Publications

Pitfalls in the use of Parallel Inference for the Dirichlet Process

Yarin Gal, Zoubin Ghahramani, 2014. (In Proceedings of the 31th International Conference on Machine Learning (ICML-14)).

Abstract URL

Recent work done by Lovell, Adams, and Mansingka (2012) and Williamson, Dubey, and Xing (2013) has suggested an alternative parametrisation for the Dirichlet process in order to derive non-approximate parallel MCMC inference for it – work which has been picked-up and implemented in several different fields. In this paper we show that the approach suggested is impractical due to an extremely unbalanced distribution of the data. We characterise the requirements of efficient parallel inference for the Dirichlet process and show that the proposed inference fails most of these requirements (while approximate approaches often satisfy most of them). We present both theoretical and experimental evidence, analysing the load balance for the inference and showing that it is independent of the size of the dataset and the number of nodes available in the parallel implementation. We end with suggestions of alternative paths of research for efficient non-approximate parallel inference for the Dirichlet process.

A Systematic Bayesian Treatment of the IBM Alignment Models

Yarin Gal, Phil Blunsom, 2013. (In Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies). Association for Computational Linguistics.

Abstract URL

The dominant yet ageing IBM and HMM word alignment models underpin most popular Statistical Machine Translation implementations in use today. Though beset by the limitations of implausible independence assumptions, intractable optimisation problems, and an excess of tunable parameters, these models provide a scalable and reliable starting point for inducing translation systems. In this paper we build upon this venerable base by recasting these models in the non-parametric Bayesian framework. By replacing the categorical distributions at their core with hierarchical Pitman-Yor processes, and through the use of collapsed Gibbs sampling, we provide a more flexible formulation and sidestep the original heuristic optimisation techniques. The resulting models are highly extendible, naturally permitting the introduction of phrasal dependencies. We present extensive experimental results showing improvements in both AER and BLEU when benchmarked against Giza++, including significant improvements over IBM model 4.

Latent Gaussian Processes for Distribution Estimation of Multivariate Categorical Data

Yarin Gal, Yutian Chen, Zoubin Ghahramani, 2015. (In Proceedings of the 32nd International Conference on Machine Learning (ICML-15)).

Abstract URL

Multivariate categorical data occur in many applications of machine learning. One of the main difficulties with these vectors of categorical variables is sparsity. The number of possible observations grows exponentially with vector length, but dataset diversity might be poor in comparison. Recent models have gained significant improvement in supervised tasks with this data. These models embed observations in a continuous space to capture similarities between them. Building on these ideas we propose a Bayesian model for the unsupervised task of distribution estimation of multivariate categorical data. We model vectors of categorical variables as generated from a non-linear transformation of a continuous latent space. Non-linearity captures multi-modality in the distribution. The continuous representation addresses sparsity. Our model ties together many existing models, linking the linear categorical latent Gaussian model, the Gaussian process latent variable model, and Gaussian process classification. We derive inference for our model based on recent developments in sampling based variational inference. We show empirically that the model outperforms its linear and discrete counterparts in imputation tasks of sparse data.

Concrete dropout

Yarin Gal, Jiri Hron, Alex Kendall, 2017. (NeurIPS).

Abstract URL

Dropout is used as a practical tool to obtain uncertainty estimates in large vision models and reinforcement learning (RL) tasks. But to obtain well-calibrated uncertainty estimates, a grid-search over the dropout probabilities is necessary—a prohibitive operation with large models, and an impossible one with RL. We propose a new dropout variant which gives improved performance and better calibrated uncertainties. Relying on recent developments in Bayesian deep learning, we use a continuous relaxation of dropout’s discrete masks. Together with a principled optimisation objective, this allows for automatic tuning of the dropout probability in large models, and as a result faster experimentation cycles. In RL this allows the agent to adapt its uncertainty dynamically as more data is observed. We analyse the proposed variant extensively on a range of tasks, and give insights into common practice in the field where larger dropout probabilities are often used in deeper model layers.

Improving the Gaussian Process Sparse Spectrum Approximation by Representing Uncertainty in Frequency Inputs

Yarin Gal, Richard Turner, 2015. (In Proceedings of the 32nd International Conference on Machine Learning (ICML-15)).

