Publications

Racial Disparities in the Enforcement of Marijuana Violations in the US

Bradley Butcher, Chris Robinson, Miri Zilka, Riccardo Fogliato, Carolyn Ashurst, Adrian Weller, 2022. (Proceedings of the 2022 AAAI/ACM Conference on AI, Ethics, and Society).

Abstract URL

Racial disparities in US drug arrest rates have been observed for decades, but their causes and policy implications are still contested. Some have argued that the disparities largely reflect differences in drug use between racial groups, while others have hypothesized that discriminatory enforcement policies and police practices play a significant role. In this work, we analyze racial disparities in the enforcement of marijuana violations in the US. Using data from the National Incident-Based Reporting System (NIBRS) and the National Survey on Drug Use and Health (NSDUH) programs, we investigate whether marijuana usage and purchasing behaviors can explain the racial composition of offenders in police records. We examine potential driving mechanisms behind these disparities and the extent to which county-level socioeconomic factors are associated with corresponding disparities. Our results indicate that the significant racial disparities in reported incidents and arrests cannot be explained by differences in marijuana days-of-use alone. Variations in the location where marijuana is purchased and in the frequency of these purchases partially explain the observed disparities. We observe an increase in racial disparities across most counties over the last decade, with the greatest increases in states that legalized the use of marijuana within this timeframe. Income, high school graduation rate, and rate of employment positively correlate with larger racial disparities, while the rate of incarceration is negatively correlated. We conclude with a discussion of the implications of the observed racial disparities in the context of algorithmic fairness.

Can We Automate the Analysis of Online Child Sexual Exploitation Discourse?

Darren Cook, Miri Zilka, Heidi DeSandre, Susan Giles, Adrian Weller, Simon Maskell, 2022. (arXiv).

Abstract URL

Social media’s growing popularity raises concerns around children’s online safety. Interactions between minors and adults with predatory intentions is a particularly grave concern. Research into online sexual grooming has often relied on domain experts to manually annotate conversations, limiting both scale and scope. In this work, we test how well-automated methods can detect conversational behaviors and replace an expert human annotator. Informed by psychological theories of online grooming, we label 6772 chat messages sent by child-sex offenders with one of eleven predatory behaviors. We train bag-of-words and natural language inference models to classify each behavior, and show that the best performing models classify behaviors in a manner that is consistent, but not on-par, with human annotation.

A Psychology-Driven Computational Analysis of Political Interviews

Darren Cook, Miri Zilka, Simon Maskell, Laurence Alison, 2021. (Proc. Interspeech).

Abstract URL

Can an interviewer influence the cooperativeness of an interviewee? The role of an interviewer in actualising a successful interview is an active field of social psychological research. A large-scale analysis of interviews, however, typically involves time-exorbitant manual tasks and considerable human effort. Despite recent advances in computational fields, many automated methods continue to rely on manually labelled training data to establish ground-truth. This reliance obscures explainability and hinders the mobility of analysis between applications. In this work, we introduce a cross-disciplinary approach to analysing interviewer efficacy. We suggest computational success measures as a transparent, automated, and reproducible alternative for pre-labelled data. We validate these measures with a small-scale study with human-responders. To study the interviewer’s influence on the interviewee we utilise features informed by social psychological theory to predict interview quality based on the interviewer’s linguistic behaviour. Our psychologically informed model significantly outperforms a bag-of-words model, demonstrating the strength of a cross-disciplinary approach toward the analysis of conversational data at scale.

An Algorithmic Framework for Positive Action

Oliver Thomas, Miri Zilka, Adrian Weller, Novi Quadrianto, 2021. (Equity and Access in Algorithms, Mechanisms, and Optimization).

Abstract URL

Positive action is defined within anti-discrimination legislation as voluntary, legal action taken to address an imbalance of opportunity affecting individuals belonging to under-represented groups. Within this theme, we propose a novel algorithmic fairness framework to advance equal representation while respecting anti-discrimination legislation and equal-treatment rights. We use a counterfactual fairness approach to assign one of three outcomes to each candidate: accept; reject; or flagged as a positive action candidate.

The UK Algorithmic Transparency Standard: A Qualitative Analysis of Police Perspectives

Marion Oswald, Luke Chambers, Ellen P Goodman, Pam Ugwudike, Miri Zilka, 2022. (Available at SSRN).

