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Abstract

In many settings, data is collected as mul-
tiple time series, where each recorded time
series is an observation of some underlying
dynamical process of interest. These obser-
vations are often time-marked with known
event times, and one desires to do a range
of standard analyses. When there is only
one time marker, one simply aligns the ob-
servations temporally on that marker. When
multiple time-markers are present and are at
different times on different time series obser-
vations, these analyses are more difficult. We
describe a Gaussian Process model for ana-
lyzing multiple time series with multiple time
markings, and we test it on a variety of data.

1 Introduction

In many settings, data is collected as multiple time se-
ries, such as repeated measurements of a variable that
fluctuates daily, or an experimental trial in some sci-
entific application. For all such trials n ∈ {1, ..., N},
each recording y(n)(t) is a time series observation of
some underlying process of interest. These observa-
tions are often time-marked with known event times
m

(n)
k for events k ∈ {1, ...,K}. As a concrete example

which we will use in this work, consider an experiment
where the velocity y(t) of an arm is recorded during
a reaching experiment, where reaches are repeatedly
made from a central target out to a peripheral target,
and back again. The events that occur during each

experimental trial include markers m
(n)
k such as the

start time of trial n and the times when the subject’s
movement begins in one direction or another. The pro-
cess of interest is the underlying dynamical response
to these events. Here we seek to effectively model this
and other settings.
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When there is only one time marker (such as trial start
or beginning of a day), analysis can be simply done by
aligning the observations temporally. Multiple time
markers at different times on different trials complicate
matters. In the reaching example, if trial n begins at

m
(n)
1 = tstart, the subject begins to move outwardly at

some random time m
(n)
2 = tmove (these times vary due

to reaction time and imposed randomness in experi-
mental cues), and then after another variable reaction
time the subject moves back to the central target at

m
(n)
3 = treturn, how can we describe an average re-

sponse in this experiment? Certainly tmove correlates
to tstart via the subject’s reaction time, and also tmove

will influence the subject’s readiness to make an in-
bound movement at treturn. Figure 1 shows four ob-
servations (N = 4) of a time-marked data process with
three markers (K = 3). These observations are behav-
ioral data from the experiment described above, but
the occurrence of different markers at different times
makes it difficult to analyze this data by just consider-
ing one notion of time (i.e., time with respect to only
one marker). For example, it appears that aligning the
observations to the first or third marker (the squares in
the left panel or diamonds in the right panel) describe
different parts of the data best, but in general this can
not be determined. Further, we desire a method that
can learn these relationships automatically from data
and is not restricted to one simple alignment.

Typically, efforts to analyze this “time-marked data”
involve clipping the data in a time window around

each marker m
(n)
k and analyzing within those windows

across n, thereby treating each time series observation

as a set of independent time series y
(n)
k (t) recorded se-

rially, and losing any shared statistical power across
temporal epochs (this is very common in experimental
sciences; see for example Sugrue et al. (2004); Church-
land et al. (2006)). Here we describe a model for
time series with multiple time markings. We treat
each time series not as a univariate time series with
the single input of absolute time t, but rather as
a multidimensional time-series where each input di-
mension is time with respect to a particular marker,
which corresponds to augmenting the definition of

255



Gaussian Processes for time-marked time-series data

0 500 1000 1500
−600

−400

−200

0

200

400

600A

0 500 1000 1500
−600

−400

−200

0

200

400

600

H
o
ri
z
o
n
ta
l 
V
e
lo
c
it
y
 (
m
m
/s
)

B

−1000 −500 0 500
−600

−400

−200

0

200

400

600

Time with respect to each marker (ms)

C

Figure 1: Four observations of time-marked data (N = 4). The squares, circles, and diamonds correspond to each
of the three (K = 3) markers. In the left panel, all four time series observations are aligned to the first square
marker m1. In the middle and right panels, the same observations are plotted with respect to the occurrence of
the second and third markers, respectively. These four observations have been shared with us from a larger set
of behavioral experiments (Cunningham et al., 2011) and are part of the first data set that will be analyzed in
this work.

y(t) to a K-dimensional input y(n)(t,m) = y(n)(t) =

y(n)([t −m
(n)
1 , ..., t − m

(n)
K ]). Gaussian Processes (see

Rasmussen and Williams (2006) for a thorough back-
ground) allow a convenient and natural framework for
regression of a signal y(·) against time in this multidi-
mensional extension, and we model time-marked time
series within this GP framework.

