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Abstract

We consider the problem of multiclass clas-
sification where both labeled and unlabeled
data points are given. We introduce and
demonstrate a new approach for estimating
a distribution over the missing labels where
data points are viewed as nodes of a graph,
and pairwise similarities are used to derive a
transition probability matrix P for a Markov
random walk between them. The algorithm
associates each point with a particle which
moves between points according to P . La-
beled points are set to be absorbing states of
the Markov random walk, and the probability
of each particle to be absorbed by the differ-
ent labeled points, as the number of steps in-
creases, is then used to derive a distribution
over the associated missing label. A com-
putationally efficient algorithm to implement
this is derived and demonstrated on both real
and artificial data sets, including a numerical
comparison with other methods.

1. introduction

Semi-supervised learning (SSL) is generally concerned
with the following problem; given a set of samples
{s1, . . . , sl, sl+1, . . . , sl+u} and the labels of the first
l samples, {y1, . . . , yl}, estimate {yl+1, . . . , yl+u}, the
labels of the rest of the points. The underlying as-
sumption usually made is that the data is scattered
such that it is correlated with the labels. For example,
Maximum Variance Unfolding (Weinberger & Saul,
2004), Laplacian Eigenmaps (Belkin & Niyogi, 2003)
and Laplacian RLS (Belkin et al., 2005) assume the
effective number of dimensions occupied by the data
is smaller than the input space dimension (the mani-
fold assumption). Low Density Separation (Chapelle
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& Zien, 2005), Transductive SVM (Joachims, 1999)
and Cluster Kernel (Weston et al., 2005) assume the
data forms natural groups (the cluster assumption).
Kernels by Spectral Transforms (Zhu et al., 2004),
Conditional Harmonic Mixing (Burges & Platt, 2006),
Quadratic Criterion (Bengio et al., 2006) and Discrete
Regularization (Zhou & Schlkopf, 2006) represent the
data as a weighted graph on which the labels are
propagated. A comprehensive review of current ap-
proaches, including an empirical comparison between
them, is provided in (Chapelle et al., 2006). Other use-
ful reading include (Zhu, 2006) for a broad literature
review and (Seeger, 2002).

In this paper we introduce a new graph based algo-
rithm for learning a distribution for each of the miss-
ing labels, which are assumed to belong to one of some
K > 1 classes. The data is represented as a connected
graph and pairwise similarities are used to derive a
transition probability matrix P for a Markov random
walk between nodes. P is defined such that parti-
cles are allowed to leave unlabeled points, but labeled
points are set to be absorbing states of the random
walk, i.e. a particle that reaches them is trapped. The
probability that a missing label yn is k is then de-
rived from the total probability that a particle which
originates at sn is absorbed by a labeled point with
label k as the number of steps grows to infinity. This
work follows the spirit of (Szummer & Jaakkola, 2002)
which also propagates class labels over the graph us-
ing random walks. However, their approach is oppo-
site to ours in the sense that the random walk carries
the given labels and propagates them on the graph
amongst the unlabeled points, which results in the
need to find a good number of steps for the walk to
take. Here, we are not concerned with this parame-
ter which is simply set to infinity. This leads to a very
simple algorithm which can be implemented efficiently.

We discuss how random walks are used to estimate the
missing labels in section 2. We then show in section 3
how it can be implemented efficiently, and discuss con-
nections to other methods in section 4. Experimental
results are provided in section 5.
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2. Estimating Missing Labels using
Markov Random Walks

The following notation is used in this paper; Il =
[1, 2, . . . , l], Iu = [l+1, l+2, . . . , l+u] and I = Il∪Iu

are the indices of the labeled points, the unlabeled
points and the entire data set respectively. The to-
tal number of samples is N = l + u. Each sample is
assumed to be drawn from some metric space S and
each label from the set Y = [1, 2, . . . ,K] for some in-
teger K > 1. Our goal is to formulate and study an
algorithm for finding a distribution over Y, for each
member of {yn}n∈Iu

, given the partially labeled data.

