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Abstract— Methods known as Lipschitz Interpolation or
Nonlinear Set Membership regression have become established
tools for nonparametric system-identification and data-based
control. They utilise presupposed Lipschitz properties to com-
pute inferences over unobserved function values. Unfortunately,
they rely on the a priori knowledge of a Lipschitz constant
of the underlying target function which serves as a hyper-
parameter. We propose a closed-form estimator of the Lipschitz
constant that is robust to bounded observational noise in the
data. The merger of Lipschitz Interpolation with the new hyper-
parameter estimator gives a new nonparametric machine learn-
ing method for which we derive online learning convergence
guarantees. Furthermore, we apply our learning method to
model-reference adaptive control and provide a convergence
guarantee on the closed-loop dynamics. In a simulated flight
manoeuvre control scenario, we compare the performance of
our approach to recently proposed alternative learning-based
controllers.

I. INTRODUCTION

Among supervised learning methods, nonparametric re-
gression techniques have attracted much attention due to
their great flexibility to learn rich function classes. Among
many others, popular approaches include kernel methods
such as Gaussian Processes (GPs) [17], the NW-estimator
[16], [22], local methods such as LOESS regression [11]
as well as Lipschitz Interpolation (LI) [21], [23]. In spite
a wealth of classic as well as recent work that has shed
light on the theoretical and practical properties of these
methods, a common limitation remains: typically all results
rest on the assumption of the knowledge of a suitable hyper-
parameter that encodes a priori knowledge about the under-
lying learning target. While for some methods, especially
for many of the kernel methods with certain choices of
kernels, asymptotic consistency guarantees can be given for
general classes of target functions, irrespective of the chosen
hyper-parameter, in practice, the choice of hyper-parameter
markedly impacts the predictive performance of the regres-
sion method for finite data sets. In Lipschitz Interpolation
(LI) or Nonlinear Set Membership (NSM) methods [21],
[13], [23], the hyper-parameter is a Lipschitz constant of the
predictor. If set too low, the class of learnable target functions
is too restrictive. If on the other hand the parameter is set
too high, the resulting predictor will tend to overfit to noise
in the data and might yield poor generalisation performance.
Therefore, a common solution is to resort to hyper-parameter
optimisation [17], [5]. While often working well in practice,
these approaches tend to be too computationally expensive
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to work with large data and to support online learning and
adaptive control. Moreover, to the best of our knowledge, no
theoretical insights into the learning-theoretic properties of
the inferences with the hyper-parameter optimisers in place
exist to date.

For Lipschitz Interpolation (LI), this paper addresses this
gap. To this end, we propose a closed-form expression
to estimate the Lipschitz constant from the data that is a
modification of Strongin’s estimator [20]. It has the benefit
to support computationally tractable online updates but also
offers robustness to (bounded) observational noise. We then
propose to utilise the estimates in the LI rule to make
predictions of function values at unobserved inputs. This
combination of Lipschitz constant estimator and LI yields
a new nonparametric regression method which we refer to
as Lazily Adaptive Constant Kinky Inference (LACKI). We
provide convergence guarantees on the prediction errors in
a supervised online learning setting. To illustrate some of
the benefits and shortcomings of our approach, we compare
LACKI with a selection of established regression methods in
learning-based tracking control where it outperforms compet-
ing approaches across a range of performance metrics and
problem setups. This paper is a short version of a preprint
[4]. The longer version includes more detailed proofs and
additional guarantees such as sample complexity bounds
and worst-case consistency guarantees for offline learning
settings.

II. LIPSCHITZ INTERPOLATION WITH ADAPTIVE
LIPSCHITZ CONSTANT ESTIMATES

Setting. Let X be an input space endowed with (pseudo-)
metric d : X 2 → R≥0 and let Y be an output (vector) space
endowed with a translation-invariant pseudo-metric dY :
Y2 → R≥0. Let Lip(L) = {φ : X → Y| dY(φ(x), φ(x′)) ≤
L d(x, x′),∀x, x′ ∈ X} denote the set of Lipschitz continu-
ous functions with Lipschitz constant L. The best Lipschitz
constant of a function f is the smallest number L∗ such that
f ∈ Lip(L∗). A function is Lipschitz continuous if it has a
finite Lipschitz constant.

