
Policy Search For Learning Robot Control Using Sparse Data

B. Bischoff1, D. Nguyen-Tuong1, H. van Hoof2, A. McHutchon3,
C. E. Rasmussen3, A. Knoll4, J. Peters2,5, M. P. Deisenroth6,2

Abstract— In many complex robot applications, such as
grasping and manipulation, it is difficult to program desired
task solutions beforehand, as robots are within an uncertain
and dynamic environment. In such cases, learning tasks from
experience can be a useful alternative. To obtain a sound
learning and generalization performance, machine learning,
especially, reinforcement learning, usually requires sufficient
data. However, in cases where only little data is available
for learning, due to system constraints and practical issues,
reinforcement learning can act suboptimally. In this paper, we
investigate how model-based reinforcement learning, in partic-
ular the probabilistic inference for learning control method
(PILCO), can be tailored to cope with the case of sparse data
to speed up learning. The basic idea is to include further prior
knowledge into the learning process. As PILCO is built on the
probabilistic Gaussian processes framework, additional system
knowledge can be incorporated by defining appropriate prior
distributions, e.g. a linear mean Gaussian prior. The resulting
PILCO formulation remains in closed form and analytically
tractable. The proposed approach is evaluated in simulation
as well as on a physical robot, the Festo Robotino XT. For
the robot evaluation, we employ the approach for learning an
object pick-up task. The results show that by including prior
knowledge, policy learning can be sped up in presence of sparse
data.

I. INTRODUCTION

In recent years, robots have increasingly become a natural
part of daily life. As service robots, they are introduced to the
customer market fulfilling tasks, such as lawn mowing and
vacuum cleaning. However, most of today’s robot applications
are rather simple, where the tasks are pre-programmed. More
complex applications, such as grasping and manipulation,
are difficult to hard-code beforehand. The main reason
is that robots and other autonomous systems are within
uncertain, stochastic and dynamic environments, which can
not be analytically and explicitly described, making pre-
programming impossible in many cases. Here, machine
learning offers a powerful alternative.

Especially for robot control manual development of control
strategies can be challenging. It is often hard to accurately
model the uncertain and dynamic environment while inferring
appropriate controllers for solving desired tasks. In such

1Cognitive Systems, Bosch Corporate Research, Germany
2Intelligent Autonomous Systems, TU Darmstadt, Germany
3Computational and Biological Learning Lab, Univ. of Cambridge, UK
4Robotics and Embedded Systems, TU München, Germany
5Max Planck Institute for Intelligent Systems, Tübingen, Germany
6Department of Computing, Imperial College London, UK
The research leading to these results has received funding from the

European Community’s Seventh Framework Programme (FP7/2007-2013)
under grant agreement #270327 and the Department of Computing, Imperial
College London.

cases, reinforcement learning (RL) can help to efficiently
learn a control policy from sampled data instead of manual
design using expert knowledge [1], [4], [5]. State-of-the-
art RL approaches, e.g. policy search techniques [3], usually
require sufficiently many data samples for learning an accurate
dynamics model, based on which the control policy can be
inferred. Thus, in the presence of sparse data RL approaches
can be suboptimal, especially, for high-dimensional learning
problems. In this paper, we investigate how model-based
policy search, in particular the probabilistic inference for
learning control method (PILCO), can be tailored to cope
with sparse training data to speed up the learning process.

The policy search RL algorithm PILCO [2] employs
Gaussian processes (GP) to model the system dynamics.
PILCO has been shown to be effective for learning control in
an uncertain and dynamic environment [12], [13]. To further
speed up learning and to make PILCO appropriate for learning
with sparse data in high-dimensional problems, e.g. an 18
dimensional dynamics model, we propose to include further
prior knowledge into the learning process. As non-parametric
GP regression is employed as the core technique in PILCO,
prior knowledge can be straightforwardly incorporated by
defining appropriate prior distributions. It has been shown in
the past that incorporating prior knowledge into GP learning
can significantly improve the learning performance in the
presence of sparse data [11]. In this study, we choose a
linear mean Gaussian distribution as prior for modeling the
system dynamics. This prior is especially appropriate for
systems with underlying linear or close to linear behavior.
The evaluations show that this choice of prior can help to
improve the learning performance while the resulting RL
formulation remains in closed form and analytically tractable.