While this approach will address the general problem,
to accurately model this sort of data, more consider-
ation is warranted. Specifically, a GP (and our ba-
sic multidimensional time-marked GP) is acausal, in
that the signal y(n)(t) is influenced by the times of
future events. While appropriate in some scenarios,
in many settings it is desirable to enforce causality.
In a causal multidimensional model, the observation
could only be influenced by the occurrence of a par-
ticular marker after that marker occurs. We develop a
causal GP model. While other non-parametric Gaus-
sian Processes have been studied (Sampson and Gut-
torp, 1992; Nott and Dunsmuir, 2002; Schmidt and
O’Hagan, 2003; Murray-Smith and Pearlmutter, 2003;
Paciorek and Schervish, 2006, 2003), we consider in
depth the particular case of causal GPs.

Of course, GP are not the only possible framework
for analyzing such a model. Other statistical frame-
works such as splines could be brought to bear on the
problem of time-marked data and for causality. How-
ever, GP offer a principled non-parametric approach
that incorporates causality and these multiple time-
markers in a natural way. Furthermore, other attrac-
tive features of Bayesian non-parametrics are inher-
ited by our choice of GP: for example, the automatic
relevance determination (ARD) properties of learning

lengthscale hyperparameters of particular covariance
kernels can lend insight about the relevance of particu-
lar time markers to the measured behavioral response.

Our construction for causal GP models of time-marked
data is simple, analytically tractable, and computa-
tionally efficient, and it recovers classical smoothing
procedures as a special case. We demonstrate the
model and test it on different types of data. This ap-
proach outperforms conventional methods. Thus, con-
sideration of temporal event markers may have impact
across a range of time series analyses.

2 Models for Time-Marked Data

We model time-marked time series as data over a mul-
tidimensional input space, where each input dimen-
sion is defined as time with respect to each given time
marker or event time. As such, this GP is a condi-
tional model, conditioned on both the event-markers
and input times. Specifically, we say a collection of
N time series {y(n)(t)}n=1,...,N with given time mark-

ers {m(n)
k }n=1,...,N

k=1,...,K
are drawn from a GP with time-

marked covariance kTM:

kTM

(
t
(p)
i , t

(q)
j

)
= k


t

(p)
i −



m

(p)
1
...

m
(p)
K


 , t

(q)
j −



m

(q)
1
...

m
(q)
K







(1)

where the superscripts p and q indicate that the data
points in question come from two possibly different
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time series observations. We have used the subscript
TM to highlight the fact that a time-marked GP is
simply a particular choice of covariance. For exam-
ple, we can choose a squared exponential kernel with
lengthscales lk, and then:

kTM

(
t
(p)
i , t

(q)
j

)
=

σ2exp

{
−

K∑

k=1

1

2l2k

((
t
(p)
i −m

(p)
k

)
−
(
t
(q)
j −m

(q)
k

))2
}
.

(2)

2.1 Causal Gaussian Processes

As noted above, modeling causality is often a nat-
ural desire in these settings. Formally, we define a
causal GP y(t) ∼ CGP(0, k) where t ∈ IRK and
k(·, ·) is a stationary, positive semi-definite kernel func-
tion. Unlike a typical stationary GP, a causal GP
has the nonstationarity property that, for a given
ω ∈ Ω (a single outcome from the sample space),
y(t1, ω) = y(t2, ω) ∀ t1, t2 : (t1)+ = (t2)+, where
(·)+ is the positive part of the vector t. In words, this
means that the signal is flat in the direction of each
dimension in the negative halfplane of that dimension.
For simplicity, in this definition we have defined causal-
ity with respect to the origin t = 0, but this can be
generalized to any point by replacing (·)+ with (·)>γ ,
or to enforce anticausality with (·)−. It is also worth
noting that this definition of causality is equivalent to

enforcing that a draw y(t) will have ∂y(t)
∂tk

= 0 ∀ tk < 0

(or tk < mk in the non-origin case). In one dimension,
this definition reduces to the familiar notion of a signal
y(t) that is constant until it causally responds to an
event mk (or the origin).

