Publications
Random function priors for exchangeable arrays with applications to graphs and relational data
James Robert Lloyd, Peter Orbanz, Zoubin Ghahramani, Daniel M. Roy, December 2012. (In Advances in Neural Information Processing Systems 26). Lake Tahoe, California, USA.
Abstract▼ URL
A fundamental problem in the analysis of structured relational data like graphs, networks, databases, and matrices is to extract a summary of the common structure underlying relations between individual entities. Relational data are typically encoded in the form of arrays; invariance to the ordering of rows and columns corresponds to exchangeable arrays. Results in probability theory due to Aldous, Hoover and Kallenberg show that exchangeable arrays can be represented in terms of a random measurable function which constitutes the natural model parameter in a Bayesian model. We obtain a flexible yet simple Bayesian nonparametric model by placing a Gaussian process prior on the parameter function. Efficient inference utilises elliptical slice sampling combined with a random sparse approximation to the Gaussian process. We demonstrate applications of the model to network data and clarify its relation to models in the literature, several of which emerge as special cases.
Construction of Nonparametric Bayesian Models from Parametric Bayes Equations
Peter Orbanz, 2009. (In Advances in Neural Information Processing Systems 22). Edited by Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, A. Culotta. The MIT Press.
Abstract▼ URL
We consider the general problem of constructing nonparametric Bayesian models on infinite-dimensional random objects, such as functions, infinite graphs or infinite permutations. The problem has generated much interest in machine learning, where it is treated heuristically, but has not been studied in full generality in nonparametric Bayesian statistics, which tends to focus on models over probability distributions. Our approach applies a standard tool of stochastic process theory, the construction of stochastic processes from their finite-dimensional marginal distributions. The main contribution of the paper is a generalization of the classic Kolmogorov extension theorem to conditional probabilities. This extension allows a rigorous construction of nonparametric Bayesian models from systems of finitedimensional, parametric Bayes equations. Using this approach, we show (i) how existence of a conjugate posterior for the nonparametric model can be guaranteed by choosing conjugate finite-dimensional models in the construction, (ii) how the mapping to the posterior parameters of the nonparametric model can be explicitly determined, and (iii) that the construction of conjugate models in essence requires the finite-dimensional models to be in the exponential family. As an application of our constructive framework, we derive a model on infinite permutations, the nonparametric Bayesian analogue of a model recently proposed for the analysis of rank data.
Comment: Supplements (proofs) and techreport version
Projective limit random probabilities on Polish spaces
Peter Orbanz, 2011. (Electron. J. Stat.).
Abstract▼ URL
A pivotal problem in Bayesian nonparametrics is the construction of prior distributions on the space M(V) of probability measures on a given domain V. In principle, such distributions on the infinite-dimensional space M(V) can be constructed from their finite-dimensional marginals—the most prominent example being the construction of the Dirichlet process from finite-dimensional Dirichlet distributions. This approach is both intuitive and applicable to the construction of arbitrary distributions on M(V), but also hamstrung by a number of technical difficulties. We show how these difficulties can be resolved if the domain V is a Polish topological space, and give a representation theorem directly applicable to the construction of any probability distribution on M(V) whose first moment measure is well-defined. The proof draws on a projective limit theorem of Bochner, and on properties of set functions on Polish spaces to establish countable additivity of the resulting random probabilities.
Bayesian Nonparametric Models
Peter Orbanz, Yee-Whye Teh, 2010. (In Encyclopedia of Machine Learning). Springer.
Dependent Indian buffet processes
Sinead Williamson, Peter Orbanz, Zoubin Ghahramani, May 2010. (In 13th International Conference on Artificial Intelligence and Statistics). Chia Laguna, Sardinia, Italy. W & CP.
Abstract▼ URL
Latent variable models represent hidden structure in observational data. To account for the distribution of the observational data changing over time, space or some other covariate, we need generalizations of latent variable models that explicitly capture this dependency on the covariate. A variety of such generalizations has been proposed for latent variable models based on the Dirichlet process. We address dependency on covariates in binary latent feature models, by introducing a dependent Indian Buffet Process. The model generates a binary random matrix with an unbounded number of columns for each value of the covariate. Evolution of the binary matrices over the covariate set is controlled by a hierarchical Gaussian process model. The choice of covariance functions controls the dependence structure and exchangeability properties of the model. We derive a Markov Chain Monte Carlo sampling algorithm for Bayesian inference, and provide experiments on both synthetic and real-world data. The experimental results show that explicit modeling of dependencies significantly improves accuracy of predictions.