The remainder of the paper will be organized as follows.
First, we give a brief review on the basic concepts of RL and
PILCO. In Section II, we introduce the extension of PILCO
where a linear mean Gaussian prior is employed. In Section
III, we provide experiments in simulation as well as on a
physical robot. Here, we aim to learn an object pick-up task
with the Festo Robotino XT shown in Figure 1, using the
proposed approach. A conclusion and summary can be found
in Section IV.

A. Background: Reinforcement Learning

RL considers a learning agent and its interactions with the
environment [3], [7]. In each state s ∈ S the agent can apply
an action a ∈ A and, subsequently, moves to a new state
s′. The system dynamics define the next state probability
p(s′|s, a). In every state, the agent determines the action to

2014 IEEE International Conference on Robotics & Automation (ICRA)
Hong Kong Convention and Exhibition Center
May 31 - June 7, 2014. Hong Kong, China

978-1-4799-3685-4/14/$31.00 ©2014 IEEE 3882

Fig. 1: The Festo Robotino XT, a mobile service robot with
a pneumatic arm, used for evaluation.

be used according to its controller, π : S → A. Application
of the controller for T timesteps results in a state-action
trajectory {s0, a0}, {s1, a1}, . . . , {sT−1, aT−1}, sT denoted
as rollout. Multiple rollouts will not be identical in case of
uncertainty and noise. Thus, probability distributions need to
be employed to describe the controller rollout. Each state si
is rated by the environment with a cost function, c : S → R.
It is the goal of the learning agent to find a controller that
minimizes the expected long-term cost J(π) given by

J(π) =

T∑
t=0

Est [c(st)] (1)

where st is the resulting state distribution when the controller
π is applied for t timesteps. The cost function c encodes
the learning goal and must be set accordingly. The learning
algorithm uses samples si, ai, si+1 to optimize the controller
with respect to the expected long-term cost. The way how
this experience is used to learn a new, improved controller π
is what makes the difference between various RL approaches.
For example, RL techniques can be classified as model-free
and model-based. While model-free RL directly optimizes
the controller π, model-based approaches explicitly model the
dynamics, i.e. p(s′|s, a), and optimize the controller using
this model. Another characterization of RL methods is policy
search versus value-function approaches. In policy search, the
learning algorithm directly operates on the parameters θ of a
controller πθ to minimize the expected long-term cost. On
the other hand, value-function approaches learn a long-term
cost estimate for each state. Using this estimate, a controller
can be determined.

B. PILCO: A Fast Policy Search Approach

To find control parameters θ∗, which minimize Eq. (1),
we employ the PILCO policy search framework [2] to
learn low-level controllers. PILCO’s key component is a
probabilistic model of the robot’s forward dynamics p(s′|s, a),
implemented as a Gaussian process (GP) [6].

Policy learning consists of two steps: policy evaluation
and policy improvement. For policy evaluation, we use the
GP dynamics model to iteratively compute Gaussian approx-
imations to the long-term predictions p(s0|θ), . . . , p(sT |θ)

for a given policy parametrization θ. Since PILCO explicitly
accounts for model uncertainty in this process, it reduces the
effect of model bias [2]. With the predicted state distributions
p(st|θ), t = 1, . . . , T , an approximation to the expected long-
term cost J(π) in Eq. (1) and the gradients dJ(θ)/dθ can
be computed analytically. For policy improvement, we use
this gradient information and apply Quasi-Newton methods
for non-convex optimization to find the desired set of policy
parameters θ∗. Note that policy learning does not involve any
interactions with the robot, but is solely based on the learned
GP dynamics model.

When the policy parameters have been learned, the cor-
responding policy is applied to the robot. The data from
this experiment is collected and used to update the learned
dynamics model. Then, this new model is used to update
the policy. The process of model learning, policy learning,
and application of the policy to the robot is repeated until
a good policy is found. In this framework, it is essential
to obtain a sufficiently accurate dynamics model. If only
little data is available, e.g. 200 data points for an 18 dim.
model, the model learning performance can be improved
when using additional prior system knowledge [11]. As our
considered problems appear to have a linear underlying trend,
we choose a linear mean prior for the GP employed for
learning the forward dynamics. By doing so, the resulting
PILCO formulation remains in closed form as shown in the
following section.