Assume d : S × S 7→ R+, where R+ is the set of
all non-negative real numbers, is a metric on S and
w(·;σ) : R+ 7→ R+ is a known upper bounded and
monotonically decreasing function with parameter σ,
which we refer to as the kernel. A popular choice is

wnm = w(d(sn, sm);σ) = exp
(
−‖sn − sm‖2

2σ2

)
, (1)

using the Euclidean distance as a metric and σ as the
varinace. The kernel (1) provides us with a numeri-
cal measure, a number between 0 and 1, for the sim-
ilarity of pairs of data points. Note that wnmwmr =
exp

(
−‖sn−sm‖2+‖sm−sr‖2

2σ2

)
has the nature of geodesic

distances, that is it measures the similarity between
sn and sr ‘viewed through’ sm, a property that fits in
well with our algorithm. In graph based methods each
data point is considered to be a node and w, which is
used to weigh the edges between nodes, completely ig-
nores the labels. Here we incorporate the given labels
by considering a special graph.

Definition 1 (l-Rendezvous Graph) Given a data
set S with l labeled points, some positive integer M ≤
N and a metric d, for each n ∈ Iu let In be the
set of indices of the M nearest neighbors of sn (i.e.
d(sn, sm) ≤ d(sn, sr) for all m ∈ In and r /∈ In). The
l-Rendezvous graph is defined by considering each sn

to be a node and placing a directed edge from sn to sm,
with weight Wnm, which is set according to
1. Wnm = wnm for all n ∈ Iu, m ∈ In, and
2. Wnm = δnm for all n, m ∈ Il,
where δnm is 1 if n = m and 0 otherwise.

If the number of nearest neighbors M is chosen to be
a fixed (independent of N) small number, then the
resulting graph W is highly sparse. Note also that the
edges are directed and that W is not symmetric.

Next, each point sn is associated with a particle xn

that is allowed to move between data points. The lo-
cation of this particle after taking t steps is denoted

as xn(t). If we define the probability of xn to move to
sm after taking a single step to be

P(xn(1) = sm) =
wnm∑N
r=1 wnr

=
wnm∑

r∈In
wnr

, (2)

then the transition probability from sn to sm, for all
n, m = 1, 2, . . . , N , is given by the nm’th entry of

P = D−1W , (3)

where D = diag(D1, . . . , DN ) and Dn =
∑

r∈In
wnr .

P is a stochastic matrix which determines the proba-
bility for the location of xn(1) for all n. Now, consider
the location of a particle xn(t) for increasing values of
t. If n ∈ Il, then xn(t) = sn for all t, since by definition
sn is an absorbing state of the markov random walk. If
n ∈ Iu then xn(t) moves between points according to
P until it reaches a labeled point; once it reached such
a point it stays there forever. Notice that with prob-
ability one, all particles end up in one of the labeled
points as t →∞, hence the term ‘Rendezvous’1.

Generally, we can expect a particle xn that begins at
some unlabeled point sn to have higher probability of
being trapped in labeled points that are either close to
sn or that have many other unlabeled points between
them. In contrast, this particle is not expected to reach
a labeled point that is remote and isolated from sn.
This intuition motivates the definition

P(yn = k) =
∑

m∈Il:ym=k

lim
t→∞

P(xn(t) = sm) , (4)

for every k ∈ Y. Equation (4) assigns yn with the
label k with probability given by the total probability
that the first labeled point reached by xn has label k.
Note that since a particle that begins its move from a
labeled point never leaves it, then (4) is appropriate for
both labeled and unlabeled points and that since every
particle ends in a labeled point, then

∑K
k=1 P(yn =

k) = 1 for all n, making it a valid distribution.

A sparse graph might consist of disconnected sub-
graphs. If any of these subgraphs does not include
at least one labeled point as a node, then (4) is no
longer a valid distribution. To avoid this we limit the
discussion to the following graphs.

Definition 2 (Label Connected Graph) Let the
notation of Definition 1 hold, the graph W is said to
be label connected if ∀ n ∈ Iu there exists m ∈ Il and
some number of steps t for which P(xn(t) = sm) > 0.

It is not hard to formulate a procedure for checking
if a graph is label connected in complexity O(N), e.g.

