Publications

Bayesian Time Series Learning with Gaussian Processes

Roger Frigola, 2015. University of Cambridge, Department of Engineering, Cambridge, UK.

Abstract URL

The analysis of time series data is important in fields as disparate as the social sciences, biology, engineering or econometrics. In this dissertation, we present a number of algorithms designed to learn Bayesian nonparametric models of time series. The goal of these kinds of models is twofold. First, they aim at making predictions which quantify the uncertainty due to limitations in the quantity and the quality of the data. Second, they are flexible enough to model highly complex data whilst preventing overfitting when the data does not warrant complex models. We begin with a unifying literature review on time series models based on Gaussian processes. Then, we centre our attention on the Gaussian Process State-Space Model (GP-SSM): a Bayesian nonparametric generalisation of discrete-time nonlinear state-space models. We present a novel formulation of the GP-SSM that offers new insights into its properties. We then proceed to exploit those insights by developing new learning algorithms for the GP-SSM based on particle Markov chain Monte Carlo and variational inference. Finally, we present a filtered nonlinear auto-regressive model with a simple, robust and fast learning algorithm that makes it well suited to its application by non-experts on large datasets. Its main advantage is that it avoids the computationally expensive (and potentially difficult to tune) smoothing step that is a key part of learning nonlinear state-space models.

Variational Gaussian Process State-Space Models

Roger Frigola, Yutian Chen, Carl Edward Rasmussen, 2014. (In Advances in Neural Information Processing Systems 27). Edited by Z. Ghahramani, M. Welling, C. Cortes, N.D. Lawrence, K.Q. Weinberger.

Abstract URL

State-space models have been successfully used for more than fifty years in different areas of science and engineering. We present a procedure for efficient variational Bayesian learning of nonlinear state-space models based on sparse Gaussian processes. The result of learning is a tractable posterior over nonlinear dynamical systems. In comparison to conventional parametric models, we offer the possibility to straightforwardly trade off model capacity and computational cost whilst avoiding overfitting. Our main algorithm uses a hybrid inference approach combining variational Bayes and sequential Monte Carlo. We also present stochastic variational inference and online learning approaches for fast learning with long time series.

Bayesian Inference and Learning in Gaussian Process State-Space Models with Particle MCMC

Roger Frigola, Fredrik Lindsten, Thomas B. Schön, Carl Edward Rasmussen, 2013. (In Advances in Neural Information Processing Systems 26). Edited by L. Bottou, C.J.C. Burges, Z. Ghahramani, M. Welling, K.Q. Weinberger. Curran Associates, Inc..

Abstract URL

State-space models are successfully used in many areas of science, engineering and economics to model time series and dynamical systems. We present a fully Bayesian approach to inference and learning in nonlinear nonparametric state-space models. We place a Gaussian process prior over the transition dynamics, resulting in a flexible model able to capture complex dynamical phenomena. However, to enable efficient inference, we marginalize over the dynamics of the model and instead infer directly the joint smoothing distribution through the use of specially tailored Particle Markov Chain Monte Carlo samplers. Once a sample from the smoothing distribution is computed, the state transition predictive distribution can be formulated analytically. We make use of sparse Gaussian process models to greatly reduce the computational complexity of the approach.

Identification of Gaussian Process State-Space Models with Particle Stochastic Approximation EM

Roger Frigola, Fredrik Lindsten, Thomas B. Schön, Carl Edward Rasmussen, 2014. (In Proceedings of the 19th World Congress of the International Federation of Automatic Control (IFAC)).

Abstract URL

Gaussian process state-space models (GP-SSMs) are a very flexible family of models of nonlinear dynamical systems. They comprise a Bayesian nonparametric representation of the dynamics of the system and additional (hyper-)parameters governing the properties of this nonparametric representation. The Bayesian formalism enables systematic reasoning about the uncertainty in the system dynamics. We present an approach to maximum likelihood identification of the parameters in GP-SSMs, while retaining the full nonparametric description of the dynamics. The method is based on a stochastic approximation version of the EM algorithm that employs recent developments in particle Markov chain Monte Carlo for efficient identification.

Integrated Pre-Processing for Bayesian Nonlinear System Identification with Gaussian Processes

Roger Frigola, Carl Edward Rasmussen, 2013. (In Decision and Control (CDC), 2013 IEEE 52nd Annual Conference on).

Abstract URL

We introduce GP-FNARX: a new model for nonlinear system identification based on a nonlinear autoregressive exogenous model (NARX) with filtered regressors (F) where the nonlinear regression problem is tackled using sparse Gaussian processes (GP). We integrate data pre-processing with system identification into a fully automated procedure that goes from raw data to an identified model. Both pre-processing parameters and GP hyper-parameters are tuned by maximizing the marginal likelihood of the probabilistic model. We obtain a Bayesian model of the system’s dynamics which is able to report its uncertainty in regions where the data is scarce. The automated approach, the modeling of uncertainty and its relatively low computational cost make of GP-FNARX a good candidate for applications in robotics and adaptive control.

No matching items
Back to top