II. PILCO WITH LINEAR MEAN GAUSSIAN PRIOR

At the heart of the PILCO algorithm lies the Gaussian
process dynamics model. GPs provide a principled and
powerful method for modelling observed data by specifying
a distribution over possible function values h(x), i.e.

h(x) ∼ GP(m(x), k(x, x′)) (2)

where m(x) is the mean function and k(x,x′) is the
covariance function. For a given data set {X,y}, a GP
prediction at a test point x∗ is normally distributed with

h∗ ∼ N (µ∗, Σ∗) , (3)

µ∗ = k(x∗, X)[K + σ2
nI]−1 (y −m(X)) +m(x∗) ,

(4)

, k(x∗, X)β +m(x∗) , (5)

Σ∗ = k(x∗,x∗)− k(x∗, X)[K + σ2
nI]−1 k(X,x∗) (6)

where K = k(X,X), β = [K + σ2
nI]−1 (y−m(X)), σ2

n is
a noise variance parameter. Within the GP framework, the
GP hyperparameters including the parameters of the mean
function m(x) can be estimated from data [6]. In case of
multiple output dimensions, a separate GP can be trained for
each output dimension.

In previous applications of PILCO, the default prior mean
function m(x) has been set to either zero, m(x) = 0,
or the identity function m(x) = x [2]. Many systems of
interest, however, contain a number of underlying linear, or
close to linear, relationships. This is especially true for state
spaces containing both variables and their time derivatives

3883

(e.g. positions and velocities) for which a linear relationship
(Euler integration) can be a good starting point. By using a
more informative linear mean prior, the GP can model the
complex nonlinearities better and has improved extrapolation
performance. Using a linear mean prior with the GP dynamics
model therefore promises performance improvements over
previous work. The PILCO algorithm makes predictions
using its dynamics model at uncertain test points. In this
section, we derive the necessary predictive equations for a
GP with a affine mean prior, m(x) = Ax+ b, when the test
points are uncertain, i.e. x∗ ∼ N (µ,Σ). For computational
tractability, we choose the squared-exponential covariance
function, k(x,x′) = α2 exp(− 1

2 (x−x′)TΛ−1(x−x′)), with
hyperparameters α2 (signal variance) and Λ (squared length
scales), which are learned within the GP framework.

For an uncertain test input x∗ ∼ N (µ,Σ), the predictive
mean µ∗ is given by

µ∗ = Ex∗,h[h(x∗)] = Ex∗ [Eh[h(x∗)]]

= Ex∗ [k(x∗, X)β +m(x∗)] = βTq +Aµ+ b , (7)

where qi = η exp
(
− 1

2 (xi − µ)T (Σ + Λ)−1(xi − µ)
)

with η = α2
∣∣ΣΛ−1 + I

∣∣−1/2. The predictive variance
varx∗,h[h(x∗)] is given as

varx∗,h[h(x∗)] = Ex∗ [varh[h(x∗)]] + Ex∗

[
Eh[h(x∗)]

2
]

− Ex∗ [Eh[h(x∗)]]
2
. (8)

Since varh[h(x∗)] does not depend on the prior mean function,
we use the derivation from [9]. Thus,

Ex∗ [varh[h(x∗)] = α2 − tr
(

(K + σ2
ε I)−1Q̃

)
, (9)

Q̃ = Ex∗ [k(X,x∗)k(x∗, X)] , (10)

Q̃i,j =
∣∣2ΣΛ−1 + I

∣∣−1/2 k(xi,µ)k(xj ,µ)

exp
(

(zi,j − µ)
T (

Σ + 1
2Λ
)−1

ΣΛ−1 (zi,j − µ)
)
,

and zi,j =
xi+xj

2 . Using Eq. (7) we get

Ex∗ [Eh[h(x∗)]]
2

= (Aµ+ b+ βTq)2 (11)

which leaves

Ex∗

[
Eh[h(x∗)]

2
]

= Ex∗ [(k(x∗, X)β)2 +m(x∗)
2

+ 2m(x∗)k(x∗, X)β]. (12)

We derive the expected values on the right hand side of
Eq. (12) in a form generalized to multiple output dimensions,
since we will reuse the equations for calculating the covari-
ance between output dimensions. Here, the superscripts u, v
denote the respective output dimensions. From Eq. (10), we
obtain

Ex∗ [k(x∗, X)βuk(x∗, X)βv] = (βu)T Q̃βv , (13)

