Umang is a PhD student in University of Cambridge’s Machine Learning Group supervised by Adrian Weller. He completed a joint bachelors-masters in Electrical and Computer Engineering at Carnegie Mellon University, where he was advised by José Moura and worked with Pradeep Ravikumar and Zico Kolter.
He is funded by the Trust and Transparency Initiative at the Leverhulme Center for the Future of Intelligence with generous donations from Google. He is also a Research Fellow at the Partnership On AI.
His research interests lie in interpretable machine learning, explainable AI, and human-machine trust.
Publications
Getting a CLUE: A Method for Explaining Uncertainty Estimates
Javier Antorán, Umang Bhatt, Tameem Adel, Adrian Weller, José Miguel Hernández-Lobato, April 2021. (In 9th International Conference on Learning Representations).
Abstract▼ URL
Both uncertainty estimation and interpretability are important factors for trustworthy machine learning systems. However, there is little work at the intersection of these two areas. We address this gap by proposing a novel method for interpreting uncertainty estimates from differentiable probabilistic models, like Bayesian Neural Networks (BNNs). Our method, Counterfactual Latent Uncertainty Explanations (CLUE), indicates how to change an input, while keeping it on the data manifold, such that a BNN becomes more confident about the input’s prediction. We validate CLUE through 1) a novel framework for evaluating counterfactual explanations of uncertainty, 2) a series of ablation experiments, and 3) a user study. Our experiments show that CLUE outperforms baselines and enables practitioners to better understand which input patterns are responsible for predictive uncertainty..
On the Utility of Prediction Sets in Human-AI Teams
Varun Babbar, Umang Bhatt, Adrian Weller, 2022. (In International Joint Conference on Artificial Intelligence).
Abstract▼ URL
Research on human-AI teams usually provides experts with a single label, which ignores the uncertainty in a model’s recommendation. Conformal prediction (CP) is a well established line of research that focuses on building a theoretically grounded, calibrated prediction set, which may contain multiple labels. We explore how such prediction sets impact expert decision-making in human-AI teams. Our evaluation on human subjects finds that set valued predictions positively impact experts. However, we notice that the predictive sets provided by CP can be very large, which leads to unhelpful AI assistants. To mitigate this, we introduce D-CP, a method to perform CP on some examples and defer to experts. We prove that D-CP can reduce the prediction set size of non-deferred examples. We show how D-CP performs in quantitative and in human subject experiments (n=120). Our results suggest that CP prediction sets improve human-AI team performance over showing the top-1 prediction alone, and that experts find D-CP prediction sets are more useful than CP prediction sets.
Uncertainty as a form of transparency: Measuring, communicating, and using uncertainty
Umang Bhatt, Javier Antorán, Yunfeng Zhang, Q Vera Liao, Prasanna Sattigeri, Riccardo Fogliato, Gabrielle Melançon, Ranganath Krishnan, Jason Stanley, Omesh Tickoo, others, 2021. (In 4th AAAI/ACM Conference on Artificial Intelligence, Ethics and Society).
Abstract▼ URL
Algorithmic transparency entails exposing system properties to various stakeholders for purposes that include understanding, improving, and contesting predictions. Until now, most research into algorithmic transparency has predominantly focused on explainability. Explainability attempts to provide reasons for a machine learning model’s behavior to stakeholders. However, understanding a model’s specific behavior alone might not be enough for stakeholders to gauge whether the model is wrong or lacks sufficient knowledge to solve the task at hand. In this paper, we argue for considering a complementary form of transparency by estimating and communicating the uncertainty associated with model predictions. First, we discuss methods for assessing uncertainty. Then, we characterize how uncertainty can be used to mitigate model unfairness, augment decision-making, and build trustworthy systems. Finally, we outline methods for displaying uncertainty to stakeholders and recommend how to collect information required for incorporating uncertainty into existing ML pipelines. This work constitutes an interdisciplinary review drawn from literature spanning machine learning, visualization/HCI, design, decision-making, and fairness. We aim to encourage researchers and practitioners to measure, communicate, and use uncertainty as a form of transparency.
Evaluating and Aggregating Feature-based Model Explanations
Umang Bhatt, Adrian Weller, Jose M. F. Moura, 2020. (In International Joint Conference on Artificial Intelligence).
Abstract▼ URL
A feature-based model explanation denotes how much each input feature contributes to a model’s output for a given data point. As the number of proposed explanation functions grows, we lack quantitative evaluation criteria to help practitioners know when to use which explanation function. This paper proposes quantitative evaluation criteria for feature-based explanations: low sensitivity, high faithfulness, and low complexity. We devise a framework for aggregating explanation functions. We develop a procedure for learning an aggregate explanation function with lower complexity and then derive a new aggregate Shapley value explanation function that minimizes sensitivity.
Explainable Machine Learning in Deployment
Umang Bhatt, Alice Xiang, Shubham Sharma, Adrian Weller, Ankur Taly, Yunhan Jia, Joydeep Ghosh, Ruchir Puri, José M. F. Moura, Peter Eckersley, 2020. (In ACM Conference on Fairness, Accountability, and Transparency (FAT*)).