To model a causal GP, one might first consider con-
ditioning on fictitious observations of a fixed value in
the past, effectively constraining that part of the draw.
Despite closure under conditioning being a convenient
and frequently used property of the Gaussian, in the
context of a causal GP, conditioning is theoretically
and practically inappropriate (see for example Popov
(2008)), and thus we will not consider this possible
model further.

Instead, one might choose to warp the in-
put space to enforce causality, namely y(t) =
x(h(t)), where h(t) = t I(t > 0), and x(t) is a station-
ary GP. These time warpings, also sometimes called
spatial deformations (Sampson and Guttorp, 1992;
Schmidt and O’Hagan, 2003), preserve the GP by def-
inition. These other works focus on inferring nonsta-
tionary warping/deformation mappings using splines
and multidimensional scaling (Sampson and Guttorp,
1992) or with a GP mapping true space t to deformed

space h(t) (Schmidt and O’Hagan, 2003). The focus of
those works is thus very different from this work, where
we presume a fixed, known warping. Furthermore, the
existence of a fixed, simple warping simplifies inference
and learning considerably.

One might also consider a nonstationary linear filter
y(t) =

∫
x(u)g(t, u)du, for a suitably defined filter

g(t, u). This filter can be any function, but to enforce
causality as defined above we use:

g(t, u) =

{
δ(u) t < 0

δ(t− u) t ≥ 0
(3)

where δ(·) is the Dirac delta. If x(t) is a GP
with covariance kx, then y(t) is a causal GP y(t) ∼
CGP(0, kx). Extending either this filtering definition
or the time warping definition to higher input dimen-
sions is trivial - either definition is just repeated on all
input dimensions.

Linear filtering is a convenient, simple, and theoreti-
cally sound way to construct a causal GP. In fact, it
is just a generalization of the time warping example
above, which can be simply seen by using a specific fil-
ter g(t,u) = δ(h(t)−u), from which we see that y(t) =∫
g(t,u)x(u)du =

∫
δ(h(t)−u)x(u)du = x(h(t)). The

filter g(t, u) can also express more complex relation-
ships, such as AR or MA properties, which are an im-
portant consideration outside the scope of this work.
However, the instantaneous relationship of the type
g(t,u) = δ(h(t)−u) suffices for the causal GP setting
of interest here. Thus, as far as causal GP are con-
cerned, these two models are equivalent. Hereafter we
claim this model is the simple and appropriate choice
for causal GP.

Conveniently, with the time-marked model and the
causal GP, we can now easily make a causal time-
marked GP: {y(n)(t)}n=1,...,N ∼ CGP(0, kTM), which

amounts to replacing (ti−m
(p)
k ) with h(ti−m

(p)
k ) above

in Equation 2. By construction, the causal or acausal
time-marked data model is a set of mappings of the
input space of a standard GP, which allows this model
to inherit all conventional GP machinery. Thus we de-
fer learning and inference to standard literature such
as Rasmussen and Williams (2006). Draws from this
process and the corresponding time series observations
(one dimensional slices) are shown in Figure 2.

GP models typically include terms for observation
noise, and that can be easily done here also by adding
independent noise covariance to each observation. Be-
cause our observations themselves are time-series, it of-
ten makes sense to add temporally colored noise rather
than (or in addition to) the more standard white Gaus-
sian noise at every data point. The intuition here is
that each time-series measurement may have its own
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Figure 2: GP time-marked data model. Panel A shows an acausal model with lines which show the progress
of time in each of the N = 4 trials. The projection of the surface onto these lines - namely the time series
observation itself - is shown in Panel B. Panels C and D show the same features for a causal model.