1A prearranged meeting place
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choose any labeled node and (1) flag it, (2) flag all
its unflagged parents, (3) repeat step 2 for each newly
flagged parent, and (4) stop if all unlabeled nodes are
flagged, otherwise choose an unflagged labeled point
and go to step 1. If the graph is label connected then
this iterative process terminates when all unlabeled
nodes are flagged, and since each node is only consid-
ered once the complexity is linear. If after the algo-
rithm terminates there are still unlabeled nodes that
are unflagged then the graph is not label connected.

3. The Rendezvous Algorithm

Equation (4) involves computing limt→∞ P(xn(t) =
sm) for all n ∈ Iu and m ∈ Il. To compute it, re-
call from Markov chain theory that by applying P to
itself t times we obtain P t, whose nth row is the distri-
bution for the location of xn(t). So, to compute (4) for
all n we need to compute P∞, which can be done by
diagonalizing P . Let {λn, vn}N

n=1 be the right eigen-
values and eigenvectors of P and define V to be the
matrix with vn as its nth column, Q = V −1 with qn as
its nth row and Λ = diag(λ1, . . . , λN ) where without
loss of generality we assume λn ≥ λn+1∀n.

Then, applying P = V ΛQ to itself t times yields

P t = V ΛtQ =
N∑

n=1

λt
nvnqn, (5)

where the second equality holds by definition. This
implies that the eigenvetors of P and P t are the same
for every number of steps t and that the eigenvalues
of P t are given by the power series of the eigenvalues
of P . Hence for full graphs, and for every t, P t can be
computed in O(N3) by first diagonalizing P and then
using (5). However, for the graphs considered here
this can be simplified. Note that for label connected
graphs, W can be written as

W =
(

Wll Wlu

Wul Wuu

)
=

(
I 0

Wul Wuu

)
, (6)

where 0 is a matrix of zeros and I is the identity ma-
trix, each of the appropriate size. The subscript serves
both as the matrix size and as an indication for the
points with which it is associated. For example, Wul

is of size u × l and it include the weights of all edges
directed from unlabeled to labeled nodes. The second
equality is given by definition if W is an l-Rendezvous
graph, which is the case here. Correspondingly,

P =
(

Pll Plu

Pul Puu

)
=

(
I 0

Pul Puu

)
, (7)

where Pul consists of all the transition probabilities
from all unlabled to all labeled points etc. Lemma

Input: Partially labeled data, metric d, kernel w
Output: A distribution over the possible values of
each missing label
Algorithm:
0. Set σ (12) and M = 5
1. Compute W (Definition 1) and P (3)
2. Compute {vn}n∈Il

, the leading l eigenvectors of P .
3. For every n ∈ Iu and k ∈ Y, compute

P(yn = k) =
∑

m∈Il:ym=k

vm(n)
vm(m)

. (8)

Algorithm 1: The Rendezvous Algorithm. If W is not

label connected (step 1), increase M and recompute W .

For hard labeling set ŷn = argmaxk∈Y P(yn = k).

3 (proved in the Appendix) provides us with a key
property of P that allows the derivation of Algorithm1.

Lemma 3 Assume W is a label connected l-
Rendezvous graph and P is given by (3). Let λn be
the n’th eigenvalue of P and assume without loss of
generality that λn ≥ λn+1 for all n. Then,
1. λn = 1 for all n = 1, 2, . . . , l,
2. |λn| < 1 for all n = l + 1, l + 2, . . . , N .

Recall that we seek to compute P∞ which, in our case,
is of the form

P∞ =
(

I 0
P∞ul 0

)
. (9)

Combining Lemma 3 with Equation (5), this can also
be writen as

P∞ =
l∑

n=1

vnqn. (10)

Although generally we need to find {vn}N
n=1 to com-

pute {qn}l
n=1, the following Lemma shows how in the

case of l-Rendezvous graph this can be done more ef-
ficiently, where only {vn}l

n=1 needs to be computed.