Ex∗ [mu(x∗)m
v(x∗)] = Au Ex∗ [x∗x

T
∗](Av)T

+ buAvµ+ bvAuµ+ bubv

= Au
(
Σ + µµT

)
(Av)T+

buAvµ+ bvAuµ+ bubv . (14)

The final expectation is

Ex∗ [mu(x∗)k
v(xi,x∗)]

= Au Ex∗ [x∗k
v(xi,x∗)] + bu Ex∗ [kv(xi,x∗)]

= Akα2
v(2π)D/2|Λv|1/2

·
∫
x∗N (x∗|xi,Λv)N (x∗|µ,Σ)dx∗ + buqvi

= Auqvi c
v
i + buqvi (15)

with

ci = Λ(Σ + Λ)−1µ+ Σ(Σ + Λ)−1xi .

Here, we exploited the fact that the squared-exponential kernel
can be written as an unnormalized Gaussian distribution.
Using the relationship given in Eq. (8), we can now combine
equations (9)–(15), for a single output dimension to get

varx∗,h[h(x∗)] = α2 − tr
(

(K + σ2
ε I)−1Q̃

)
+ βQ̃βT

− (βT q)2 +AΣAT − 2AµβT q

+ 2A

n∑
i=1

βiqici

for the predictive variance. For each output dimension hu(x),
we independently train a GP and calculate the mean and
variance of the predictive Gaussian distribution as derived
above. Next, we consider the predictive covariance between
output dimensions u 6= v. As a first step, we can write

covx∗,h[hu(x∗), h
v(x∗)] = Ex∗ [covh[hu(x∗), h

v(x∗)]]

+ covx∗ [Eh[hu(x∗)],Eh[hv(x∗)]] . (16)

Due to the conditional independence assumption, i.e.
hu(x∗) ⊥⊥ hv(x∗) | x∗, the first term in Eq. (16) is zero,
which leaves the covariance of the means. This can be solved
analogously to eq. (12) and (13) to get

covh,x∗ [hu(x∗), h
v(x∗)]

= (βu)TQβv − (βu)Tqu(βv)Tqv +AuΣ(Av)T

+Au
n∑
i=1

βvi q
v
i c
v
i +Av

n∑
i=1

βui q
u
i c

u
i

−Auµ(βv)Tqv −Avµ(βu)Tqu

for the covariance between output dimensions. Finally, we
proceed to derive the input-output covariance between the
input x∗ ∼ N (µ,Σ) and the estimated function output
h(x∗) ∼ N (µ∗,Σ∗). We need this covariance Σx∗,h∗ to
derive the joint distribution

p(x∗, h(x∗)) = N
([
µ
µ∗

]
,

[
Σ Σx∗,h∗

ΣTx∗,h∗
Σ∗

])
of the function input x∗ ∼ N (µ,Σ) and output h(x∗). It is

Σx∗,h∗ = Ex∗,h

[
x∗h(x∗)

T
]
− Ex∗ [x∗] Ex∗,h [h(x∗)]

T
,

where the second term is directly given by Eq. (7). To compute
Ex∗,h

[
x∗h(x∗)

T
]
, we first rewrite the expression

Ex∗,h

[
x∗h(x∗)

T
]

= Ex∗ [x∗m(x∗) + x∗k(x∗, X)β]

= Ex∗

[
x∗x

T
∗
]
AT + bµ+ Ex∗ [x∗k(x∗, X)β] .

3884

Now, we use again the definition of the variance, Eq. (15) and
the simplification steps described in [14, eq. (2.68)–(2.70)]
to obtain

Σx∗,h∗ =

n∑
i=1

βiqiΣ(Σ + Λ)−1(xi − µ) + ΣAT

for the input-output covariance. This concludes the derivations
for the GP prediction with a linear prior mean function at
uncertain test inputs.

Note that all terms for the prediction with linear mean
prior can be split in the terms we have in the zero mean
case, plus some additional expressions. Using PILCO with
linear mean prior, the complexity to compute the additional
terms for the mean and input-output covariance is O (DE)
resp. O

(
D2E

)
and, hence, independent of the number of

training samples n. Here, D denotes the input dimensionality
(i.e. state plus action dimensionality) while E corresponds to
the number of output dimensions (i.e. state dimensionality).
Assuming n > D,E, variance and covariance prediction can
be performed in O

(
DE2 + nD2

)
, where n is the number

of training samples. Compared to O
(
DE2n2

)
for the zero

prior mean prediction (see [14]), the additional terms for the
linear mean prior do not increase the complexity class.