Let f : X → Y be a target function we desire to
learn in a supervised fashion. To this end, we assume that,
at time step n, we have access to a sample or data set
Dn := {

(
si, f̃i

)
| i = 1, . . . , Nn} containing Nn ∈ N

(possibly corrupted) sample values f̃i ∈ Y of target function
f at sample input si ∈ X . The sampled function values
are allowed to have observational error given by an error
function e : X → Rm≥0 which may model stochastic noise or
systematic error. That is, we assume dY(f̃i, f(si)) ≤ e(si).



For convenience, we may also write Dn = (Gn,Yn) where
Gn = {si|i = 1, ..., Nn} ⊂ X is the collection (or grid)
of sample inputs and Yn = {f̃i|i = 1, ..., Nn} ⊂ Y is the
pertaining sequence of observed function values. It is our
aim to learn target function f in the sense that we utilise
the available data Dn to infer predictions f̂n(x) of f(x)
at unobserved query inputs x /∈ Gn. In our context, the
evaluation of f̂n is what we refer to as (inductive) inference
or prediction and f̂n is referred to as the predictor.

Learning rule. We will now rehearse a simplified version
of Kinky Inference (KI) [6] – a class of nonparametric
learning rules that encompasses a host of other methods such
as NSM methods [13] and standard Lipschitz Interpolation
[21], [3], [23]. As a special case, we will then define our
proposed method that incorporates an adaptive estimator of
the Lipschitz constant of the target.

Definition II.1 (Kinky inference (KI) rule -simplified).
Given access to a sample set Dn and an input space pseudo-
metric d̃(·, ·; θ(n)) : X 2 → R parameterised by θ(n), we
define the KI predictor by f̂n

(
·; θ(n),Dn

)
: X → Y to

perform inference over function values as per:

f̂n
(
x; θ(n),Dn

)
:=

1

2
un(x; θ(n)

)
+

1

2
ln(x; θ(n)

)
. (1)

Here, un
(
·; θ(n)

)
, ln
(
·; θ(n)

)
: X → Rm are defined

by un
(
x; θ(n)

)
:= mini=1,...,Nn f̃i + d̃(x, si; θ(n)) and

ln
(
x; θ(n)

)
:= maxi=1,...,Nn f̃i− d̃(x, si; θ(n)), respectively.

The computational effort for making a prediction is in
O(NnM) where M is the effort for evaluating the pseudo-
metric. However, it is possible to apply (generalised) nearest-
neighbour techniques to reduce this effort to expected loga-
rithmic growth in the number of sample points [3], [6].

A special case arises for the choice of d̃(x, y; θ(n)) =
L(n) ‖x− y‖ which is referred to as Lipschitz Interpolation
[3] or as Nonlinear Set Interpolation [13]. Here the parameter
θ(n) = L(n) is the supposed Lipschitz constant of the
target. We will see below that the predictor f̂n(·;L(n),Dn)
is indeed Lipschitz continuous with Lipschitz constant L(n).
Typically, this constant is assumed to be either known a priori
or estimated from the data, e.g. [20], [13], [5]. Unfortunately,
little is understood about the effects of these previously
proposed parameter estimation techniques on the predictor’s
performance and about the impact of observational noise.

We will now define our Lazily Adapted Kinky Inference
(LACKI) learning rule that will allow us to provide online
learning guarantees even when parameters are estimated from
the data online.

For notational convenience, for two sets S, S′ ⊂ X of
inputs we define U(S, S′) := {(s, s′) ∈ S×S′| d(s, s′) > 0}
and let Un := U(Gn, Gn) be the set of all pairs grid inputs
deemed disparate under the pseudo-metric d.