Lemma 4 Let the definitions and notation of Lemma
3 hold. Then, for every n ∈ I and m ∈ Il

P∞nm =
vm(n)
vm(m)

. (11)

Remarkably, Lemma 4 states that to compute (4), all
that is needed to find is the first l right eigenvectors of
P . In addition, we know that the top entries of these
eigenvectors are sparse (see Appendix B) and that each
of the corresponding eigenvalues equals 1, which can
be used to efficiently initialize the eigensolver. Since



The Rendezvous Algorithm: Multiclass Semi-Supervised Learning with Markov Random Walks

we use a sparse graph, this can be done efficiently in
complexity no worst than O(N2) and has the potential
of reducing this comlexity even further.

4. Connections to Other Methods

The problem of unsupervised graph partitioning using
random walks was considered in (Meila, 2001; Meila
& Shi, 2001) where it was shown that using the lead-
ing eigenvectors of P can be viewed as a relaxation
of the NP hard problem of minimizing the multiway
normalized cut, a multiclass generalization of the nor-
malized cut (Shi & Malik, 2000). In (Azran & Ghahra-
mani, 2006) it was shown that considering P t instead
of P can be used to estimate the number of clusters
without losing the powerful theoretical guarantees of
the multicut Lemma (Meila, 2001). This is essentially
the framework we used here, with the difference that
some data points are labeled. Thus, from an unsuper-
vised learning point of view the Rendezvous algorithm
can be interpreted as solving a constrained clustering
problem where points with the same labels must (and
points with different labels must-not) be clustered to-
gether by searching for a small balanced multiway cut
of the graph which satisfy these constraints. Spectral
Graph Transducer (Joachims, 2003) was motivated as
a technique for constrained graph partitioning and can
be viewed as a modification of the Transductive SVM
(Joachims, 1999) which removes the need to set the cut
size a priory, or as an optimization problem of a reg-
ularized loss function based on the graph Laplacian
(Zhu, 2006). Except for sharing similar motivation,
SGT and our algorithm differ in the graph represen-
tation of the data (symmetric vs. nonsymmetric with
absorbing states), the label space (binary vs. multi-
class) and in the problem formulation (optimization
problem vs. computation of graph properties (4),(8)).

In (Szummer & Jaakkola, 2002) random walks are used
directly for multiclass SSL, but as mentioned in the
introduction our method completely avoids the cru-
cial problem of choosing the number of steps t and
is simpler to implement. In (Zhou & Schlkopf, 2004)
the random walk was assigned with some teleporting
probability and the commute time was used to classify
unlabeled points. Our algorithm is different from this
method in setting labeled points to be absorbing states
and by allowing any number of classes. Additionally,
our method only requires finding a small number l of
the leading eigenvectors, whereas (Zhou & Schlkopf,
2004) requires inverting a full size matrix.

An interesting connection can be made with Laplacian
based methods. For example, SGT and the grouping
algorithm in (Shi & Malik, 2000) are based on the so-

lution to the Laplacian generalized eigenvalue problem
(D − W )u = µDu, which by simple matrix manipu-
lation can be represented as D−1Wv = (1 − µ)v, and
the close relation with random walks is immediate. A
useful property of the spectral decomposition of the
Laplacian D − W is the enforcement of smoothness
on functions defined over the graph nodes. This mo-
tivated several SSL algorithms, including (Zhu et al.,
2003) which consider binary labels and (Zhu et al.,
2004) for multiclass problems. It is worth pointing
out that our method is not as close as it might seem
to methods based on the graph Laplacian such as the
above. To see why, recall that we use a nonsymmetric
matrix W , which violates the condition for the Lapla-
cian to encourage smooth functions over the graph.
The behavior of the Rendezvous algorithm is better
understood by considering the diffusion property of
random walks on the graph rather than the smooth-
ness property imposed by the graph Laplacian.

