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1
A B S T R A C T

This thesis presents frameworks for the effective implementation of Gaussian pro-
cess regression for machine learning. It addresses this in three parts: effective
iterative methods for calculating the predictive distribution and derivatives of a
Gaussian process with fixed hyper-parameters, defining three broad classes of
kernels of controllable complexity that allow for an order of magnitude scaling in
the previous framework and an investigation into alternative objective functions
and improved derivatives for the optimization of model hyper-parameters.
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2
I N T R O D U C T I O N

This thesis is about the effective implementation of Gaussian process regression
(GP regression). GP regression is a non-linear regression technique, whose ma-
jor drawback is that the computational cost of a naive implementation is OpN 3 q

operations, where N is the number of training points. We show how an effective
implementation can reduce this cost to OpN M I q operations, where M and I are
related to the complexity of the type of function being learnt and the difficulty of
the particular regression problem respectively. We provide a number of classes
of useful functions with small M and explore methods for reducing I as much as
possible.

2.1 realities of scale

Effective implementation of GPs are important because, without some unexpected
revolutions in underlying computational power, it will never be feasible to apply
an algorithm that requires OpN 3 q operations to datasets of the size that are now
common in large scale applications. To illustrate this point, take an example of a
dataset with an entry for every person in the world, N “ 7 billion. This would be
considered relatively large, yet still much smaller than the current largest tasks
of N « 100 billion. Currently, the fastest super-computer in the world is the
Tianhe-2 ?, a supercomputer developed by China’s National University of De-
fense Technology, which has a listed peak operation rate of 33.86 petaflops/s.
The time required to performing N 3 operations on this dataset, on this machine
would be on the order of 1017 seconds, which is the current estimated age of the
universe Collaboration [2013].

It is commonly accepted that we are unlikely to ever be able to apply algorithms
of cubic scaling to dataset of this size and that in most cases quadratic scaling is
also too expensive. Ideally, implementations of regression algorithms should be
able to scale linearly in N , which is what we present in this thesis.

2.2 a cause for hope

In this thesis we uncover the hidden assumptions that underlie the standard im-
plementations of Gaussian processes to show how we can expect to reliably per-
form inference faster than the OpN 3 q computational bound. The overarching
theme can be summarized in two points.
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introduction

Firstly, we don’t need exact answers. The statement that GP inference requires
OpN 3 q operations assumes that we need answers to machine precision, which is
rarely true in practice. Secondly, OpN 3 q is a worst case bound. There are certain
problems for which OpN 3 q operations are required. However, this does not dis-
count the possibility that the are a large set of problems that can be solved more
efficiently, and moreover these are the ones we are actually likely to encounter. We can
either believe that we live in a generally safe and predictable universe, so that
the problems we want to solve are (or are very close to) the easy ones, or more
pessimistically we can simply be content that the best we can ever do for large
scale problems is focus on this efficient subset.

2.3 a framework , not another approximation

Until now, the issue of computational cost has largely been addressed by con-
structing approximations to the full GP model and using these models in place
of the full GP. These approximations exploit the observation in the previous sec-
tion - they correspond to problems for which OpN 3 q operations are not required.
When judiciously chosen, these approximations can be calculated substantially
faster than a full GP for, in some cases, little loss in accuracy. However, if the ap-
proximation chosen is poor, the result can be arbitrarily bad compared to the full
GP begin approximated. Moreover, most implementations calculate predictions
to machine precision, when this is often not required and a sizeable computa-
tional burden.

Instead, what this thesis outlines is a general framework for implementation.
This includes a unified computational specification that allows for the calculation
of quantities only to the required precision. It provides for the incorporation of
most existing GP approximation methods in one of two ways: either directly us-
ing the model, as is already done, or by using the approximation to aid in the
solution of the full GP. We show examples where using the approximate GP meth-
ods in this way allows us to quickly solve the full GP to a bounded error tolerance.

Arising naturally from this framework is a definition of the “complexity” of
a kernel, with respect to its computational cost. We define the concept of M-
efficient kernels, showing that when interpreted as exact kernels, most existing
GP approximations fall under this definition.