Definition II.2 (LACKI rule). The Lazily Adapted Lipschitz
Constant Kinky Inference (LACKI) rule computes a KI
predictor f̂n as per Defn. 1, but where d̃(x, x′;L(n)) =

L(n) d(x, x′) and where we set

L(n) := max
{

0, max
(s,s′)∈Un

dY(f̃(s), f̃(s′))− λ
d(s, s′)

}
. (2)

Note, λ ≥ 0 is a design parameter. When we set λ = 2ē
(where ē ∈ R≥0 is the lowest upper bound on the level of
observational noise, i.e. dY(0, e(x)) ≤ ē,∀x), it is easy to
see that L(n) is bounded for Lipschitz continuous target
f . Being a Lipschitz constant of the predictor boundedness
of L(n) can cause the predictor to smooth out i.i.d.
observational noise. And, similar to other non-parametric
regression methods this noise hyper-parameter does impact
the generalisation method’s performance (for an illustration,
cf. Fig. 1, LACKI vs LACKI2). In general, as we make
no distributional assumptions about the observational
noise (in particular it could be systematic error), our
convergence guarantees we derive below will generally
have to depend on it. Next, consider an online learning
situation where the available data grows incrementally
such that Gn+1 = Gn ∪ {sn+1},∀n. We can define an
incremental update rule recursively as follows: L(n+ 1) :=

max
{
L(n),max(s,s′)∈U(Gn,{sn+1})

dY

(
f̃(s),f̃(s′)

)
−λ

d(s,s′)

}
for

n ∈ N and where L(0) := 0. The effort of computing
L(n + 1) in time step n + 1 based on the newly arrived
sample point and the previous Lipschitz constant estimate
L(n) is in O

(
Nn
)
.

A. Some properties

In preparation of subsequent parts of this paper, we will
conclude this section by deriving Lipschitz continuity as well
as sample consistency properties of our LACKI inference
rule. For simplicity, we will henceforth assume canonical
output space and norm-induced metrics, i.e. Y = Rm and
dY
(
y, y′

)
= ‖y − y′‖∞.

Lemma II.3 (Lipschitz regularity of LACKI). The predictors
f̂n are Lipschitz continuous (n ∈ N) with constant L(n). That
is,∥∥∥ f̂n(x)− f̂n(x′)

∥∥∥
∞
≤ L(n) d(x, x′),∀n ∈ N, x, x′ ∈ X .

Proof. (sketch) It is easy to show that the one-dimensional
mappings of the form x 7→ ` dX

(
x, x′

)
are `− Hölder

continuous for any choices of ` and inputs x′. Furthermore,
taking point-wise max, min as well as averages of Lipschitz
continuous functions is known to not change their Lipschitz
properties (e.g. [6]). Therefore, all output-component predic-
tors f̂n,j (j = 1, ...,m) are L(n)- Lipschitz.

Lemma II.4 (Sample-consistency of LACKI). If for each
output dimension j ∈ {1, ..., d} and some λ ≥ 0 we have

L(n) ≥ max(s,s′)∈Un
|f̃j(s)−f̃j(s′)|−λ

d(s,s′) then the LACKI rule
is sample-consistent (up to λ

2 ). That is, ∀q ∈ {1, . . . , Nn} :

f̂n(sq) ∈ Bλ
2

(
f̃q
)

where Bλ
2

(
f̃q
)

= {x ∈ Y|
∥∥∥x− f̃q∥∥∥

∞
≤

λ
2 } denotes the λ

2 -ball around the observation f̃q .
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Fig. 1. The predictors of several regression methods for a target function f : x 7→ |cos(2πx)| + x. The Nn = 500 observations (light blue dots) in
the sample were perturbed by uniform noise drawn i.i.d. from the interval [−.5, .5]. The target function is plotted in dark blue and the predictions of the
trained models are plotted in magenta. From left to right: LACKI: Our LACKI method with correctly set noise parameter ē. LACKI2: LACKI with falsely
set noise parameter ē = 0. GP: Mean of a Gaussian process regressor with manually tweaked kernel hyper-parameter falsely assuming no observational
noise. GP2: automatically optimised kernel hyper-parameter assuming correct noise variance causing to model over-smoothing. Lin. Mod.: LMS regression
of a linear model.