5. Experiments

5.1. Nonconvex and Overlapping Clusters

Consider the data set in Figure 1, comprised of a Gaus-
sian nested in two noisy rings. The noise level ranges
from low, where the cluster assumption holds and the
three groups are clearly separable, up to a level where
the group structure completely vanishes. We applied
our algorithm to this data set under various noise lev-
els and for different number and location of the labeled
points. The experiment setup was as follow: (1) gen-
erate 350 data points (20 from the Gaussian, 100 from
the inner ring and 230 from the outer ring), (2) la-
bel some points, (3) apply the Rendezvous algorithm.
This was repeated independently 100 times for each of
the following procedures for labeling points in step (2):
(i) label a single fixed point for each group, always on
the origin for the Gaussian and where the rings inter-
sects with the positive x axis, (ii) label ten fixed points
for each group, near the origin for the Gaussian and
uniformly spaced on each of the rings, and (iii) ran-
domly choose ∼ 5% of the points from each group (1
from the Gaussian, 5 from the inner ring and 10 from
the outer ring) and label them.

The results are presented with boxplots which has lines
at the lower quartile, median, and upper quartile val-
ues and the whiskers indicate the location of the most
distant data point, within a distance of the interquar-
tile range (IQR), from the edge of the box. The re-
sults for the different schemes of labeling points are
presented in the top row of Figure 1. The data plots
on the bottom show the labeled points wrapped with
a square, the hard labeling by the shape of the point
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Figure 1. Algorithm 1 applied to data comprised of nested
groups with seven different noise levels. The labeled subset
was chosen in three different schemes, each demonstrated
in the bottom row under the relevant boxplot. Top row
- results for 100 independen draws of datasets (note the
different scales in the y-axis). Bottom row - results for some
individual datasets, showing the labeled points as boxed,
the hard labeling as ‘+’,‘x’ or ‘o’ and the soft labeling a
mix of RGB (see text for discussion).

(‘+’,‘x’ or ‘o’), and the distribution over Y for each
label by the color (we used |Y| = 3 to allow the repre-
sentation of the distributions over missing labels as a
mix of RGB) for some data sets.

What can be learnt from the results of this experi-
ment? First, if the cluster assumption holds, a single
point can be sufficient to propagate the labels with no
errors. Second, if the groups overlap, the important
thing is that the labeled points ‘cover’ the region of
the input space populated by points which were sam-
pled from the same class. The intuition is that each
labeled point has the highest probability of trapping
the particles that start their move from nearby points,
and thus the location of the labeled points could be
more important than their number. Another impor-
tant property of the results is their variability. No-
tice how the whiskers of the boxplot extend further as
the noise level increases, presenting another piece of
evidence for the importance of the location, and not
necessarily the number, of the labeled points.

5.2. On the Parameter Setting

The algorithm involves choosing a kernel and setting
its parameter σ. For sparse graphs the number of
edges leaving each data point, M , also needs to be
initialized. We discuss here how the setting of these
parameters can be expected to affect the results of the
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Figure 2. Algorithm 1 applied to the data set in Figure
3 with noise level 7 (no group structure) and 5% labeled
points, using a wide range of σ and M . Left - boxplot
of the percentage of misclassified points over a hundred
different data sets (to test hard labeling), right - boxplot
of the empirical entropy (13) for the same data sets (to test
soft labeling). See text for a discussion.

algorithm, beginning with M . If the graph is fully con-
nected (M = N), then a particle can transition from
every unlabeled to any labeled node in a single step.
However, if it is located in a distance from all labeled
points, then it has higher probability of transitioning
to its unlabeled neighboring nodes, and in the follow-
ing step to their neighbors, until it reaches a labeled
point. Hence, allowing each particle to transition only
to some small number of neighbors, while ensuring this
results in a label connected graph, leads to a natural
construction of the graph which is conceptually com-
patible with our algorithm.

Now, consider the setting of σ for the full graph. If we
decrease this parameter to the limit σ → 0, then with
probability one each particle xn will only move to the
nearest neighbor of sn, lets call this node sm, when
taking the first step. The second step will be to the
nearest neighbor of sm (which needs not be sn) etc.
This is clearly not a desirable setting since it assigns
each missing label with a single class with probability
1, which implies the loss of information that exists
in soft classification. In the other extreme, as σ →
∞, the graph is no longer a reliable representative of
the data. In this case, Pmn = 1

N for every unlabeled
point and there is no recollection to the data structure.
The approach implemented in our algorithm is setting
the parameters by placing a small number of edges
(we usually used M = 5 ÷ 10) leaving each unlabeled
node and σ to be of order of the the smallest distances
between pairs of points. To formalize it, σ is set to be

σ = median(D) , (12)

where D is the set of smallest 1% of all pairwise dis-
tances {d(sn, sm)}n,m∈I .

