checkmark		\checkmark	\checkmark		\checkmark
0	1	1	0	\checkmark	\checkmark			\checkmark	\checkmark
0	1	1	1	\checkmark	\checkmark	\checkmark			
1	0	0	0	\checkmark	\checkmark	\checkmark			
1	0	0	1	\checkmark	\checkmark			\checkmark	\checkmark
1	0	1	0	\checkmark		\checkmark	\checkmark		\checkmark
1	0	1	1	\checkmark			\checkmark	\checkmark	
1	1	0	0		\checkmark	\checkmark	\checkmark	\checkmark	
1	1	0	1		\checkmark		\checkmark		\checkmark
1	1	1	0			\checkmark		\checkmark	\checkmark
1	1	1	1						

Rerooting observations

- Rerooted models $\{M_i\}$ form an equivalence class, each has the same 'parent' uprooted model M^+
- Simple score-preserving 1-1 correspondence $\forall i, \text{ configs of } M_i \leftrightarrow \text{ configs of } M_0$
- Inference (exact or approx) on any $M_i \rightarrow$ recover info for M_0
 - Each M_i has the same partition function as M_0
 - MAP config of $M_i \rightarrow$ recover MAP config of M_0
 - Marginals of $M_i \rightarrow$ recover marginals of M_0
- Inference may be much faster / more accurate on some M_i
- Singleton and edge potentials are essentially the same, only appear different due to choice of rooting

Rerooting example

attractive model

Original model $M = M_0$ Uprooted model M^+ +2+2 uproot -3 X3 -1X1 X3 X_1 3 X_0 +5. +2 reroot +5X3 X_1 *X*3 X x_0 +2 X_0 Rerooted model M_2

- Same as choosing a good variable to clamp in M^+
- Rerooting substitutes an implicit initial clamp choice for a well chosen one 'for free'
- Several existing good methods, including maxW
- Idea: break heavy cycles
- Will lead to picking a root to form high singleton potentials
- We introduce maxtW: strength of an edge weight saturates, works well in our context

- Rerooting allows us to generalize or improve many results
- e.g. max flow / min cut can now be used for models where $\exists i \text{ s.t. } M_i \text{ is attractive } \Leftrightarrow M^+ \text{ is almost attractive}$ (balanced) (almost balanced)
- e.g. bounds (on marginals, partition function) can be improved by considering different rerootings
- Reveals intriguing perspective: TRI is universally rooted (TRI is the triplet-consistent polytope)

Experiments (Bethe): complete graph on 10 variables

Experiments (Bethe): 9×9 grid

- We can uproot and then reroot any binary pairwise graphical model
- Obtain an equivalence class of models
- Generalizes earlier theoretical results
- Useful in practice, particularly for dense models with strong edges and weak singleton potentials
- Comparison to clamping in M_0 -
 - Clamping requires performing one inference run for each value of the variable clamped
 - Here we get a clamping 'for free'
- Rerooting reveals intriguing perspectives such as TRI is universally rooted

Thank you

Poster #49 tomorrow 10am-1pm http://mlg.eng.cam.ac.uk/adrian