Thus, we also have∥∥∥f(sq)− f̂n(sq)
∥∥∥
∞
≤ λ

2
+ ‖e(sq)‖∞ ≤

λ

2
+ ē.

Proof. Remember, our output-space metric is given by
dY
(
y, y′

)
= ‖y − y′‖∞. For ease of notation, we will

confine our proof to the case of one-dimensional outputs
(d = 1). The multi-dimensional case follows trivially from
the one-dimensional result by applying it to each output
component function. Let n ∈ N be fixed and, for ease of
notation, write L := L(n). Let j, k ∈ {1, . . . , Nn} such that
j ∈ argminif̃i+L d(si, sq) and k ∈ argmaxif̃i−L d(si, sq).
By definition of f̂n we have:

f̂n(sq) =
1

2

(
f̃j + L d(sj , sq)︸ ︷︷ ︸

:=B

)
+

1

2

(
f̃k − L d(sk, sq)︸ ︷︷ ︸

=:A

)
. (3)

(i) Firstly, we show A ∈ [f̃q, f̃q + λ]: If k = q, this holds
trivially true since then A = f̃q . So, assume k 6= q. We have
f̃k ≥ f̃k − L d(sk, sq) ≥ f̃q − L d(sq, sq) = f̃q where the
second inequality holds due to k ∈ arg maxi f̃i−L d(si, sq).
That is,

A = f̃k − L d(sk, sq) ≥ f̃q. (4)

On the other hand, since L ≥ max(s,s′)∈Un
|f̃(s)−f̃(s′)|−λ

d(s,s′)

we have in particular: L ≥ |f̃k−f̃q|−λd(sk,sq)
. Thus, L d(sk, sq) +

λ ≥
∣∣∣f̃k − f̃q∣∣∣ = f̃k−f̃q . Hence, f̃q+λ ≥ f̃k−L d(sk, sq) =

A. Together with (4) we have shown A ∈ [f̃q, f̃q + λ].
(ii) The proof of B ∈ [f̃q − λ, f̃q] is completely analogous

to that of (i) and hence, is omitted.
(iii) Together, the statements in (i) and (ii) entail f̂n(sq) =

1
2A+ 1

2B ∈ [f̃q − λ
2 , f̃q + λ

2 ].
Hence, dY

(
f̂n(sq), f̃(sq)

)
≤ λ

2 .
Moreover, for any sample input sq we have f̂n(sq) =

f(sq) + φq + ψq with dY(0, ψq) ≤ λ
2 , dY(0, φq) ≤

dY
(
0, e(sq)

)
≤ ē. Our output-space metric is translation-

invariant and hence, dY
(
f(sq), f̂n(sq)

)
= dY

(
0, f̂n(sq) −

f(sq)
)

= dY
(
0, φq +ψq

)
≤ λ

2 + dY
(
0, e(sq)

)
≤ λ

2 + ē.

III. ONLINE LEARNING GUARANTEES

In the long version of the paper [4], we prove consistency
results. That is, asymptotics and sample complexity bounds
for the case where the data becomes dense in the domain
(with high probability). In this shorter version of the paper
however, we will instead consider an online learning set-
ting where we incrementally get to observe samples along
the trajectory of inputs

(
xn

)
n∈N

and are interested in
the long-term one-step-lookahead prediction errors on this
trajectory, irrespective of distributional assumptions. That
is, we are interested in the evolution of prediction errors
dY
(
f̂n(xn), f(xn)

)
where the predictor f̂n(·) is based on

Dn = Dn−1 ∪ {
(
xn−1, f̃(xn−1)

)
},∀n > 1.