How much changing σ and M affects the results of the
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Algorithm g241c g241d Digit1 USPS COIL BCI Text g241c g241d Digit1 USPS COIL BCI Text

l = 10 l = 100

1-NN 47.88 46.72 13.65 16.66 63.36 49.00 38.12 43.93 42.45 3.89 5.81 17.35 48.67 30.11
SVM 47.32 46.66 30.60 20.03 68.36 49.85 45.37 23.11 24.64 5.53 9.75 22.93 34.31 26.45
MVU+1-NN 47.15 45.56 14.42 23.34 62.62 47.95 45.32 43.01 38.20 2.83 6.50 28.71 47.89 32.83
LEM +1-NN 44.05 43.22 23.47 19.82 65.91 48.74 39.44 40.28 37.49 6.12 7.64 23.27 44.83 30.77
QC+CMN 39.96 46.55 9.80 13.61 59.63 50.63 40.79 22.05 28.20 3.15 6.36 10.03 46.22 25.71
Discrete reg. 49.59 49.05 12.64 16.07 63.38 49.51 40.37 43.65 41.65 2.77 4.68 9.61 47.67 24.00
TSVM 24.71 50.08 17.77 25.20 67.50 49.15 31.21 18.46 22.42 6.15 9.77 25.80 33.25 24.52
SGT 22.76 18.64 8.92 25.36 - 49.59 29.02 17.41 9.11 2.61 6.80 - 45.03 23.09
Cluster-Kernel 48.28 42.05 18.73 19.41 67.32 48.31 42.72 13.49 4.95 3.79 9.68 21.99 35.17 24.38
Data dep. reg. 41.25 45.89 12.49 17.96 63.65 50.12 - 20.31 32.82 2.44 5.10 11.46 47.47 -
LDS 28.85 50.63 15.63 17.57 61.90 49.27 27.15 18.04 23.74 3.46 4.96 13.72 43.97 23.15
Laplacian RLS 43.95 45.68 5.44 18.99 54.54 48.97 33.68 24.36 26.46 2.92 4.68 11.92 31.36 23.57
CHM 39.03 43.01 14.86 20.53 - 46.90 - 24.82 25.67 3.79 7.65 - 36.03 -

Renezvous-L 50.01 49.66 14.65 19.51 59.75 49.83 47.55 46.00 43.76 2.14 7.79 10.66 46.67 31.76
Renezvous-H 50.02 49.68 15.79 19.60 67.12 50.28 48.39 46.03 43.80 2.16 8.20 17.90 47.03 32.26
Renezvous 50.02 49.68 15.19 19.60 64.32 50.19 47.79 46.00 43.77 2.15 8.11 10.66 46.83 31.83

Table 1. Comparison with other methods, showing 12-fold cross-validation performance for l = 10/100 labeled points (BCI
has a total of 400 points, the rest 1500). For each dataset σ was set to six different values, one was minn6=m d(sn, sm) and
the rest according to (12) where D comprised [0.2, 0.6, 1, 2, 4]% of the smallest pairwise distances. The row L (H) shows
the lowest (highest) error obtained by these settings of σ; the bottom row shows the performance of Algorithm 1 where
σ is set automatically (step 0), clearly indicating the algorithm is robust to the exact setting of the sole parameter.

algorithm when applied to the data set in Figure 1 with
noise level 7, is described in Figure 2. σ was (nonuni-
formly) changed over the range minn 6=m d(sn, sm) and
maxn,m d(sn, sm) and M over the range between 5 and
350 (i.e. N). The results are summarized with two dif-
ferent measurements. First, the percentage of misclas-
sified points (empirical error) measures only the bot-
tom line of the algorithm. Additionally, to measure
the sensitivity of the soft classification to the setting
of the parameters, we computed the empirical entropy