temporally-varying signal that varies trial-to-trial, in
addition to the common underlying dynamical pro-
cess. In our experiments, we add colored noise terms
modeled independently across N trials with a stan-
dard squared exponential kernel. To be concrete, our
final causal time-marked data covariance for our ex-
periments will be:

kTM

(
t
(p)
i , t

(q)
j

)
=

σ2exp

{
−

K∑

k=1

1

2l2k

(
h
(
t
(p)
i −m

(p)
k

)
− h

(
t
(q)
j −m

(q)
k

))2
}

+ δ(p− q)σ2
rexp

{
− 1

2l2r

(
t
(p)
i − t

(q)
j

)2
}

+ δ(p− q)δ(t
(p)
i − t

(q)
j )σ2

v , (4)

where the second term is colored noise that is ‘private’
to each time series observation and does not involve
time markings, and the third term is conventional ad-
ditive noise at every data point (σv, which we set to be
small and do not learn in our experiments). The hy-
perparameters of this covariance - {σ, l1, ..., lK} for the
time-marked component and {σr, lr} for the noise term
- can be readily learned from data jointly according to
standard GP procedure. Also, this model inherits the
computational complexity of other GP, but can also
benefit from the literature in fast GP, such as Snelson
and Ghahramani (2006).

2.2 Alternative models for time-marked data

We now briefly discuss alternative ways in which such
data has been treated, which will serve as our compar-
ison in the following experiments. First, the simplest
algorithm for analyzing time-marked data is to simply
ignore the presence of time markers altogether. We
can treat the data as conventional time series and use
GP regression accordingly. This choice is a special case
of a time-marked data model where K = 1. One can

also do basic averaging of the time series observations
instead of GP regression, since we have all datasets at
a fine enough resolution to average all training data
directly.

Second, when time-markers are recognized as impor-
tant features in a data set, often it is handled by ‘clip-
ping’ the data: ad hoc temporal windows are chosen
around each marker, and data is treated as a set of
K independent time series, with each trial aligned to
the kth marker in the kth window. On each of these
clipped windows, GP regression or simple averaging
can be used interchangeably. Clipping models have
often been used in experimental science (for example
Sugrue et al. (2004); Churchland et al. (2006)). De-
spite its simple description, this model has a number of
critical drawbacks. First, there is no notion of causal-
ity, and in addition the time of other events can not
effect the analysis of the data belonging to a particular
window. Second, this clipping model suffers from an
inability to share statistical power across time epochs.
Third and perhaps most importantly, the actual size
of the windows for analysis can not be chosen without
guessing. Finally, also critically, any choice of win-
dows will necessary over-count or under-count partic-
ular pieces of data, which confounds analysis consid-
erably.

3 Experiments and Results

We have introduced causal GP and their application to
analyzing time-marked time series data. To validate
the utility of the model, we now show regression on
a range of time-marked data sets. First, we describe
the experimental conditions and sources of these data,
and then we show results for our GP methods and for
many other possible methods. In all cases, the time-
marked causal GP has lower error in regression on held
out test data, indicating the utility of this model in
experimental analysis.
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Figure 3: Panel A: five observations from the game-weekend traffic dataset of Section 3.1.2. This data has five
markers: square - start of the weekend; circle - 1hr before the start of the Saturday game; diamond - 1hr before
the end of the Saturday game; upward triangle - 1hr before the start of the Sunday game; downward triangle -
1hr before the end of the Sunday game. These examples show the superposition of standard daily oscillations
and game-related traffic spikes that occur at variable times. Panel B: Ten observations from the neural firing
rate dataset of Section 3.1.3. This data has four markers: square - start of the experimental trial; circle - time
of the ’target on’ cue; diamond - time of the ’go’ cue; upward triangle - 150ms before the movement onset.

3.1 Data sets

Here we introduce the data sets that we will use to
test the performance of time-marked data models.

3.1.1 Arm Reach Data

The first data set involves human subjects making
point-to-point arm movements between two on-screen
targets - a central target in the middle of the screen
and a peripheral target 80mm to the right of the cen-
tral target. Each time series observation y(n)(t) (for
n ∈ {1, ..., 13} in this case) begins when the subject’s
hand is at rest at the central target. After 20ms, the
central target is turned off, the peripheral target is
turned on, and the subject reacts and moves to that
target, coming to rest when touching the peripheral
target. After the subject remains at the peripheral
target for 500ms, the central target is again turned on,
and the subject reacts and moves back to the central
target. The data of interest is the horizontal velocity of
the hand, shared with us directly from the experiments
in Cunningham et al. (2011). These data are a larger
data set (N = 13) from which we drew the four repre-
sentative observations shown in Figure 1. This data is
time marked with three markers (shown in Figure 1):
the beginning of the experimental trial, the movement
onset of the outbound reach, and the movement onset
of the inbound reach.

