Differentiable Prob Prog

• **differentiable**: code smooth function f and derive efficient ∇f, $\nabla \nabla f$, …
 - cost is restrictions on coding (library / control flow)
 - e.g., Adol-C, Sacado, CppAD, **Stan Math**, TensorFlow, PyTorch, JAX, Zygote.jl, …

• **differentiable probabilistic**: $f(\theta) = \log p(\theta \mid y) + \text{const.}$ is target log density plus sampling / optimization / variational approx.
 - e.g., AMB, **Stan**, PyMC, Pyro, Turing.jl, …

• **most composable**: Zygote.jl, JAX; Turing.jl
Reverse-mode Autodiff

- **Constant cost** multiple for $f : \mathbb{R}^N \rightarrow \mathbb{R}$

- **Forward pass**: eval program to construct expression DAG

- **Reverse pass**: propagate derivatives in topological order

- **Cache misses** propagating subexpression derivatives

\[
\frac{\partial \log p(\theta | y)}{\partial e_n} = \frac{\partial \log p(\theta | y)}{\partial f(e_1, \ldots, e_N)} \times \frac{\partial f(e_1, \ldots, e_N)}{\partial e_n}.
\]

- e_1, \ldots, e_N **sequential** in memory after forward eval
- **efficiency** requires cache locality (& branch prediction)
- on miss, RAM fetch ≈ 150 clock cycles (!!!)
Map-Reduce for Likelihoods

• if data y conditionally independent given parameters θ,

$$p(y \mid \theta) = \sum_{n=1}^{N} \log p(y_n \mid \theta).$$

• **map** applies a function f to each element of a vector v,

$$\text{map}(f, v) = [f(v_1) \cdots f(v_N)]^\top.$$

• Stan reduces map output with sum for likelihoods

$$\text{reduce}_\text{sum}(f, y, \theta_1, \ldots, \theta_K) = \sum_{n=1}^{N} f(y_n, \theta_1, \ldots, \theta_K).$$
Eager Subgraph Evaluation

- Runtime form of **partial evaluation**
- Eval $\nabla_x f(e_1(x), \ldots, e_N(x))$ any time after eval $f(\cdots)$
 - **Stan**: nested reverse-mode; **Adept**: forward-mode
- **Reduces memory footprint** for subexpressions to $O(|x|)$
- Which increases **cache locality** and speeds up throughput
- **Parallel** evaluation of subexpression gradients
 - Stan **scales up** with threads (TBB) and **scales out** with MPI
- communicate gradients back in $O(|x|)$
- MPI pushes data to node local on construction
- orthogonal to GPU usage
Autodiff Variable Locality

• Stan uses pointer to implementation for RAII

```cpp
template <typename T> struct var {
    vari* vi_;
    T value_; T adjoint_;
};
```

• Two ways to code matrices (vectors, tensors, etc.)

```cpp
Eigen::Matrix<var<double, -1, -1>> A;
var<Eigen::Matrix<double, -1, -1>> B;

- A can autodiff ‘Matrix\_\_T\_\_\_’ algorithms
- B is memory local for matrix derivatives
– only \( A \) supports lvalue indexing (element assignment)
Gaussian Process (GP)

• A GP is a non-parametric\textsuperscript{1} nearest neighbors model

• Data size $N$ requires $N \times N$ covariance matrix $\Sigma$
  
  \hspace{1cm} – for covariance function $\kappa$, data $x$, params $\theta$,

  \[ \Sigma_{i,j} = \kappa(i, j, x, \theta) \]

• In rich models, $\Sigma$ is a sum of covariance matrices

• Adding large $N$ covariance matrices is a memory disaster

\textsuperscript{1} i.e., lots of parameters
• Want to scale GPs in Stan from $N < 1000$ to $N > 10,000$
Comprehensions

• From set theory (late 1800s), consistent in ZF (early 1900s)

\[ B = \{ x \in A : \phi(x) \} \] is a set if \( A \) is a set and \( \phi : A \rightarrow \text{Bool} \)

• Introduced to programming languages (early 1970s) and

  – from POP2 to Miranda to Haskell to Python to · · · Stan

• Python list comprehension is ordered

\[ b = [x \text{ for } x \text{ in } A \text{ if } \phi(x)] \]
Matrix Comprehension

- **Stan** is adopting a **variadic** covariance function style

  \[
  \text{cov\_matrix}[N, N] \ B = \text{comp\_mat}(f, a_1, \ldots, a_N);
  \]

  - defines \( B \) as if evaluated in the loop

    \[
    \text{for} \ (i \ \text{in} \ 1:N) \\
    \text{for} \ (j \ \text{in} \ 1:N) \\
    B[i, j] = f(i, j, a_1, \ldots, a_N);
    \]

- Just a specialized map

  - partially evaluate gradients \( \frac{\partial f(i, j, a_1, \ldots, a_N)}{\partial a_n} \)

  - parallelize eval and gradients over both loops

- For GPs, add covariance functions not covar matrices
Compiler/Runtime Automation

- autodetect when we can parallelize loops with map
- auto load balance parallel jobs
  - using Intel Thread Building Blocks (TBB) for pooling/allocation
Thanks for Listening

• Stan language transpiler (OCaml):
  github.com/stan-dev/stanc3
  - Carpenter, B., Gelman, A., Hoffman, M.D., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M., Guo, J., Li, P. and Rid-dell, A., 2017. Stan: A probabilistic programming lan-

• Stan math library (C++):
  github.com/stan-dev/math
  - Carpenter, B., Hoffman, M.D., Brubaker, M., Lee, D., Li, P. and Betancourt, M., 2015. The Stan math library:
    Reverse-mode automatic differentiation in C++. arXiv
    1509.07164.