H =
1
N

N∑
n=1

Hn, (13)

where Hn = −
∑K

k=1 rnk ln rnk and rnk = P(yn = k).
The results for using a fully connected graph with 5%
of the points which are randomly chosen from each
class and labeled, for different settings of σ, are shown
on the left of Figure 2. It clearly shows a minimum of
the empirical error is achieved for a small σ (though
not the smallest), which is compatible with (12). It is
interesting to notice that as σ grows, the variability of
the results decays and every dataset results in exactly
the same empirical error. The reason is that large σ
results in Pmn being approximately equal for all pairs
of sn, sm, which in turn leads to rn1 ≈ 1/16, rn2 ≈
5/16 and rn3 ≈ 10/16 for all n, H ≈ 0.83 and empirical
error that approximately equals 120

350 ≈ 0.34. For a
small σ, the algorithm performance improves as the
number of edges decreases (right side of Figure 2). The
reason is that by only allowing particles to move to
the nearest neighbors, they have higher probability of
ending in a neighboring labeled point rather than a
remote one.

5.3. Comparison with Other Methods

In (Chapelle et al., 2006), a collection of state
of the art algorithms for SSL are discussed by
their authors and applied to a set of benchmark
datasets. These datasets, including a detailed de-
scription of how they were obtained, are available at
http://www.kyb.tuebingen.mpg.de/ssl-book, and
a brief description only is given here for completeness.
The datasets g241c and g241d were generated by some
processing of samples from a mixture of Gaussians.
Digit1 contains images of ‘1’ and the label is set ac-
cording to the tilt of the digit in the image. USPS
contains 150 images of each of the ten digits from the
famous USPS set, with classes ‘2’ ∪ ‘5’ vs. the rest
(i.e. classes are imbalanced with relative size 1:4).
COIL is a processed version of the Columbia object
image library (COIL-100), with six labels. All these
data sets are comprised of 1500 data points, each hav-
ing 241 dimensions. The BCI (brain computer inter-
face) data set includes 400 data points, each living in
117 dimensions representing model parameters fitted
to EEG images of a person performing 400 trials of
imagining moving the left (class -1) or right (class +1)
hand. Lastly, Text is the 5 comp.* groups from the
Newsgroup data set with labels ibm category vs. the
rest. It include 1500 data points in 11,960 dimensions.

The results for two sets of experiments, one for smaller
(∼ 0.7%) and the other for larger (∼ 7%) ratio of
l
N , are summarized in Table 1. The performance of
all SSL algorithms (with parameters set to optimize
the cross-validation error and thus needs to be com-
pared with the row Rendezvous-L) were reported by
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their authors in (Chapelle et al., 2006). Overall, the
Rendezvous algorithm demonstrates a competitive be-
havior. In particular, for Digit1 with l = 100 it out-
performs all of the algorithms and for both setups
with COIL it does better than most of them. On
the other hand, the results for Text, BCI and USPS
can be viewed as average, and when applied to g241c
and g241d it recovers almost no class structure. In-
terestingly, the results stay practically unchanged for
different settings of σ (they are somewhat less stable
with COIL, probably because it is multiclass). This
supports the discussion in section 5.2, especially (12),
and suggests our algorithm can be used automatically,
which is crucial when dealing with real data.

Important information which was not reported by the
authors, and thus is not in the table, is the variability
of the results over different choices of the labeled sub-
sets. For example, for Digit1 with l = 10 the lowest
percentage of misclassified points achieved by the Ren-
dezvous algorithm is 3.36% and the highest is 41.74%.
Accompanied by the results in Figure 1, which exhibits
similar behavior, this suggests the reason for the large
variability is that for labeled subsets for which the em-
pirical error is high, a small number of labeled points
of one class might be located away from the boundary
between classes while labeled points from the other
class are closer to the boundary, which results in many
points being mislabeled. This can also be used as an
indication to the (in)validity of the cluster assumption.