Also, too often ignored from the discussion of efficient GP implementations
(with the notable exception of ), is the computationally efficient optimization of
the hyper-parameters. We show again how our framework extends naturally
to this optimization in a way that removes the sharp delineation between the
solution of a GP and the optimization of its hyper-parameters.

2.4 scope of experiments

This thesis argues for an effective framework for the implementation of Gaus-
sian processes. By effective, we refer to the required amount of computation for
calculating the ultimately desired quantities. We prove this effectiveness by cal-

8



2.5 outline

culating the required number of computations for the different quantities within
the framework. In this sense, the main contribution of the thesis is laying down
this theoretical foundation.

Throughout the thesis is experimental validation of all these quantities on a
variety of datasets. Due to implementation considerations, the experiments were
run on relatively small datasets for which extensive analysis could be performed,
which is not ideal given that the effective implementation of methods is most
important in the regime of large amounts of data. However, in all aspects of
the framework, the theoretical guarantees for the computational requirements
depend exactly linearly in the size of the data. Further, most experiments are
much more representative of the relationship between the kernel and dataset
being tested than to any inherent properties of the underlying framework. Thus
we encourage the reader to consider all the experiments as basic validation of the
theoretical assurances of the underlying framework, and as a rough guide to the
general performance of the framework.

2.5 outline

The thesis consists of six chapters, each covering different aspects of effectively
implementing GPs.

Chapter 2 provides a background to GPs by first introducing probabilistic re-
gression, the problem that we attempt to solve with GPs, followed by kernel
methods, of which GPs are one. It then covers how exact inference in GPs is
traditionally implemented, at a computational cost of OpN 3 q operations.

Chapter 3, Iterative GPs, investigates an alternative framework for inference in
GPs that reduces the cost of exact inference from OpN 3 q to OpN 2 I q operations,
where I is dataset dependent. It also shows how approximations with bounded
error on final predictions can be introduced to reduced I .

Chapter 4, Fast kernels, describes a number of broad classes of kernels with
expressive modelling ability that allow inference to be performed in OpN M I q
operations, where M depends on the complexity of the function class.

Chapter 5, Effective optimization, shows how to maintain these efficiency gains
when optimizing kernel hyper-parameters.

Chapter 6 reviews the contributions of the three prior chapters, and outlines
areas of future work

2.6 practitioner roadmap

As a further assistance to those implementing GP regression, the following is an
outline of the key stages to consider with references to details in the thesis.

Stage 1: Select an appropriate kernel. This is by far the most important step
for accurate predictions, as all the domain knowledge for the problem needs to
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introduction

be encoded here. Properties of the function such as smoothness, periodicity, lin-
earity, dependence between dimensions and many more can be encoded by the
kernel. There is a vast literature on different kernels that all have different prop-
erties. The kernel should be chosen such that it reflects the known properties
of the function and also such that it has an appropriate value of M, as defined
in Chapter 5. Larger values of M tend to imply a richer function space, at a
higher computational cost. For example, in the case of a linear kernel M “ D
(which is often, though not always, much smaller than N), whereas the squared
exponential kernel M “ N (which is the largest possible value of M). For conve-
nience, we have defined three classes of kernels with controllable M in Chapter 5.

Stage 2: Find a computationally efficient approximation to use as a pre-conditioner
(see Section 4.7). In the same way that there is no “best” kernel, only different
encoding of prior knowledge about the function, there is no “best” approxima-
tion, only different encodings of knowledge about the computational structure of
the problem. There is again a vast literature of approximations, usually termed
sparse GP methods or efficient GP methods.

Stage 3: Determine the required accuracy for the posterior mean and posterior
variance. This is described in Section4.3 and Section 4.4.

Stage 4 (Optional): If hyper-parameters need to be optimized, select an opti-
mization objective from Section 6.1. The log-likelihood is the traditional choice,
though for applications where predictive performance is the goal, our proposed
validation error may also be a good choice. If attempting to optimize a kernel
with complicated structure, consider pre-conditioning the hyper-parameter opti-
mization as detailed in (Section 6.2).