3.1.2 Gameday Traffic Data

Time-marked data appears in broader contexts than
experimental science, such as economics and finance
(where for example equity volatility may depend both
on calendar events and company-specific events), and
population dynamics. Here we investigate one such
case of automobile traffic on a Los Angeles highway:
this data measures the number of cars on the Glen-
dale offramp of US-101 North during weekends in 2005
(this data was previously used in Ihler et al. (2006)).
The data consists of the number of cars on the of-
framp every five minutes, which we have summed to
be a data point every half hour. Five observations
from this dataset are shown in Figure 3A. The partic-
ular choice of the Glendale offramp is interesting due
to its proximity to the LA Dodgers baseball stadium,
where weekend games see attendance of 40-55 thou-
sand people. Figure 3A shows the expected day/night
increase/decrease in traffic (time-marked with conven-
tional “time of day”). In addition, traffic fluctuates
significantly in response to the end of a game (but less
so the start, given the highway configuration). Our
dataset has eleven (N = 11) 48-hr weekend periods
with both Saturday and Sunday games at Dodger Sta-
dium. The games begin and end at variable times, and
thus this “game-weekend traffic data” is time-marked
with five events (K = 5): start of the weekend, 1hr
before the start of the Saturday game, 1hr before the
end of the Saturday game, 1hr before the start of the
Sunday game, and 1hr before the end of the Sunday
game. An hour before these events is used because
that is a sensible time to consider the effect of a base-
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ball game on traffic, as people tend to arrive and leave
early. With this dataset we also analyze just the Sat-
urday “gameday traffic data” to add another set of
results. Here we use just the first 24hrs of data, and
only the events from Saturday games (K = 3).

3.1.3 Neural Firing Rate Data

The last data set is electrophysiological recordings of
a neuron’s spiking activity. These data, shown in Fig-
ure 3B, were recorded from a subject’s motor cortex
while the subject did N = 10 identical curved reaches.
Spiking data was shared with us from and recorded as
described in Churchland et al. (2010) (neuron 184, con-
dition 24), and firing rates were calculated by smooth-
ing the point process data with a Gaussian kernel of
σ = 26ms, which is conventional for neural firing rate
analysis. The data we analyze here is those smoothed
data points binned to give one data point every 50ms.
Each trial proceeded with the following events: the
trial began at time tstart; the reach was instructed,
but the subject was not allowed to move, at random
time ttarget; the cue to reach was given randomly at
tgo; and fourthly tmove−150ms is marked as 150ms be-
fore the beginning of the reaching movement (the time
by when movement related neural activity should be
largely present).

3.2 Evaluation methods and metrics

To test performance in all data sets, we used leave-one-
out cross validation (LOOCV). Specifically, for each of
the N time series observations, we held that observa-
tion out as the test set, and we trained the model of
Equation 4 on the remaining training set. This learned
model was then used to infer the held out test data.
The predicted test data is then compared to the true
test data, and the root mean squared error (RMSE)
between the inferred and the true is calculated across
all N LOOCV test observations. RMSE is a more ap-
propriate choice here than likelihood, for two reasons:
first, we compare our GP method to non-probabilistic
averaging methods; and second, in many settings re-
searchers are principally concerned with RMSE, so this
metric has practical value. Examples of true data and
prediction from LOOCV data are seen in Figure 4 for
the neural data, where we show results on a single trial
for all model choices, which are as follows:

i. Conventional GP regression Here we con-
sider only the absolute time of the observations
from the beginning of the observation. This case
is equivalent to ignoring the subsequent time-
markers and doing standard GP regression. As
seen in Figure 4A, this case demonstrates the fail-
ure of ignoring known heterogeneity in the tem-

poral structure of the observations.

ii. Conventional Averaging. This is the same as
above, except we use simple averaging across the
training series instead of GP regression. Because
averaging is often used in experimental contexts,
it is important to compare to these simple non-GP
options. The point here in Figure 4A is to show
that the GP is not significantly reducing the error
over averaging - indeed, the results are quite simi-
lar. The reduction in error will come from consid-
ering time-marked data appropriately, which the
GP does naturally.