We will show that this error trajectory vanishes (up
to observational errors), provided that the input sequence(
xn

)
n∈N

is bounded.

Lemma III.1. Assume we are given a trajectory
(
xn

)
n∈N

of inputs with xn ∈ X where input space X can be endowed
with a shift-invariant measure. Furthermore, assume the
sequence is bounded, i.e. dX (xn, 0) ≤ β for some β ∈ R+

and all n ∈ N. Finally, assume the inputs of the available
data coincide with the complete history of past inputs, i.e.
Gn = {xi|i ∈ N, i < n}. Then we have:

dist(Gn, xn) = min{ dX (g, xn)| g ∈ Gn}
n→∞−→ 0.

Proof. (sketch) If the distances were not to converge, there
existed an infinite number of disjoint balls around the input
points that summed up to infinite volume. This however,
would be a contradiction to the presupposed boundedness
of the sequence. For the full proof, refer to [4].



We are now in a position to prove that the prediction errors
will vanish the longer the (online) learning proceeds:

Theorem III.2. Assume that, for some q ≥ 0, we chose λ =
2ē+ q in our LACKI prediction rule. And, let f be Lipschitz
continuous up to some error level Ēh. That is, f = φ+ψ with
φ ∈ Lip(L∗) and a function ψ such that supx dY

(
0, ψ(x)

)
≤

Ēh ∈ R.
Assume we are given a trajectory

(
xn

)
n∈N

of inputs that

is bounded, i.e. where d(xn, 0) ≤ β for some β ∈ R+ and all
n ∈ N. Furthermore, assume Dn+1 = Dn ∪ {

(
xn, f̃(xn)

)
}

and thus, Gn = {xi|i ∈ N, i < n}. Then the prediction
error on the sequence vanishes up to the level of sample-
consistency and Lipschitz continuity in the following sense:

dY
(
f̂n(xn), f(xn)

) n→∞−→ [0,
q

2
+ 2ē + 2Ēh].

In particular, in case the observations are error-free (f̃ = f )
and assuming the target is Lipschitz continuous then, when
choosing λ = 0, the prediction error is guaranteed to vanish.
That is,

dY
(
f̂n(xn), f(xn)

) n→∞−→ 0.

Proof. Let ξn ∈ argming∈Gn d(xn, g) denote the nearest
neighbour of xn in Gn = {x1, ..., xn−1}.

Since sequence (xn) is bounded, Lemma III.1 is applicable
and hence: (i) limn→∞ d(xn, ξn) = 0.

By Lemma II.4, we know that for all inputs g ∈ Gn∥∥∥f(g)− f̂n(g)
∥∥∥
∞
≤ λ

2 + ‖e(g)‖∞ ≤
λ
2 + ē. Therefore,

if we set λ = 2ē + q then dY
(
f̂n(ξn), f(ξn)

)
≤ 2ē + q

2 .
Hence, appealing to the triangle inequality, we see that (ii)
dY
(
f̂n(xn), f(ξn)

)
≤ dY

(
f̂n(xn), f̂n(ξn)

)
+ 2ē + q

2 .
Moreover we note that the predictors f̂n have Lipschitz

constants L(n) and that the L(n) are bounded from above
by some L̄ ∈ R. Thus, (iii) ∃L̄ ∈ R∀n ∈ N : f̂n ∈ Lip(L̄).
In conclusion, 0 ≤ dY

(
f̂n(xn), f(xn)

)
≤ dY

(
f̂n(xn), f(ξn)

)
+ dY

(
f(ξn), f(xn)

)
(ii)

≤ dY
(
f̂n(xn), f̂n(ξn)

)
+ 2ē + q

2 + dY
(
f(ξn), f(xn)

)
≤ dY

(
f̂n(xn), f̂n(ξn)

)
+ 2ē+ q

2 + dY
(
φ(ξn), φ(xn)

)
+ 2Ēh

(iii)

≤ (L̄+L∗) d(xn, ξn)+2ē+ q
2+2Ēh

n→∞−→ 2ē+ q
2+2Ēh.