Abstract▼ URL
Explainable machine learning offers the potential to provide stakeholders with insights into model behavior by using various methods such as feature importance scores, counterfactual explanations, or influential training data. Yet there is little understanding of how organizations use these methods in practice. This study explores how organizations view and use explainability for stakeholder consumption. We find that, currently, the majority of deployments are not for end users affected by the model but rather for machine learning engineers, who use explainability to debug the model itself. There is thus a gap between explainability in practice and the goal of transparency, since explanations primarily serve internal stakeholders rather than external ones. Our study synthesizes the limitations of current explainability techniques that hamper their use for end users. To facilitate end user interaction, we develop a framework for establishing clear goals for explainability. We end by discussing concerns raised regarding explainability.
Eliciting and Learning with Soft Labels from Every Annotator
Katherine M. Collins, Umang Bhatt, Adrian Weller, 2022. (In Proceedings of the AAAI Conference on Human Computation and Crowdsourcing (HCOMP)). DOI: 10.17863/CAM.87954.
Abstract▼ URL
The labels used to train machine learning (ML) models are of paramount importance. Typically for ML classification tasks, datasets contain hard labels, yet learning using soft labels has been shown to yield benefits for model generalization, robustness, and calibration. Earlier work found success in forming soft labels from multiple annotators’ hard labels; however, this approach may not converge to the best labels and necessitates many annotators, which can be expensive and inefficient. We focus on efficiently eliciting soft labels from individual annotators. We collect and release a dataset of soft labels (which we call CIFAR-10S) over the CIFAR-10 test set via a crowdsourcing study (N=248). We demonstrate that learning with our labels achieves comparable model performance to prior approaches while requiring far fewer annotators – albeit with significant temporal costs per elicitation. Our elicitation methodology therefore shows nuanced promise in enabling practitioners to enjoy the benefits of improved model performance and reliability with fewer annotators, and serves as a guide for future dataset curators on the benefits of leveraging richer information, such as categorical uncertainty, from individual annotators.
Comment: [Project Page] [Data] [Code]
You shouldn’t trust me: Learning models which conceal unfairness from multiple explanation methods
Botty Dimanov, Umang Bhatt, Mateja Jamnik, Adrian Weller, 2020. (In European Conference on Artificial Intelligence (ECAI)).
Abstract▼ URL
Transparency of algorithmic systems has been discussed as a way for end-users and regulators to develop appropriate trust in machine learning models. One popular approach, LIME [26], even suggests that model explanations can answer the question “Why should I trust you?” Here we show a straightforward method for modifying a pre-trained model to manipulate the output of many popular feature importance explanation methods with little change in accuracy, thus demonstrating the danger of trusting such explanation methods. We show how this explanation attack can mask a model’s discriminatory use of a sensitive feature, raising strong concerns about using such explanation methods to check model fairness.
On the Fairness of Causal Algorithmic Recourse
J. von Kügelgen, A.-H. Karimi, U. Bhatt, I. Valera, A. Weller, B. Schölkopf, 2022. (In Proceedings of the 36th AAAI Conference on Artificial Intelligence (AAAI)).
Abstract▼ URL
Algorithmic fairness is typically studied from the perspective of predictions. Instead, here we investigate fairness from the perspective of recourse actions suggested to individuals to remedy an unfavourable classification. We propose two new fairness criteria at the group and individual level, which – unlike prior work on equalising the average group-wise distance from the decision boundary – explicitly account for causal relationships between features, thereby capturing downstream effects of recourse actions performed in the physical world. We explore how our criteria relate to others, such as counterfactual fairness, and show that fairness of recourse is complementary to fairness of prediction. We study theoretically and empirically how to enforce fair causal recourse by altering the classifier and perform a case study on the Adult dataset. Finally, we discuss whether fairness violations in the data generating process revealed by our criteria may be better addressed by societal interventions as opposed to constraints on the classifier.
Diverse and Amortised Counterfactual Explanations for Uncertainty Estimates
Dan Ley, Umang Bhatt, Adrian Weller, 2022. (In Proceedings of the 36th AAAI Conference on Artificial Intelligence (AAAI)).
Abstract▼ URL
To interpret uncertainty estimates from differentiable probabilistic models, recent work has proposed generating a single Counterfactual Latent Uncertainty Explanation (CLUE) for a given data point where the model is uncertain. We broaden the exploration to examine δ-CLUE, the set of potential CLUEs within a δ ball of the original input in latent space. We study the diversity of such sets and find that many CLUEs are redundant; as such, we propose DIVerse CLUE (∇-CLUE), a set of CLUEs which each propose a distinct explanation as to how one can decrease the uncertainty associated with an input. We then further propose GLobal AMortised CLUE (GLAM-CLUE), a distinct, novel method which learns amortised mappings that apply to specific groups of uncertain inputs, taking them and efficiently transforming them in a single function call into inputs for which a model will be certain. Our experiments show that δ-CLUE, ∇-CLUE, and GLAM-CLUE all address shortcomings of CLUE and provide beneficial explanations of uncertainty estimates to practitioners.