iii. Clipped GP regression. As seen in blue in Fig-
ure 4B, time-marked data is often handled by clip-
ping. Here we do so, performing GP regression in
each epoch. Each epoch is chosen uniformly over
a range of experimentally reasonable possibilities
(for example, the neural data epochs start 200-
400ms before a marker and end 400-600ms after).

iv. Clipped Averaging (Figure 4B in red). Here
we do the same clipping procedure as above,
but within epochs we simply average the train-
ing data. This method is the conventional pro-
cedure in experimental literature and thus is an
important comparison point.

v. Acausal Time-marked GP. Figure 4C shows
the results in blue of GP inference with the
acausal time-marked GP model. This model does
a superior job modeling the occurrence of the
large peak in the data, and indeed the error is
accordingly reduced.

vi. Causal Time-marked GP. Finally, Figure 4D
shows the results in blue of GP inference with the
causal time-marked GP model. By inspection this
model is the best at modeling all features of the
data, which will be seen also in the overall RMSE.

Figure 4 and the above description of the six compari-
son cases give an indication that appropriately model-
ing time-marked time series data can have significant
effect on the quality of regression. For brevity we do
not show an example of the results on the reaching or
traffic data, but those examples tell a similar story.

The neural data provides interesting results for dis-
cussing the features of the time-marked data model,
as shown in Figure 4. First, by inspection of the true
data (green trace) and the remainder of the data set
shown in Figure 3, it is unclear how strong the under-
lying dynamical process is, as the data are highly noisy
and hold no obvious features like the reach and traf-
fic data. The conventional GP and averaging models
in Figure 4A reflect this noisiness - this panel shows
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Figure 4: Example results from different model choices in the neural firing rate data. In all panels, the green
line is the same true observed data (a representative sample). Each panel demonstrates a different model choice.
Panel A shows conventional regression. The blue line shows GP inference (posterior mean based on the learned
hyperparameters and LOOCV training set), and the red line shows the result of simple averaging. Panel B shows
the same results for the clipping method, with GP regression (blue) and averaging (red). Panels C and D show
the results of the time-marked GP model, for an acausal GP and a causal GP.

a lowly increasing function but assigns most of the
data variance to noise. The clipping model of Fig-
ure 4B shows a spike around the last marker but is
largely uninstructive and counfounding. On the other
hand, the time-marked models in Figure 4C and D
tell a different story: both predict a fairly inactive
signal until the last marker, when a large spike in ac-
tivity is then followed by a ramp for the last 800ms.
The time-marked data model is able to model these
shared features without data snooping or any heuris-
tic realignments of the data.

Finally, the example in Figure 4C and D also nicely
demonstrates the difference between the causal and
acausal models. Both models infer the latter half
of the time series very similarly. However, because
the acausal model has learned a higher variance and
shorter lengthscale to model the latter half of the data,
it is also reflected in the first half, where the model is
seemingly fitting noise. On the other hand, the causal
model better assigns early variability to noise, infer-
ring a flat response and correctly assigning the causal
influence of the last time-marker.

This benefit of the causal model also raises an im-
portant caveat: while the acausal time-marked model
is invariant to shifts in the time-markers, the causal
model is not. Here for example, the last marker is
150ms before the subject’s movement begins, which
is a sensible time given delays between neural activ-
ity and corresponding movement. If instead we in-
appropriately chose 150ms after the movement, the
causal model would produce a different result (and
our tests with this indicate a higher error). Thus, one
should take care to choose the event times in a data-
appropriate manner when using the causal model.

3.3 Summary of Results

Thus far we have only seen example results. We
now show the overall LOOCV errors for all datasets,
summarized in Table 1. There are a few key take-
aways. First, in all cases we see that a time-marked
model outperforms - often significantly - competing
models, either those that ignore time markings (the
leftmost two columns of Table 1) or those that clip
the data (middle two columns). As a reminder, the
time-marked GP model includes the special case of
one time marker (K = 1), and thus “ignoring time
markings” is a choice contained in our more general
time-marked model class. Furthermore, the clipping
method is problematic in that a heuristic choice of
window interval (the amount of time before and after
each marker to consider) is required, and also that all
window choices require either double counting some
data or not including it at all. Thus, given the infe-
rior performance and practical complications of clip-
ping models, we claim that time-marked GP models
are a superior choice for modeling this sort of data.