III. EXPERIMENTS & EVALUATIONS

In this section, we evaluate the proposed approach for
learning control policies in the sparse data setting. First,
we apply our extended PILCO algorithm on a control task
in simulation, namely position control of a throttle valve.
Subsequently, we learn an object grasping policy for a pick-
up task with the Festo Robotino XT, a mobile service robot
with pneumatic arm shown in Figure 1. In both cases, sparse
data is employed for learning the system dynamics, e.g. 75
sampled data points for learning throttle valve control and
200 data points for learning pick-up task.

A. Comparative Evaluation on a Throttle Valve Simulation

Fig. 3: Throttle valve
system to regulate a gas
or fluid flow.

The throttle valve shown in
Figure 3 is an important technical
device that allows flow regulation
of gas and fluids. It is widely used
in various industrial applications,
such as cooling systems for power
plants and pressure control in
gasoline combustion engines. The
valve system basically consists of
a DC-motor, a spring and a valve
with position sensors. The dynam-
ics of the throttle valve system
can be analytically approximated
by the model[
α̇(t)
ω̇(t)

]
=

[
0 1
−Ks −Kd

] [
α(t)
ω(t)

]
+

[
0

L(t)

]
+

[
0

T (t)

]
, (17)

where α and ω are the valve angle and corresponding angular
velocity T is the actuator input and L(t) = Cs−Kf sgn(ω(t))
[8]. The parameters Ks, Kd, Kf and Cs are dynamics
parameters and need to be identified for a given system. Here,

we use Ks = 1.5, Kd = 3, Kf = 6, Cs = 20. The input T is
determined as T (t) = u(t)Kj/(R), where u(t) ∈ [−20, 20]
is the input voltage with Kj = 50 and R = 4.

In the RL setting, we describe the system state as valve
angle α and velocity ω, the voltage u(t) corresponds to the
action space. The learning goal is to move the valve to a
desired angle g. Hence, the cost function can be defined as
saturated immediate cost c(s) = 1−exp(−(s−g)TL(s−g))
with diagonal width matrix L [2]. We set the start state
to be α0 = 10◦, the desired angle is g = 90◦. In each
controller rollout, 15 dynamics samples s, a, s′ are collected.
This results in a sparse data set of 75 samples after initial
random movements and 4 learning episodes. The controller
structure employed for policy search is a radial basis function
(RBF) network, which will be described in Section III-B in
more detail. Figure 2 shows the learning results of PILCO
with and without usage of a linear mean Gaussian prior, as
introduced in last section. As can be seen from the results,
the proposed approach using a linear mean prior converges
faster and more robustly in this control task.

B. Learning a Pick-Up Task with a Festo Robotino XT

In this section, we aim to solve an object pick-up task
using the proposed method. Here, a mobile robot, namely
a Festo Robotino XT shown in Figure 1, is controlled to
approach the target object, e.g. a mug, to grasp this object
and, subsequently, deliver it to the user. In the next sections,
we describe the Festo Robotino XT and the pick-up task first.
In Section III-B.2, learning results of the task are provided
and discussed in detail.

1) Object Grasping with Robotino: The Festo Robotino
XT shown in Figure 1, is a mobile service robot with an
omni-directional drive and an attached pneumatic arm. The
design of the arm is inspired biologically by the trunk of an
elephant. The arm itself consists of two segments with three
bellows each. The pressure in each bellow can be regulated
in a range of 0.0 to 1.5 bar to move the arm. As material, a
polyamide structure is employed resulting in a low arm weight.
A soft gripper is mounted as end-effector implementing the
so-called Fin-Ray-effect. Under pressure at a surface point,
the gripper does not deviate but bends towards that point and,
thus, allows a form-closed and stable grasp.

The robot is also well-suited to operate in human environ-
ments, as the low pressure pneumatics allows a compliant
behavior. However, kinematics and dynamics of the pneumatic
arm are quite complex. A further constraint of the Robotino
is the limited work space of the arm. Due to this limited
workspace, we need to control the robot base as well as the
arm movement while grasping an object. Thus, the forward
dynamics for the grasping control results in an 18 dimensional
model. These dimensions correspond to the robot state, i.e.
position and orientation of the base and end-effector, and
robot action space, i.e. base movements and change in arm
pressures.