Stage 5 (Optional): Run pre-calculations to increase speed of posterior variance
calculation. In most cases, this will be the SVD pre-calculations described in
Section 4.4, with as many singular vectors as is computationally feasible. If this
is not possible, then the subset of data method should be used instead.
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3

B A C K G R O U N D

In this section we provide a brief background to the important concepts in this
thesis. Gaussian Processes are a technique for performing probabilistic regression,
so we first cover the definition of this problem. Secondly, Gaussian processes are
a kernel method. We will introduce the concept of a kernel method and primal and
dual representations. Finally we will define Gaussian processes and show the
implementation upon which we improve in this thesis. For a more comprehen-
sive introduction to GPs and their applications refer to [Rasmussen and Williams,
2006].

3.1 probabilistic regression

Regression, in it’s simplest form, is the task of learning a function f : I Ñ R

(where I is the space on which we are performing regression), having been
shown some evaluations of the function tpx i , f px i qqu1:n . In probabilistic re-
gression on the other hand, the task is to a learn a probability distribution over
possible functions, having been shown those same function evaluations.

The main advantage of probabilistic regression is that it is a principled manner
of quantifying the uncertainty of our knowledge about the true function based
on the observations we have been given. This uncertainty can then be translated
to uncertainty about the quantities that we use our regression to calculate. For
example, regression is often performed so that predictions can be made at a “test
point“ x˚ : a point in the input space where no observation has been made. With
a probabilistic regression technique, the result is a distribution over possible val-
ues of f px˚ q, rather than a single estimate. Figure 1 illustrates the utility of this
view: there are points (such as point A) where we can be fairly certain of the
function value, and others where we have very little idea of the true value (point
B).

In our treatment of probabilistic regression we assume that there exists a true
underlying function f : I Ñ R that we are trying to learn. We assume that
the examples we observe have been corrupted by independent Gaussian noise, so
rather than observing pairs tpx i , f px i qqu1:n , we observe tpx i , y i qu1:n from the
following model:
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Figure 1: Simple 1D regression problem

ε i „ N p0, σ2 q (1)

y i “ f px i q ` ε i (2)

3.2 kernel methods

For a large class of problems in machine learning, there are two different yet
equivalent ways to represent data: either as a set of features, or as a set of simi-
larities between all the points. The features are known as the primal view and the
similarities is the dual view. The term kernel methods refers to methods that are
defined using the dual view of the data. For a more in-depth introduction see
[Shawe-Taylor and Cristianini, 2004][Herbrich, 2002].

3.2.1 Dual representations

Data in statistics and machine learning are normally described by vectors in an
input space I . Each element of this vector is an input feature. A dataset with N
datapoints is usually represented by these vectors stacked in an N ˆ D design
matrix X.

x0 “
“

0 1 2
‰

X “

»

—

—

—

–

0 1 2
8 2 3
4 2 3
...

...
...

fi

ffi

ffi

ffi

fl

(3)

However, the input space is often not a good representation of the data for
performing effective machine learning. In these cases we attempt to find a better
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3.2 kernel methods

representation in a feature space F ; this is just the name for the different represen-
tation. This is represented by a non-linear mapping φ : I Ñ F , which is refered
to as the feature mapping. Just as we constructed the design matrix for the input
space, we also construct the N ˆ D 1 feature matrix Φ, where Φi “ φpXi q.

φpx0 q “
“

0 8 8 3 4
‰

Φ “

»

—

—

—

–

0 8 8 3 4
5 1 2 7 9
0 3 15 7 ´1
...

...
...

...
...

fi

ffi

ffi

ffi

fl

(4)

This is the first representation. This data representation Φ is also known as the
primal representation.

For a large class of machine learning algorithms1 there is an alternative repre-
sentation that can be used, called the dual represenation. This dual representation
is the Gram matrix.

K “ ΦΦᵀ K “

»

—

—

—

–

153 81 161 . . .
81 160 73 . . .

161 73 284 . . .
...

...
...

. . .

fi

ffi

ffi

ffi

fl

(5)

This derivation of the dual has showed us how to move from the input space
to a feature space and then from that feature space to the dual representation.
It is also possible to move directly from the input space to the dual of a feature
space through the use of a kernel function k : I ˆ I Ñ R. A kernel function
takes two input points as arguments and returns the corresponding value of K,
ie Ki j “ kpXi , X j q. This value can be thought of as the similarity between two
points. The relationship between the input space, primal and dual representation
is illustrated in Figure 2.

