Jonathan graduated from Cambridge University with a MPhil in Machine Learning, Speech and Language Technology in 2017. Before that he graduated with a BSc and MSc in engineering and applied statistics from the Ben-Gurion University of Israel. He is funded by a Samsung doctoral studies grant and supervised by Dr. José Miguel Hernández-Lobato. His research interests include Bayesian neural networks and deep generative models.

For more details

Publications

TaskNorm: rethinking batch normalization for meta-learning

John Bronskill, Jonathan Gordon, James Requeima, Sebastian Nowozin, Richard E. Turner, 2020. (In 37th International Conference on Machine Learning). Proceedings of Machine Learning Research.

Abstract URL

Modern meta-learning approaches for image classification rely on increasingly deep networks to achieve state-of-the-art performance, making batch normalization an essential component of meta-learning pipelines. However, the hierarchical nature of the meta-learning setting presents several challenges that can render conventional batch normalization ineffective, giving rise to the need to rethink normalization in this setting. We evaluate a range of approaches to batch normalization for meta-learning scenarios, and develop a novel approach that we call TASKNORM. Experiments on fourteen datasets demonstrate that the choice of batch normalization has a dramatic effect on both classification accuracy and training time for both gradient based and gradient free meta-learning approaches. Importantly, TASKNORM is found to consistently improve performance. Finally, we provide a set of best practices for normalization that will allow fair comparison of meta-learning algorithms.

The Gaussian Neural Process

Wessel P. Bruinsma, James Requeima, Andrew Y. K. Foong, Jonathan Gordon, Richard E. Turner, 2021. (In 3rd Symposium on Advances in Approximate Bayesian Inference).

Abstract URL

Neural Processes (NPs; Garnelo et al., 2018a,b) are a rich class of models for meta-learning that map data sets directly to predictive stochastic processes. We provide a rigorous analysis of the standard maximum-likelihood objective used to train conditional NPs. Moreover, we propose a new member to the Neural Process family called the Gaussian Neural Process (GNP), which models predictive correlations, incorporates translation equivariance, provides universal approximation guarantees, and demonstrates encouraging performance.

Meta-Learning Stationary Stochastic Process Prediction With Convolutional Neural Processes

Andrew Y. K. Foong, Wessel P. Bruinsma, Jonathan Gordon, Yann Dubois, James Requeima, Richard E. Turner, 2020. (In Advances in Neural Information Processing Systems 33). Curran Associates, Inc..

Abstract URL

Stationary stochastic processes (SPs) are a key component of many probabilistic models, such as those for off-the-grid spatio-temporal data. They enable the statistical symmetry of underlying physical phenomena to be leveraged, thereby aiding generalization. Prediction in such models can be viewed as a translation equivariant map from observed data sets to predictive SPs, emphasizing the intimate relationship between stationarity and equivariance. Building on this, we propose the Convolutional Neural Process (ConvNP), which endows Neural Processes (NPs) with translation equivariance and extends convolutional conditional NPs to allow for dependencies in the predictive distribution. The latter enables ConvNPs to be deployed in settings which require coherent samples, such as Thompson sampling or conditional image completion. Moreover, we propose a new maximum-likelihood objective to replace the standard ELBO objective in NPs, which conceptually simplifies the framework and empirically improves performance. We demonstrate the strong performance and generalization capabilities of ConvNPs on 1D regression, image completion, and various tasks with real-world spatio-temporal data.

Meta-learning probabilistic inference for prediction

Jonathan Gordon, John Bronskill, Matthias Bauer, Sebastian Nowozin, Richard Turner, April 2019. (In 7th International Conference on Learning Representations). New Orleans.

Abstract URL

This paper introduces a new framework for data efficient and versatile learning. Specifically: 1) We develop ML-PIP, a general framework for Meta-Learning approximate Probabilistic Inference for Prediction. ML-PIP extends existing probabilistic interpretations of meta-learning to cover a broad class of methods. 2) We introduce , an instance of the framework employing a flexible and versatile amortization network that takes few-shot learning datasets as inputs, with arbitrary numbers of shots, and outputs a distribution over task-specific parameters in a single forward pass. Versa substitutes optimization at test time with forward passes through inference networks, amortizing the cost of inference and relieving the need for second derivatives during training. 3) We evaluate on benchmark datasets where the method sets new state-of-the-art results, and can handle arbitrary number of shots, and for classification, arbitrary numbers of classes at train and test time. The power of the approach is then demonstrated through a challenging few-shot ShapeNet view reconstruction task.

Convolutional Conditional Neural Processes

Jonathan Gordon, Wessel Bruinsma, Andrew Y. K. Foong, James Requeima, Yann Dubois, Richard Turner, April 2020. (In 8th International Conference on Learning Representations). Adis Ababa.

Abstract URL

We introduce the Convolutional Conditional Neural Process (ConvCNP), a new member of the Neural Process family that models translation equivariance in the data. Translation equivariance is an important inductive bias for many learning problems including time series modelling, spatial data, and images. The model embeds data sets into an infinite-dimensional function space, as opposed to finite-dimensional vector spaces. To formalize this notion, we extend the theory of neural representations of sets to include functional representations, and demonstrate that any translation-equivariant embedding can be represented using a convolutional deep-set. We evaluate ConvCNPs in several settings, demonstrating that they achieve state-of-the-art performance compared to existing NPs. We demonstrate that building in translation equivariance enables zero-shot generalization to challenging, out-of-domain tasks.

Bayesian batch active learning as sparse subset approximation

Robert Pinsler, Jonathan Gordon, Eric Nalisnick, Jose Miguel Hernández-Lobato, 2019. (In Advances in Neural Information Processing Systems 33).

Abstract URL

Leveraging the wealth of unlabeled data produced in recent years provides great potential for improving supervised models. When the cost of acquiring labels is high, probabilistic active learning methods can be used to greedily select the most informative data points to be labeled. However, for many large-scale problems standard greedy procedures become computationally infeasible and suffer from negligible model change. In this paper, we introduce a novel Bayesian batch active learning approach that mitigates these issues. Our approach is motivated by approximating the complete data posterior of the model parameters. While naive batch construction methods result in correlated queries, our algorithm produces diverse batches that enable efficient active learning at scale. We derive interpretable closed-form solutions akin to existing active learning procedures for linear models, and generalize to arbitrary models using random projections. We demonstrate the benefits of our approach on several large-scale regression and classification tasks.

Fast and Flexible Multi-Task Classification using Conditional Neural Adaptive Processes

James Requeima, Jonathan Gordon, John Bronskill, Sebastian Nowozin, Richard E. Turner, 2019. (In Advances in Neural Information Processing Systems 33).

Abstract URL

The goal of this paper is to design image classification systems that, after an initial multi-task training phase, can automatically adapt to new tasks encountered at test time. We introduce a conditional neural process based approach to the multi-task classification setting for this purpose, and establish connections to the meta- and few-shot learning literature. The resulting approach, called CNAPs, comprises a classifier whose parameters are modulated by an adaptation network that takes the current task’s dataset as input. We demonstrate that CNAPs achieves state-of-the-art results on the challenging Meta-Dataset benchmark indicating high-quality transfer-learning. We show that the approach is robust, avoiding both over-fitting in low-shot regimes and under-fitting in high-shot regimes. Timing experiments reveal that CNAPs is computationally efficient at test-time as it does not involve gradient based adaptation. Finally, we show that trained models are immediately deployable to continual learning and active learning where they can outperform existing approaches that do not leverage transfer learning.

No matching items
Back to top