The application we consider for the Robotino are pick-up
tasks. This task can be partitioned into three phases: the robot
approaches the object, grasps the object and, subsequently,

3885

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
7

8

9

10

11

12

13

14

15

16

episodes

co
st

(a) PILCO with linear mean prior

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
7

8

9

10

11

12

13

14

15

16

episodes

co
st

(b) PILCO with zero mean prior

Fig. 2: We performed 20 independent learning runs of PILCO with and without linear mean prior for the task of position
control on a simulated throttle valve system. As can be seen, our proposed method with linear mean prior in (a) converges
faster and more robust compared to PILCO with zero mean prior (b). Here, the boxes indicate the respective mean and
percentiles, while red crosses represent runs interpreted as outliers.

0 1 2 3 4 5

4

6

8

10

12

14

16

18

20

22

episodes

co
st

(a) PILCO with linear mean prior

0 1 2 3 4 5

4

6

8

10

12

14

16

18

20

22

episodes

co
st

(b) PILCO with zero mean prior

Fig. 4: The figure shows learning results for the task of object grasping. We performed 4 independent learning runs, the plots
show the mean and percentiles of the cost over episodes. Our approach with linear mean prior is shown in (a), while (b)
shows the learning results of Pilco with zero mean prior.

delivers the object to the user. While standard navigation
approaches can be employed to approach the object and to
deliver the object (see e.g. [10]), it is challenging to grasp an
object. While grasping an object, such as a mug on the floor,
the aim is to learn a control policy bringing the robot, i.e. base
and end-effector, to a proper posture where the grasp can be
conducted. Here, an external optical tracking system is used to
track the mobile robot and the object, for which markers are
appropriately attached as shown in Figure 1. At the surface
of the arm, six strings are attached. The robot’s end-effector
pose is estimated with a learned kinematics model using the
extension of these strings as input.

2) Learning Object Grasping: To learn object grasping in
the policy search setting, we need to define states, actions,
cost, and a control structure. For the Robotino XT, the state
consists of the position x, y and orientation θ of the base,
as well as 6D pose of the end-effector, i.e. position x, y, z
and orientation roll, yaw and pitch. The action space is also
9 dimensional, A ⊂ R9, with 3 dimensions for the base
movement and 6 dimensions to modify the bellow pressure in
a range of −0.3 bar to 0.3 bar. The dynamics f , f : S×A→
S, is hence an 18 to 9 dimensional mapping. The robot is
tracked at a rate of 2 Hz resulting in 120 dynamics samples
per minute. The training data, e.g. 200 samples in an 18
dimensional space after 4 episodes, is consequently sparse.

Next, we need to find an appropriate cost function for
object grasping. Similar to the task of throttle valve control
in Section III-A, we use the saturated immediate cost function
with width L, c(s) = 1−exp(−(s−g)TL(s−g)), that rewards
small distances of the end-effector to the desired grasping

pose g. Here, we use a sum of two saturated cost functions—a
wide cost to achieve robust learning and a peaked cost for
high grasping accuracy.

Finally, application of policy search requires the definition
of a parametrized control structure. As for learning throttle
valve control, we will again employ a radial basis function
network (RBF) with Gaussian shaped basis function. The
control structure can be written as π(s) =

∑N
i=0 wiφi(s),

with φi(s) = σ2
f exp(− 1

2 (s−si)TΛ(s−si)), weight vector w,
and S = {s0, . . . , sN} the set of support points. The weight
vector, the support points as well as Λ = diag(l21, . . . , l

2
D)−1

and σf represent the open control parameters. The RBF
control structure is flexible and, thus, applicable to a wide
range of systems.

Now, we can employ PILCO as introduced in Section I-B.
The initial robot pose has a displacement of approximately
50 cm to the mug. We start with application of random
actions to generate initial dynamics data. Here, we collect four
random trajectories of 15 seconds starting from the initial pose.
This results in an initial dynamics data set of 120 samples.
Now, we iterate the steps: learn dynamics model, improve
controller, apply controller to collect additional data. In each
rollout, the controller is applied for 10 seconds resulting in 20
additional dynamics samples. We repeat the learning process
four times, the learning results with our proposed method and
the previous PILCO approach are shown in Figure 4. It can
be seen that learning with the proposed method converges
after only 3 episodes, corresponding to 90 seconds system
interaction or 180 dynamics samples, and outperforms the
previous approach on this task.