IV. APPLICATION TO MODEL-REFERENCE ADAPTIVE
CONTROL

A. Model reference adaptive control

Before proceeding with the application scenario, we will
commence with (i) outlining model reference adaptive con-
trol (MRAC) [1] as considered in [9] and (ii) describe the
deployment of LACKI to this framework.

(i) Assume m ∈ N to be the dimensionality of a config-
uration of the system in question and define d = 2m to be
the dimensionality of the pertaining state space X .

Let x = [x1;x2] ∈ X denote the state of the plant to be
controlled. Given the control-affine system

ẋ1 = x2, ẋ2 = a(x) + b(x)u(x) (5)

it is desired to find a control law u(x) such that the closed-
loop dynamics exhibit a desired reference behaviour:
ξ̇1 = ξ2, ξ̇2 = fr(ξ, r) where r is a reference command,

fr some desired response and t 7→ ξ(t) is the reference
trajectory.

If a priori a and b are believed to coincide with â0, b̂0
respectively, the inversion control u = b̂−10 (−â0 + u′) is
applied. This reduces the closed-loop dynamics to ẋ1 =
x2, ẋ2 = u′ + ã(x, u) where ã(x, u) captures the modelling
error of the dynamics:

ã(x, u) = a(x)− â0(x) +
(
b(x)− b̂0(x)

)
u. (6)

Let Id ∈ Rd×d denote the identity matrix. If b is perfectly
known, then b − b̂−10 = 0 and the model error can be
written as ã(x) = a(x) − â0(x). In particular, ã has lost
its dependence on the control input.

In this situation [9], [8] propose to set the pseudo control
as follows: u′(x) := νr + νpd− νad where νr = fr(ξ, r) is a
feed-forward reference term, νad is a yet to be defined output
of a learning module adaptive element and νpd = [K1K2]e
is a feedback error term designed to decrease the tracking
error e(t) = ξ(t) − x(t) by defining K1,K2 ∈ Rm×m as
described in what is to follow.

Inserting these components, we see that the resulting error
dynamics are:

ė = ξ̇−[x2; νr+νpd+ ã(x)] = Me+B
(
νad(x)− ã(x)

)
(7)

where M =

(
Om Im
−K1 −K2

)
and B =

(
Om
Im

)
. If the

feedback gain matrices K1,K2 parametrising νpd are chosen
such that M is stable then the error dynamics converge to
zero as desired, provided the learning error Eλ vanishes:
Eλ(x(t)) = ‖νad(x(t))− a(x(t))‖ t→∞−→ 0.

(ii) It is assumed that the adaptive element is the output
of a learning algorithm that is tasked to learn ã online. This
is done by continuously feeding it training examples of the
form

(
x(ti), ã(x(ti)) + εi

)
where εi is observational noise.

Intuitively, assuming the learning algorithm is suitable
to learn target ã (i.e. ã is close to some element in the
hypothesis space [14] of the learner) and that the controller
manages to keep the visited state space bounded, the learning
error (as a function of time t) should vanish.

Substituting different learning algorithms yields different
adaptive controllers. RBFN-MRAC [12] utilises radial basis
function neural networks for this purpose whereas GP-MRAC
employs Gaussian process learning [17] to learn ã [9], [8].

In what is to follow, we utilise our LACKI method as
the adaptive element. Following the nomenclature of the
previous methods we name the resulting adaptive controller
LACKI-MRAC.

As mentioned above, the guarantee that the learning error
vanishes over time can be translated into a guarantee of
vanishing tracking error. For a discrete-time version of the
MRAC setting, we can therefore appeal to Theorem III.2 to
establish conditions under which LACKI-MRAC is guaran-
teed to eventually achieve tracking success. In particular, in
the long version of this paper [4], we derive convergence



guarantees, which, for the case of error-free observations,
can be stated as follows:

Corollary IV.1 ([4]). In the special case of error-free
observations of a Lipschitz continuous target function and
assuming bounded prediction errors, choosing a parameter
λ = 0 implies that the tracking error vanishes, i.e. :

‖en‖∞
n→∞−→ 0.