The second key takeaway is that the causal model al-
ways outperforms the acausal model, sometimes con-
siderably. The largest performance difference comes in
the neural data, where the design of the data suggests
that serious improvements should be seen by causal
modeling, as the causal model prevents fitting noise in
early parts of the trials. In other data sets, small per-
formance gains are still seen even where we would not
expect a big difference from enforcing causality. This
may seem surprising since causal models are a spe-
cial case of acausal models. However, the changes in
these data should be in fact causal, as the occurrence
of events causes a change in the observation in a causal
fashion (for example, the end of a baseball game causes
traffic to spike). Thus this is another example of an

261



Gaussian Processes for time-marked time-series data

LOOCV test error (RMSE)

Time from start Clipping Time-marked GP

GP Averaging GP Averaging Acausal Causal

Arm Reach 96.2 96.5 70.8 69.8 61.2 56.2
Velocity (mm/s)

Game-weekend 58.6 58.2 73.4 71.0 53.9 52.6
Traffic (cars/hr)

Gameday 59.6 59.4 66.0 65.6 44.5 43.2
Traffic (cars/hr)

Neural Firing 20.8 21.4 18.4 18.3 19.4 15.7
Rates (spikes/s)

Table 1: Performance of Algorithms on all data sets. All results shown are RMSE between the true time-series observation
and the inferred observation based on the remaining data used as a training set (standard LOOCV). To give average
performance, error for clipping results is the RMSE over ten reasonable choices for the time windows over which the
data was clipped. Furthermore, the GP results are RMSE for the posterior mean of the learned model, i.e., after
hyperparameter optimization on the LOOCV training set. We show the average error over ten random initializations of
the hyperparameters, though all the learned models and their errors were very similar. In all cases, the time-marked GP
model outperforms competing models. Furthermore, the causal GP always improves performance, though in some cases
only to a small degree compared with the acausal time-marked GP model.

appropriately constrained prior model class improving
generalization to test data.

We noted previously that RMSE is the natural met-
ric here as it allows comparison of all these meth-
ods, and because it is commonly used in these set-
tings. For the probabilistic models, the marginal
likelihood of the learned model is also a potential
choice. Using this metric, the performance hierarchy
remains the same: the time-marked model always sig-
nificantly outperforms the GP regression that ignores
time-markings, and further the causal model outper-
forms the acausal model. Interestingly, when compar-
ing the causal and acausal models, the marginal like-
lihood reflects a larger benefit to the causal model in
the traffic data sets, but no performance difference in
the neural data. The benefit in the arm reach data
is of similar magnitude in both likelihood and RMSE.
Nonetheless the story is unchanged: the time-marked
data models have significantly better performance, and
the causal model outperforms the acausal model.

4 Discussion

We have introduced a model for analyzing time-
marked time-series data, data which occur frequently
in experimental science and beyond. Our GP model
significantly outperforms alternatives and does so in a
sensible probabilistic framework. We also introduced
causal GP and showed that this constrained model
class outperforms further on all datasets we have ana-
lyzed.

The models for causal GP and for time-marked data

can both be boiled down to simple mappings of the
input space and the given data markers. As such, this
model can be seen as a particular choice of covariance
function. Conveniently, this structure allows us to
compose these methods with many existing GP tech-
nologies, such as different observation models (Kuss
and Rasmussen, 2005) or sparsification methods (Snel-
son and Ghahramani, 2006). This structure also al-
lows learning and inference to be entirely standard,
and thus our model can be easily added to existing
GP software packages.

In this work we stipulate the knowledge of time mark-
ers, and in the causal case these markers induce a
change in the observation. Thus this work can be seen
as complementary to work in change-point detection,
where models have been developed to learn where such
events occur (Saatci et al., 2010). We might also treat
the time markers as additional latent parameters and
learn those alongside the rest of the model. Though
outside the scope of this work and irrelevant for many
of the applied contexts of time-marked data models,
exploring the utility of this model for change point
detection is an interesting direction of future work.
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