I am a PhD student in the Machine Learning Group at the University of Cambridge, supervised by Prof. Carl Edward Rasmussen. I received an MSc in Computer Science from the University of Oxford, and a BSc in Computer Science from Universitat Pompeu Fabra, Barcelona. I am funded by the Department of Engineering.

My work is about model-based reinforcement learning based on Gaussian Processes. I am also interested in the value alignment problem, Bayesian machine learning and handling missing data.

Publications

Understanding variational inference in function-space

David R. Burt, Sebastian W. Ober, Adrià Garriga-Alonso, Mark van der Wilk, 2021. (In 3rd Symposium on Advances in Approximate Bayesian Inference).

Abstract URL

Recent work has attempted to directly approximate the ‘function-space’ or predictive posterior distribution of Bayesian models, without approximating the posterior distribution over the parameters. This is appealing in e.g. Bayesian neural networks, where we only need the former, and the latter is hard to represent. In this work, we highlight some advantages and limitations of employing the Kullback-Leibler divergence in this setting. For example, we show that minimizing the KL divergence between a wide class of parametric distributions and the posterior induced by a (non-degenerate) Gaussian process prior leads to an ill-defined objective function. Then, we propose (featurized) Bayesian linear regression as a benchmark for ‘function-space’ inference methods that directly measures approximation quality. We apply this methodology to assess aspects of the objective function and inference scheme considered in Sun et al. (2018), emphasizing the quality of approximation to Bayesian inference as opposed to predictive performance.

Bayesian neural network priors revisited

Vincent Fortuin, Adrià Garriga-Alonso, Sebastian W. Ober, Florian Wenzel, Gunnar Rätsch, Richard E. Turner, Mark van der Wilk, Laurence Aitchison, 2022. (In 10th International Conference on Learning Representations).

Abstract URL

Isotropic Gaussian priors are the de facto standard for modern Bayesian neural network inference. However, it is unclear whether these priors accurately reflect our true beliefs about the weight distributions or give optimal performance. To find better priors, we study summary statistics of neural network weights in networks trained using stochastic gradient descent (SGD). We find that convolutional neural network (CNN) and ResNet weights display strong spatial correlations, while fully connected networks (FCNNs) display heavy-tailed weight distributions. We show that building these observations into priors can lead to improved performance on a variety of image classification datasets. Surprisingly, these priors mitigate the cold posterior effect in FCNNs, but slightly increase the cold posterior effect in ResNets.

Deep Convolutional Networks as shallow Gaussian Processes

Adrià Garriga-Alonso, Carl Edward Rasmussen, Laurence Aitchison, 2019. (In International Conference on Learning Representations (ICLR)).

Abstract URL

We show that the output of a (residual) convolutional neural network (CNN) with an appropriate prior over the weights and biases is a Gaussian process (GP) in the limit of infinitely many convolutional filters, extending similar results for dense networks. For a CNN, the equivalent kernel can be computed exactly and, unlike “deep kernels”, has very few parameters: only the hyperparameters of the original CNN. Further, we show that this kernel has two properties that allow it to be computed efficiently; the cost of evaluating the kernel for a pair of images is similar to a single forward pass through the original CNN with only one filter per layer. The kernel equivalent to a 32-layer ResNet obtains 0.84% classification error on MNIST, a new record for GPs with a comparable number of parameters.

No matching items
Back to top