5.4. On the Convergence of the Algorithm

While a thorough treatment of the asymptotic conver-
gence is beyond the scope of this paper, we provide an
experimental evaluation of how the algorithm can be
expected to behave as the size of the dataset increases.
Consider the dataset in Figure 3 which is comprised of
a mixture of four Gaussians. Note that the covariance
matrices of the Gaussians are different, which results in
the true labeling not being distance related but rather
cluster dependent. Note also there is some overlap of
the different classes; using Gaussians allowed the com-
putation of the lowest achievable error (Bayes error)
which for this case equals ∼ 1%. The performance of
the algorithm after repeating the experiment 100 times
(summarized on the right of Figure 3) suggest the fol-
lowing four observations, some also support relevant
previous discussion. First, the variability of the per-
formance decrease as the number of points increases.
Second, the algorithm demonstrates fast convergence,
where even for a small number of points the results
are close to the asymptotic. Third, the empirical error
is close to the Bayes error. And fourth, if the cluster
assumption holds, then a single point is sufficient to
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Figure 3. Convergence evaluation of Algorithm1. Right -
results for nine dataset sizes (N = 40 + 200z for z =
0, 2, . . . , 8) with only a single labeled point from each class
(l = 4); for each size Algorithm 1 was applied to 100 inde-
pendently drawn datasets. Left - an example dataset (with
N = 1040).

propagate the labels on the graph successfully.

6. Conclusions

We have introduced a new algorithm for estimating
a distribution over each of the missing labels in the
presence of both labeled and unlabeled data. An effi-
cient implementation was derived and a comparison of
the algorithm with other methods was provided. One
interesting directions for future work is developing al-
gorithms for a clever selection of the labeled data set.
Our experiments clearly indicate that the location of
the labeled points within the data set is as important
as the size of the labeled set, and thus choosing these
points to optimize performance is of great importance.
Another direction is choosing the kernel based on the
data. In all our experiments we used the very simple
Gaussian kernel with the identity covariance matrix,
which probably does not exploit all the similarity in-
formation conveyed in the data points. Additionally,
there is no reason why a single kernel should be used,
instead of different kernels for different groups of data
points. Another interesting direction is the search for
the eigenvectors of P . Since P is highly sparse and
we only look for a small number of eigenvectors, all of
which correspond to unit eigenvalues and posses some
special properties, it is possible that especially efficient
methods for finding these eigenvectors can be derived.

A. Proof of Lemma 3

Note that |λnvn(m)| = |
∑

i Pmivn(i)| ≤∑
i Pmi|vn(i)| ≤ maxj |vn(j)|

∑
i Pmi = maxj |vn(j)|

∀n, m. Thus, for every n, choosing m =
argmaxj |vn(j)| results in |λn| ≤ 1. Next, recall
that if the eigenvalues and eigenvectors of P are
{λn, vn}N

n=1, then those of P t are {λt
n, vn}

N
n=1 (see

(5)) . Additionally, notice that P∞P∞ = P∞, which
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implies that each columns of P∞ is also its eigenvec-
tor with eigenvalue 1. Finally, since P has exactly
l absorbing nodes and is label connected, then with
probability 1 every particle ends in one of these nodes
as t grows to infinity. This implies that P∞nm = δnm for
all n ∈ Il and P∞nm = 0 for all n ∈ I and m ∈ Iu (see
(9)), hence P∞ has l linearly independent columns
and is thus of rank l. To conclude, from the condition
that λ∞n = 1 for all n = 1, 2, . . . , l follows the first part
of the Lemma and from the condition that λ∞n = 0 for
all n = l + 1, l + 2, . . . , N follows the second part. �

B. Proof of Lemma 4.

Define

V =
(

V1 V2

V3 V4

)
(14)

where V1, V2, V3 and V4 are of size l × l, l × u, u × l
and u × u respectively. Also, note that each column
of P∞ is an eigenvector of P too (see Appendix A).
This, combined with (9), implies that V1 is diagonal.
Additionally, since P has the form of (7), then it is not
hard to show that vn, for each n ∈ Iu, has zeros on
the first l entries, and thus V2 = 0. Thus, using the
matrix inversion lemma 2,

Q = V −1 =
(

V −1
1 0

−V −1
4 V3V

−1
1 V −1

4

)
. (15)

Finally, combining (10) with (15), while keeping in
mind that the submatrix V1 is diagonal, complete the
proof of Lemma 4. �
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