Publications

Choosing a Variable to Clamp: Approximate Inference Using Conditioned Belief Propagation

Frederik Eaton, Zoubin Ghahramani, April 2009. (In 12th International Conference on Artificial Intelligence and Statistics). Edited by D. van Dyk, M. Welling. Clearwater Beach, FL, USA. Journal of Machine Learning Research.

Abstract URL

In this paper we propose an algorithm for approximate inference on graphical models based on belief propagation (BP). Our algorithm is an approximate version of Cutset Conditioning, in which a subset of variables is instantiated to make the rest of the graph singly connected. We relax the constraint of single-connectedness, and select variables one at a time for conditioning, running belief propagation after each selection. We consider the problem of determining the best variable to clamp at each level of recursion, and propose a fast heuristic which applies back-propagation to the BP updates. We demonstrate that the heuristic performs better than selecting variables at random, and give experimental results which show that it performs competitively with existing approximate inference algorithms.

Comment: Code (in C++ based on libDAI).

Model Reductions for Inference: Generality of Pairwise, Binary, and Planar Factor Graphs

Frederik Eaton, Zoubin Ghahramani, 2013. (Neural Computation).

Abstract URL

We offer a solution to the problem of efficiently translating algorithms between different types of discrete statistical model. We investigate the expressive power of three classes of model-those with binary variables, with pairwise factors, and with planar topology-as well as their four intersections. We formalize a notion of “simple reduction” for the problem of inferring marginal probabilities and consider whether it is possible to “simply reduce” marginal inference from general discrete factor graphs to factor graphs in each of these seven subclasses. We characterize the reducibility of each class, showing in particular that the class of binary pairwise factor graphs is able to simply reduce only positive models. We also exhibit a continuous “spectral reduction” based on polynomial interpolation, which overcomes this limitation. Experiments assess the performance of standard approximate inference algorithms on the outputs of our reductions.

No matching items
Back to top