Publications
Large Scale Non-parametric Inference: Data Parallelisation in the Indian Buffet Process
Finale Doshi-Velez, David Knowles, Shakir Mohamed, Zoubin Ghahramani, December 2009. (In Advances in Neural Information Processing Systems 23). Cambridge, MA, USA. The MIT Press.
Abstract▼ URL
Nonparametric Bayesian models provide a framework for flexible probabilistic modelling of complex datasets. Unfortunately, the high-dimensional averages required for Bayesian methods can be slow, especially with the unbounded representations used by nonparametric models. We address the challenge of scaling Bayesian inference to the increasingly large datasets found in real-world applications. We focus on parallelisation of inference in the Indian Buffet Process (IBP), which allows data points to have an unbounded number of sparse latent features. Our novel MCMC sampler divides a large data set between multiple processors and uses message passing to compute the global likelihoods and posteriors. This algorithm, the first parallel inference scheme for IBP-based models, scales to datasets orders of magnitude larger than have previously been possible.
Generalised Bayesian Matrix Factorisation Models
Shakir Mohamed, 2011. University of Cambridge, Department of Engineering, Cambridge, UK.
Abstract▼ URL
Factor analysis and related models for probabilistic matrix factorisation are of central importance to the unsupervised analysis of data, with a colourful history more than a century long. Probabilistic models for matrix factorisation allow us to explore the underlying structure in data, and have relevance in a vast number of application areas including collaborative filtering, source separation, missing data imputation, gene expression analysis, information retrieval, computational finance and computer vision, amongst others. This thesis develops generalisations of matrix factorisation models that advance our understanding and enhance the applicability of this important class of models. The generalisation of models for matrix factorisation focuses on three concerns: widening the applicability of latent variable models to the diverse types of data that are currently available; considering alternative structural forms in the underlying representations that are inferred; and including higher order data structures into the matrix factorisation framework. These three issues reflect the reality of modern data analysis and we develop new models that allow for a principled exploration and use of data in these settings. We place emphasis on Bayesian approaches to learning and the advantages that come with the Bayesian methodology. Our port of departure is a generalisation of latent variable models to members of the exponential family of distributions. This generalisation allows for the analysis of data that may be real-valued, binary, counts, non-negative or a heterogeneous set of these data types. The model unifies various existing models and constructs for unsupervised settings, the complementary framework to the generalised linear models in regression. Moving to structural considerations, we develop Bayesian methods for learning sparse latent representations. We define ideas of weakly and strongly sparse vectors and investigate the classes of prior distributions that give rise to these forms of sparsity, namely the scale-mixture of Gaussians and the spike-and-slab distribution. Based on these sparsity favouring priors, we develop and compare methods for sparse matrix factorisation and present the first comparison of these sparse learning approaches. As a second structural consideration, we develop models with the ability to generate correlated binary vectors. Moment-matching is used to allow binary data with specified correlation to be generated, based on dichotomisation of the Gaussian distribution. We then develop a novel and simple method for binary PCA based on Gaussian dichotomisation. The third generalisation considers the extension of matrix factorisation models to multi-dimensional arrays of data that are increasingly prevalent. We develop the first Bayesian model for non-negative tensor factorisation and explore the relationship between this model and the previously described models for matrix factorisation.
Bayesian Exponential Family PCA
Shakir Mohamed, Katherine A. Heller, Zoubin Ghahramani, December 2009. (In Advances in Neural Information Processing Systems 21). Edited by D. Koller, D. Schuurmans, Y. Bengio, L. Bottou. Cambridge, MA, USA. The MIT Press.
Abstract▼ URL
Principal Components Analysis (PCA) has become established as one of the key tools for dimensionality reduction when dealing with real valued data. Approaches such as exponential family PCA and non-negative matrix factorisation have successfully extended PCA to non-Gaussian data types, but these techniques fail to take advantage of Bayesian inference and can suffer from problems of overfitting and poor generalisation. This paper presents a fully probabilistic approach to PCA, which is generalised to the exponential family, based on Hybrid Monte Carlo sampling. We describe the model which is based on a factorisation of the observed data matrix, and show performance of the model on both synthetic and real data.
Comment: spotlight.
Bayesian and L1 Approaches for Sparse Unsupervised Learning
Shakir Mohamed, Katherine A. Heller, Zoubin Ghahramani, 2012. (In 29th International Conference on Machine Learning).
Abstract▼ URL
The use of L1 regularisation for sparse learning has generated immense research interest, with many successful applications in diverse areas such as signal acquisition, image coding, genomics and collaborative filtering. While existing work highlights the many advantages of L1 methods, in this paper we find that L1 regularisation often dramatically under-performs in terms of predictive performance when compared to other methods for inferring sparsity. We focus on unsupervised latent variable models, and develop L1 minimising factor models, Bayesian variants of “L1”, and Bayesian models with a stronger L0-like sparsity induced through spike-and-slab distributions. These spike-and-slab Bayesian factor models encourage sparsity while accounting for uncertainty in a principled manner, and avoid unnecessary shrinkage of non-zero values. We demonstrate on a number of data sets that in practice spike-and-slab Bayesian methods out-perform L1 minimisation, even on a com- putational budget. We thus highlight the need to re-assess the wide use of L1 methods in sparsity-reliant applications, particularly when we care about generalising to previously unseen data, and provide an alternative that, over many varying conditions, provides improved generalisation performance.
Probabilistic non-negative tensor factorization using Markov chain Monte Carlo
Mikkel N. Schmidt, Shakir Mohamed, August 2009. (In European Signal Processing Conference (EUSIPCO)). Glasgow, Scotland.
Abstract▼ URL
We present a probabilistic model for learning non-negative tensor factorizations (NTF), in which the tensor factors are latent variables associated with each data dimension. The non-negativity constraint for the latent factors is handled by choosing priors with support on the non-negative numbers. Two Bayesian inference procedures based on Markov chain Monte Carlo sampling are described: Gibbs sampling and Hamiltonian Markov chain Monte Carlo. We evaluate the model on two food science data sets, and show that the probabilistic NTF model leads to better predictions and avoids overfitting compared to existing NTF approaches.
Comment: Rated by reviewers amongst the top 5% of the presented papers.