Abstract URL

  1. The UK Government’s draft ‘Algorithmic Transparency Standard’ is intended to provide a standardised way for public bodies and government departments to provide information about how algorithmic tools are being used to support decisions. The research discussed in this report was conducted in parallel to the piloting of the Standard by the Cabinet Office and the Centre for Data Ethics and Innovation. 2. We conducted semi-structured interviews with respondents from across UK policing and commercial bodies involved in policing technologies. Our aim was to explore the implications for police forces of participation in the Standard, to identify rewards, risks, challenges for the police, and areas where the Standard could be improved, and therefore to contribute to the exploration of policy options for expansion of participation in the Standard. 3. Algorithmic transparency is both achievable for policing and could bring significant rewards. A key reward of police participation in the Standard is that it provides the opportunity to demonstrate proficient implementation of technology-driven policing, thus enhancing earned trust. Research participants highlighted the public good that could result from the considered use of algorithms. 4. Participants noted, however, a risk of misperception of the dangers of policing technology, especially if use of algorithmic tools was not appropriately compared to the status quo and current methods. 5. Participation in the Standard provides an opportunity to develop increased sharing among police forces of best practices (and things to avoid), and increased thoughtfulness among police force personnel in building and implementing new tools. Research participants were keen for compliance with the Standard to become an integral part of a holistic system to drive reflective practice across policing around the development and deployment of algorithmic technology. This could enable police to learn from each other, facilitate good policy choices and decrease wasted costs. Otherwise, the Standard may come to be regarded as an administrative burden rather than a benefit for policing. 6. Several key areas for amendment and improvement from the perspective of policing were identified in the research. These could improve the Standard for the benefit of all participants. These include a need for clarification of the scope of the Standard, and the stage of project development at which the Standard should apply. It is recommended that consideration be given to a ‘Standard-Lite’ for projects at the pilot or early stages of the development process in order to gain public understanding of new tools and applications. Furthermore, the Standard would benefit from a more substantial glossary (to include relevant policing terms) and additional guidance on the level of detail required in each section and how accuracy rates should be described, justified and explained in order to ensure consistency. 7. The research does not suggest any overriding reason why the Standard should not be applied in policing. Suitable exemptions for sensitive contexts and tradecraft would be required, however, and consideration given to ensuring that forces have the resources to comply with the Standard and to respond to the increased public interest that could ensue. Limiting the scope initially to tools on a defined list (to include the most high-risk tools, such as those that produce individualised risk/predictive scores) could assist in mitigating concerns over sensitive policing capabilities and resourcing. A non-public version of the Standard for sensitive applications and tools could also be considered, which would be available to bodies with an independent oversight function. 8. To support police compliance with the Standard, supplier responsibilities – including appropriate disclosure of algorithmic functionality, data inputs and performance – should be covered in procurement contracts and addressed up front as a mandatory requirement of doing business with the police. 9. As well as contributing to the piloting of the Standard, it is recommended that the findings of this report are considered at NPCC level, by the College of Policing and by the office of the Chief Scientific Advisor for Policing, as new sector-led guidance, best practice and policy are developed.

A Survey and Datasheet Repository of Publicly Available US Criminal Justice Datasets

Miri Zilka, Bradley Butcher, Adrian Weller, 2022. (Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks Track).

Abstract URL

Criminal justice is an increasingly important application domain for machine learning and algorithmic fairness, as predictive tools are becoming widely used in police, courts, and prison systems worldwide. A few relevant benchmarks have received significant attention, e.g., the COMPAS dataset, often without proper consideration of the domain context. To raise awareness of publicly available criminal justice datasets and encourage their responsible use, we conduct a survey, consider contexts, highlight potential uses, and identify gaps and limitations. We provide datasheets for 15 datasets and upload them to a public repository. We compare the datasets across several dimensions, including size, coverage of the population, and potential use, highlighting concerns. We hope that this work can provide a useful starting point for researchers looking for appropriate datasets related to criminal justice, and that the repository will continue to grow as a community effort.

Transparency, Governance and Regulation of Algorithmic Tools Deployed in the Criminal Justice System: A UK Case Study

Miri Zilka, Holli Sargeant, Adrian Weller, 2022. (Proceedings of the 2022 AAAI/ACM Conference on AI, Ethics, and Society).

Abstract URL

We present a survey of tools used in the criminal justice system in the UK in three categories: data infrastructure, data analysis, and risk prediction. Many tools are currently in deployment, offering potential benefits, including improved efficiency and consistency. However, there are also important concerns. Transparent information about these tools, their purpose, how they are used, and by whom is difficult to obtain. Even when information is available, it is often insufficient to enable a satisfactory evaluation. More work is needed to establish governance mechanisms to ensure that tools are deployed in a transparent, safe and ethical way. We call for more engagement with stakeholders and greater documentation of the intended goal of a tool, how it will achieve this goal compared to other options, and how it will be monitored in deployment. We highlight additional points to consider when evaluating the trustworthiness of deployed tools and make concrete proposals for policy.

No matching items
Back to top