Abstract URL

Standard sparse pseudo-input approximations to the Gaussian process (GP) cannot handle complex functions well. Sparse spectrum alternatives attempt to answer this but are known to over-fit. We suggest the use of variational inference for the sparse spectrum approximation to avoid both issues. We model the covariance function with a finite Fourier series approximation and treat it as a random variable. The random covariance function has a posterior, on which a variational distribution is placed. The variational distribution transforms the random covariance function to fit the data. We study the properties of our approximate inference, compare it to alternative ones, and extend it to the distributed and stochastic domains. Our approximation captures complex functions better than standard approaches and avoids over-fitting.

Distributed Variational Inference in Sparse Gaussian Process Regression and Latent Variable Models

Yarin Gal, Mark van der Wilk, Carl Rasmussen, 2014. (In Advances in Neural Information Processing Systems 27). Edited by Z. Ghahramani, M. Welling, C. Cortes, N.D. Lawrence, K.Q. Weinberger. Curran Associates, Inc..

Abstract URL

Gaussian processes (GPs) are a powerful tool for probabilistic inference over functions. They have been applied to both regression and non-linear dimensionality reduction, and offer desirable properties such as uncertainty estimates, robustness to over-fitting, and principled ways for tuning hyper-parameters. However the scalability of these models to big datasets remains an active topic of research. We introduce a novel re-parametrisation of variational inference for sparse GP regression and latent variable models that allows for an efficient distributed algorithm. This is done by exploiting the decoupling of the data given the inducing points to re-formulate the evidence lower bound in a Map-Reduce setting. We show that the inference scales well with data and computational resources, while preserving a balanced distribution of the load among the nodes. We further demonstrate the utility in scaling Gaussian processes to big data. We show that GP performance improves with increasing amounts of data in regression (on flight data with 2 million records) and latent variable modelling (on MNIST). The results show that GPs perform better than many common models often used for big data.

Dropout Inference in Bayesian Neural Networks with Alpha-divergences

Yingzhen Li, Yarin Gal, Aug 2017. (In 34th International Conference on Machine Learning). Sydney AUSTRALIA.

Abstract URL

To obtain uncertainty estimates with real-world Bayesian deep learning models, practical inference approximations are needed. Dropout variational inference (VI) for example has been used for machine vision and medical applications, but VI can severely underestimates model uncertainty. Alpha-divergences are alternative divergences to VI’s KL objective, which are able to avoid VI’s uncertainty underestimation. But these are hard to use in practice: existing techniques can only use Gaussian approximating distributions, and require existing models to be changed radically, thus are of limited use for practitioners. We propose a re-parametrisation of the alpha-divergence objectives, deriving a simple inference technique which, together with dropout, can be easily implemented with existing models by simply changing the loss of the model. We demonstrate improved uncertainty estimates and accuracy compared to VI in dropout networks. We study our model’s epistemic uncertainty far away from the data using adversarial images, showing that these can be distinguished from non-adversarial images by examining our model’s uncertainty.

Concrete Problems for Autonomous Vehicle Safety: Advantages of Bayesian Deep Learning,

Rowan McAllister, Yarin Gal, Alex Kendall, Mark van der Wilk, Amar Shah, Roberto Cipolla, Adrian Weller, August 2017. (In International Joint Conference on Artificial Intelligence). Melbourne, Australia.

Abstract URL

Autonomous vehicle (AV) software is typically composed of a pipeline of individual components, linking sensor inputs to motor outputs. Erroneous component outputs propagate downstream, hence safe AV software must consider the ultimate effect of each component’s errors. Further, improving safety alone is not sufficient. Passengers must also feel safe to trust and use AV systems. To address such concerns, we investigate three under-explored themes for AV research: safety, interpretability, and compliance. Safety can be improved by quantifying the uncertainties of component outputs and propagating them forward through the pipeline. Interpretability is concerned with explaining what the AV observes and why it makes the decisions it does, building reassurance with the passenger. Compliance refers to maintaining some control for the passenger. We discuss open challenges for research within these themes. We highlight the need for concrete evaluation metrics, propose example problems, and highlight possible solutions.

Inferring the effectiveness of government interventions against COVID-19

Jan M Brauner, Sören Mindermann, Mrinank Sharma, David Johnston, John Salvatier, Tomáš Gavenčiak, Anna B Stephenson, Gavin Leech, George Altman, Vladimir Mikulik, Alexander John Norman, Joshua Teperowski Monrad, Tamay Besiroglu, Hong Ge, Meghan A Hartwick, Yee Whye Teh, Leonid Chindelevitch, Yarin Gal, Jan Kulveit, December 2020. (Science).

URL

No matching items
Back to top