The control sequence (u(xn)n∈N converges if the reference
trajectory

(
ξn

)
n∈N

does.

Note, the assumption of bounded prediction error can be
achieved if either state space is bounded or, if we allow for
unbounded control output which allows the linear control
part to effectively bound the reachable set of states of the
closed-loop dynamics.

B. Learning-based tracking control of an F-4 fighter jet
under wing rock

As pointed out in [10], modern fighter aircraft designs
are susceptible to lightly damped oscillations in roll known
as “wing rock”. Commonly occurring during landing [18],
removing wing rock from the dynamics is crucial for pre-
cision control of such aircraft. Precision tracking control
in the presence of wing rock is a nonlinear problem of
practical importance and has served as a test bed for a
number nonlinear adaptive control methods [9], [15], [10].

For comparison, we replicated the experiments of Chowd-
hary et. al. [9], [8].1 Using a realistic model of the roll
dynamics of an F-4 fighter jet, the authors examined the
task of using a model-reference adaptive controller (MRAC)
to perform a roll manoeuvre under uncertain wing rock.
Within a time span between t0 and tf , the task was to
control the aircraft’s ailerons on order to cause the aircraft’s
state trajectory x : [t0, tf ] → R2 to closely follow a roll
manoeuvre prescribed by the reference trajectory ξ(·). Here
the first component of the state and reference was the roll
angle and the second was the angular velocity.

Since wing rock can destabilise the dynamics, the authors
proposed to utilise a Gaussian process approach to learn a
model of the wing rock dynamics online and demonstrated
this could significantly improve tracking performance over
competing methods. They compared their Gaussian process
based approach, called GP-MRAC, to the more established
adaptive model-reference control approach based on RBF
neural networks [19], [12], referred to as RBFN-MRAC. As
the controller was meant to adapt to the uncertain wing rock
dynamics online during runtime, computational real time
constraints necessitated to fix the kernel hyper-parameters
of the GP. Furthermore, they also proposed to limit the
GP to a fixed budget of training examples which would be
incrementally updated online.

Replacing the GP by our LACKI learner, we readily
obtain an analogous learning-based controller which we call

1We are grateful to the authors for kindly providing their code.
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Fig. 2. Performance of the different online controllers over a range of 555
trials with randomised parameter settings and initial conditions. 1: RBFN-
MRAC, 2: GP-MRAC, 3:LACKI-MRAC, 4: PD-Controller. LACKI-MRAC
outperforms all other methods with respect to all performance measures,
except for prediction run time (where the parametric learner RBFN-MRAC
performs best).

LACKI-MRAC. For baseline comparison, we also examined
the performance of a simple PD-controller.

We created 555 randomised test runs of the wing rock
tracking problems and tested each control algorithm on each
one of them. The initial state x(t0) was drawn uniformly at
random from [0, 7] × [0, 7], the initial kernel length scales
were drawn uniformly at random from [0.05, 2], and used
both for RBF-MRAC and GP-MRAC. For LACKI, we chose
λ = 0. The parameter weights W of the system dynamics
(cf. [9]) were multiplied by a constant drawn uniformly at
random from the interval [0, 2]. To allow for better predictive
performance of GP-MRAC, we set the maximal budget to
200 training examples (twice as large as in the experiments of
[9]). The feedback gains of the linear pseudo controller were
chosen to be K1 = K2 = 1 (see [9] for more explanations).
As a baseline comparison, we also tested the performance of
a simple PD− controller with just these feedback gains.

The performance of all controllers across these randomised
trials is depicted in Fig. 2. Each data point of each boxplot
represent a performance measurement for one particular trial.

For each method, the figures show the boxplots of the
following recorded quantities:

• log-XERR: cumulative angular position error (log-deg),
i.e. log(

∫ tf
t0
‖ξ1(t)− x1(t)‖ dt ).

