I am a PhD student in the Machine Learning Group at the University of Cambridge, supervised by José Miguel Hernández-Lobato, and a member of Darwin College. Before starting the PhD, I was a consultant for Wolfram Research where I helped develop the deep learning library for Mathematica.

I hold an MPhil in Advanced Machine Learning from the University of Cambridge, which was supervised by Zoubin Ghahramani and Christian Steinruecken, and a BSc in Electrical and Information Engineering from the University of the Witwatersrand in Johannesburg.

My primary research interests are Bayesian deep learning and deep generative models.

Publications

Sparse MoEs meet Efficient Ensembles

James Urquhart Allingham, Florian Wenzel, Zelda E Mariet, Basil Mustafa, Joan Puigcerver, Neil Houlsby, Ghassen Jerfel, Vincent Fortuin, Balaji Lakshminarayanan, Jasper Snoek, Dustin Tran, Carlos Riquelme Ruiz, Rodolphe Jenatton, 2022. (Transactions on Machine Learning Research).

Abstract URL

Machine learning models based on the aggregated outputs of submodels, either at the activation or prediction levels, often exhibit strong performance compared to individual models. We study the interplay of two popular classes of such models: ensembles of neural networks and sparse mixture of experts (sparse MoEs). First, we show that the two approaches have complementary features whose combination is beneficial. This includes a comprehensive evaluation of sparse MoEs in uncertainty related benchmarks. Then, we present efficient ensemble of experts (E3), a scalable and simple ensemble of sparse MoEs that takes the best of both classes of models, while using up to 45% fewer FLOPs than a deep ensemble. Extensive experiments demonstrate the accuracy, log-likelihood, few-shot learning, robustness, and uncertainty improvements of E3 over several challenging vision Transformer-based baselines. E3 not only preserves its efficiency while scaling to models with up to 2.7B parameters, but also provides better predictive performance and uncertainty estimates for larger models.

Comment: Code

Depth Uncertainty in Neural Networks

Javier Antorán, James Urquhart Allingham, José Miguel Hernández-Lobato, 2020. (In Advances in Neural Information Processing Systems 33). Edited by Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, Hsuan-Tien Lin.

Abstract URL

Existing methods for estimating uncertainty in deep learning tend to require multiple forward passes, making them unsuitable for applications where computational resources are limited. To solve this, we perform probabilistic reasoning over the depth of neural networks. Different depths correspond to subnetworks which share weights and whose predictions are combined via marginalisation, yielding model uncertainty. By exploiting the sequential structure of feed-forward networks, we are able to both evaluate our training objective and make predictions with a single forward pass. We validate our approach on real-world regression and image classification tasks. Our approach provides uncertainty calibration, robustness to dataset shift, and accuracies competitive with more computationally expensive baselines.

Comment: Code

Adapting the Linearised Laplace Model Evidence for Modern Deep Learning

Javier Antorán, David Janz, James Urquhart Allingham, Erik A. Daxberger, Riccardo Barbano, Eric T. Nalisnick, José Miguel Hernández-Lobato, 2022. (In 39th International Conference on Machine Learning). Edited by Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, Sivan Sabato. PMLR. Proceedings of Machine Learning Research.

Abstract URL

The linearised Laplace method for estimating model uncertainty has received renewed attention in the Bayesian deep learning community. The method provides reliable error bars and admits a closed-form expression for the model evidence, allowing for scalable selection of model hyperparameters. In this work, we examine the assumptions behind this method, particularly in conjunction with model selection. We show that these interact poorly with some now-standard tools of deep learning–stochastic approximation methods and normalisation layers–and make recommendations for how to better adapt this classic method to the modern setting. We provide theoretical support for our recommendations and validate them empirically on MLPs, classic CNNs, residual networks with and without normalisation layers, generative autoencoders and transformers.

Bayesian Deep Learning via Subnetwork Inference

Erik A. Daxberger, Eric T. Nalisnick, James Urquhart Allingham, Javier Antorán, José Miguel Hernández-Lobato, 2021. (In 32nd International Conference on Machine Learning). Edited by Marina Meila, Tong Zhang. PMLR. Proceedings of Machine Learning Research.

Abstract URL

The Bayesian paradigm has the potential to solve core issues of deep neural networks such as poor calibration and data inefficiency. Alas, scaling Bayesian inference to large weight spaces often requires restrictive approximations. In this work, we show that it suffices to perform inference over a small subset of model weights in order to obtain accurate predictive posteriors. The other weights are kept as point estimates. This subnetwork inference framework enables us to use expressive, otherwise intractable, posterior approximations over such subsets. In particular, we implement subnetwork linearized Laplace: We first obtain a MAP estimate of all weights and then infer a full-covariance Gaussian posterior over a subnetwork. We propose a subnetwork selection strategy that aims to maximally preserve the model’s predictive uncertainty. Empirically, our approach is effective compared to ensembles and less expressive posterior approximations over full networks.

Deep Classifiers with Label Noise Modeling and Distance Awareness

Vincent Fortuin, Mark Collier, Florian Wenzel, James Urquhart Allingham, Jeremiah Zhe Liu, Dustin Tran, Balaji Lakshminarayanan, Jesse Berent, Rodolphe Jenatton, Effrosyni Kokiopoulou, 2022. (Transactions on Machine Learning Research).

Abstract URL

Uncertainty estimation in deep learning has recently emerged as a crucial area of interest to advance reliability and robustness in safety-critical applications. While there have been many proposed methods that either focus on distance-aware model uncertainties for out-of-distribution detection or on input-dependent label uncertainties for in-distribution calibration, both of these types of uncertainty are often necessary. In this work, we propose the HetSNGP method for jointly modeling the model and data uncertainty. We show that our proposed model affords a favorable combination between these two types of uncertainty and thus outperforms the baseline methods on some challenging out-of-distribution datasets, including CIFAR-100C, ImageNet-C, and ImageNet-A. Moreover, we propose HetSNGP Ensemble, an ensembled version of our method which additionally models uncertainty over the network parameters and outperforms other ensemble baselines.

Comment: Code

Addressing Bias in Active Learning with Depth Uncertainty Networks… or Not

Chelsea Murray, James Urquhart Allingham, Javier Antorán, José Miguel Hernández-Lobato, 2021. (In I (Still) Can’t Believe It’s Not Better! Workshop at NeurIPS 2021, Virtual Workshop, December 13, 2021). Edited by Melanie F. Pradier, Aaron Schein, Stephanie L. Hyland, Francisco J. R. Ruiz, Jessica Zosa Forde. PMLR. Proceedings of Machine Learning Research.

Abstract URL

Farquhar et al. [2021] show that correcting for active learning bias with underparameterised models leads to improved downstream performance. For overparameterised models such as NNs, however, correction leads either to decreased or unchanged performance. They suggest that this is due to an “overfitting bias” which offsets the active learning bias. We show that depth uncertainty networks operate in a low overfitting regime, much like underparameterised models. They should therefore see an increase in performance with bias correction. Surprisingly, they do not. We propose that this negative result, as well as the results Farquhar et al. [2021], can be explained via the lens of the bias-variance decomposition of generalisation error.

No matching items
Back to top