3886

Fig. 5: The top pictures show the application of the final controller obtained after 5 episodes. The agent successfully grasps
the mug. The learning result can be generalized to a new object, e.g. a watering can, with only 2 additional episodes. The
rollout to grasp the handle of the can is shown in the pictures at the second row.

Fig. 6: The Figure shows our approach to solve pick-up tasks using the Robotino XT. First, the robot approaches the object
it wants to grasp—in this case, a mug on the floor. Second, the learned policy for object grasping is employed. Subsequently,
the robot delivers the object to the user, as shown in the most right picture.

A successful grasp of a learned controller is shown in the
upper part of Figure 5. Starting from a controller learned
for mug grasping, we can generalize the learning result for
grasping of new objects. Here, we reuse the previously learned
dynamics model and policy. After two additional learning
episodes—using an adapted cost function with new desired
grasping pose g—grasping a watering can is performed
successfully as shown at the second row of Figure 5.

Finally, we use the learned controller to solve pick-up
tasks. Figure 6 shows an exemplary solution of a pick-up
task. The Robotino approaches the target object, i.e. a mug
on the floor, grasps it using the learned policy, and, finally,
delivers it to the user. A video showing the learning process
with PILCO as well as an exemplary pick-up task is attached
as supplementary material.

IV. CONCLUSIONS

In this paper, we propose an extension of PILCO to policy
learning in presence of sparse data. As PILCO is built on GP,
the basic idea is to incorporate additional system knowledge
into the learning process as a mean function of the GP
prior. Here, we choose a linear mean Gaussian prior for
modeling the system dynamics. This choice is especially
appropriate when the system is linear or having an underlying
linear trend. By doing so, the resulting formulation of PILCO
remains analytically tractable and can be given in closed-form.
Experimental results in simulation and on a real robot show
that the proposed approach can help to speed up learning
in the presence of sparse data. We successfully employ the
approach to learn a control policy to solve an object pick-up
task for the mobile robot platform Robotino XT.

REFERENCES

[1] J. Kober and J. A. Bagnell and J. Peters. Reinforcement learning in
robotics: A survey. International Journal Of Robotics Research, 2013.

[2] M. P. Deisenroth and C. E. Rasmussen. PILCO: A Model-Based and
Data-Efficient Approach to Policy Search. International Conference on
Machine Learning, 2011.

[3] M. P. Deisenroth, G. Neumann and J. Peters. A Survey on Policy Search
for Robotics. Vol. 2 of Frontiers and Trends in Robotics, 2013.

[4] B. Bakker, V. Zhumatiy, G. Gruener, and J. Schmidhuber. Quasi-
online Reinforcement Learning for Robots. International Conference
on Robotics and Automation, 2006.

[5] A. Y. Ng and H. J. Kim and M. I. Jordan and S. Sastry. Inverted
autonomous helicopter flight via reinforcement learning. International
Symposium on Experimental Robotics, 2004.

[6] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine
Learning. The MIT Press, 2006.

[7] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction.
The MIT Press, Cambridge, MA, USA, 1998.

[8] P. G. Griffiths. Embedded Software Control Design for an Electronic
Throttle Body. Master’s Thesis, Berkeley, California, 2000.

[9] M. P. Deisenroth, D. Fox, C. E. Rasmussen. Gaussian Processes for
Data-Efficient Learning in Robotics and Control. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2014.

[10] S. Thrun, W. Burgard and D. Fox. Probabilistic Robotics: Intelligent
Robotics and Autonomous Agents. The MIT Press, 2005.

[11] D. Nguyen-Tuong and J. Peters. Using Model Knowledge for
Learning Inverse Dynamics. International Conference on Robotics
and Automation, 2010.

[12] B. Bischoff, D. Nguyen-Tuong, T. Koller, H. Markert and A. Knoll.
Learning Throttle Valve Control Using Policy Search. 23rd European
Conference on Machine Learning, 2013.

[13] M. P. Deisenroth, D. Fox and C. E. Rasmussen. Learning to Control
a Low-Cost Robotic Manipulator Using Data-Efficient Reinforcement
Learning. Robotics: Science & Systems, 2011.

[14] M. P. Deisenroth Efficient reinforcement learning using Gaussian
processes. PhD thesis, Karlsruhe Institute of Technology, 2010.

3887