• log-XDOTERR: cumulative roll rate error (log-deg/sec.),
i.e. log(

∫ tf
t0
‖ξ2(t)− x2(t)‖ dt ).

• log-PREDERR: log-prediction error, i.e.
log(

∫ tf
t0

∥∥∥ f̂n(x(t))− f(x(t))
∥∥∥ dt ) where f is a vector

field affected by the wing rock.
• log-CMD: cumulative control magnitude (log-scale), i.e.

log(
∫ tf
t0
‖u(t)‖ dt ).

• log-max. RT (predictions): the log of the maximal run
time (within time span [t0, tf ]) each method took to
generate a prediction νad within the time span.



• log-max. RT (learning): the log of the maximal run
time (within time span [t0, tf ]) it took each method to
incorporate a new training example of the drift ã.

Discussion: All three adaptive methods outperformed the
simple PD− controller in terms of tracking error. With
regard to prediction run time, RBFN-MRAC outperformed
both GP-MRAC and LACKI-MRAC. This is hardly surpris-
ing. After all, RBFN-MRAC is a parametric method with
constant prediction time. By contrast, both non-parametric
methods will have prediction times growing with the number
of training examples. That is, it would be the case if GP-
MRAC were given an infinite training size budget. Indeed
one might argue whether GP-MRAC, if operated with a
finite budget, actually is a parametric approximation where
the parameter consists of the hyper-parameters along with
the fixed-size training data matrix. When comparing the
(maximum) prediction and learning run times one should
also bear in mind that GP-MRAC predicted with up to 200
examples in the training data set. By contrast, fast enough
to process large online data, LACKI-MRAC undiscerningly
had incorporated all 10001 training points by the end of each
trial. Across the remaining metrics, LACKI-MRAC markedly
outperformed all other methods.

V. CONCLUSIONS

We have introduced Lazily Adapted Constant Kinky In-
ference (LACKI) as an approach to nonparametric ma-
chine learning. Our method was built on the framework of
Kinky Inference which is a generalisation of well-known
approaches such as LI and NSM methods that have be-
come popular in numerical mathematics and learning-based
control. Our approach inherits the numerical simplicity of
these methods but does not require a priori knowledge of
a Lipschitz constant of the underlying target function. Of
course, this is of great practical interest since it endows
LACKI with substantially improved black-box learning ca-
pabilities. In contrast to competing NSM approaches based
on Lipschitz constant estimation [13], [5], LACKI is fast
enough to support online learning and, we can still give
theoretical guarantees on the learning performance. Being
a nonparametric regression method that is simple but can
learn rich function classes, we believe LACKI hits a sweet
spot between robustness and efficiency on the one hand and
high learning capacity on the other. Furthermore, even with
the hyper-parameter estimator in place, it is fast enough to
be utilised in an online learning setting. This is in contrast to
other methods, for instance in Gaussian process regression,
that rely on hyper-parameter optimisation but which are
burdened with more extensive computational effort. These
computational advantages, allows LACKI to be utilised in
online learning and model-reference adaptive control. For
these scenarios we were able to give learning guarantees
which can be converted into guarantees on tracking success.

Our theoretical guarantees assume the observational errors
to be bounded by some ē ∈ R≥0 and that the hyper-parameter
λ is set to at least two times ē. Knowledge of such a
bound is a common assumption in learning-based control

[7], [2]. And, other common assumptions, such as white-
noise disturbances, are physically unrealistic. Nonetheless,
in practice, such a noise bound may be unknown or be
too large to give good convergence behavior of our method.
Ongoing work investigates how to estimate the ē parameter
from the data: In the presence of bounded i.i.d., additive,
stochastic noise this could be done by using POKI-LC [5]
on a small patch of the input space to obtain a local estimate
of the Lipschitz constant. The noise bound would then be
computed as a function of the worst-case error of the POKI-
LC predictor on a test sample.
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