The relationship between primal and dual is not 1-to-1: the primal uniquely
specifies the dual, but the dual only specifies the primal up to unitary transfor-
mations (such as rotations or reflections). A unitary matrix U (which has the
property UUᵀ “ I) applied to a primal representation results in the same dual:

K̃ “ ΦU pΦUqᵀ “ ΦUUᵀΦᵀ “ ΦΦᵀ (6)

This means that for a given Φ it is easy to construct the unique K with which
it is associated, but for a given K, there are many such feature spaces.

When such a dual representation exists, there are two potential benefits. Firstly,
the computational cost of calculating the solution using the primal or dual rep-
resentation is usually different. We can benefit from this by simply choosing the

1 Those that are invariant to rotations of the dataset.
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Figure 2: Relationship between the input space, the primal representation and the
dual representation

representation depending on which is more efficient in a particular instance, an
example of which is shown in Section 3.2.2. Secondly, it allows us to choose
which of the two representations of the problem (φ or k) is more intuitive to spec-
ify. In some cases — say where the input space is the set of strings — it may be
far easier to specify the similarity of a string with another, rather than a mapping
it into Rm in a way that meaningfully encodes our knowledge about that string.

3.2.2 Example: Ridge regression

Ridge regression (also known as L2-Penalized Linear Regression) is an example
of a technique that has both a primal and dual representation. The model is the
same as basic linear regression, but with the addition of a regularizing penalty
term on the regression co-efficients in the loss function:

arg min
~β
}~y ´Φ~β}2 ` λ}~β}2 (7)

The more common closed form solution for the regression co-efficients is:

~β “ pλI `ΦᵀΦq´1 Φᵀ~y Primal representation (8)
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3.3 gaussian processes

However, if we apply a version of the Woodbury matrix inversion lemma, we get
the equivalent:

~β “ Φᵀ
ˆ

ΦΦᵀ `
1
λ

I
˙´1

~y (9)

“ Φᵀ
ˆ

K `
1
λ

I
˙´1

~y Dual representation (10)

Where I is the identity matrix of appropriate size. The computational com-
plexity of solving these equations is governed by the size of the matrix within
the inversion; since pλI `ΦᵀΦq is a D ˆ D matrix, the cost of solving Eq 8 is

OpD3 q, while Eq 9 relies on the N ˆ N matrix
´

ΦΦᵀ ` 1
λ I

¯

, which requires

OpN 3 q operations to invert.

3.2.3 Properties of Gram matrices and kernels

From the definition of the Gram matrix in the previous section, we can see that
it belongs to a restricted class of matrices: those that can be represented as K “

ΦΦᵀ . These matrices are known as positive semi-definite (or PSD for short). They
are loosely speaking the analogue of positive numbers, as extended to matrices.
Aside from the property that they can be represented as ΦΦᵀ , they have two
other properties that we will use many times:

1. All of their eigenvalues are positive.

2. ~vᵀK~v ě 0 @~v

Kernels are the class of functions that can be used to construct a positive semi-
definite matrix and are defined as follows:

Definition 1. A kernel is a function kp¨ , ¨q Ñ R that satisfies the following
criteria:

kpx 1 , xq “ kpx , x 1 q pSymmetryq

kpax , bx 1 q “ abkpx , x 1 q pBi l inear i tyq

kpx , xq ě 0

kpx , xq “ 0 ðñ x “ 0

In most cases the kernels used in Gaussian processes are parameterized by a
set of variables ~θ .

3.3 gaussian processes

Gaussian processes are one method for performing probabilistic regression. Origi-
nally pioneered in Geophysics [Matheron, 1963] and Statistics[O’Hagan and King-
man, 1978], they have subsequently gained a strong following in machine learn-
ing.
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When viewed as a probabilistic regression method, a Gaussian process takes
as input a dataset and a kernel, and as output gives a distribution over functions.
The kernel defines the functions that are likely before having seen any data —
for example that smooth functions are more likely than sharply discontinuous
functions.

The Gaussian process model for regression is defined as follows:

f pxq „ N p~0, K´ q (11)

where K´ is a kernel matrix: pK´ q i j “ kpx i , x j q. This formulation has a ~0
mean, which is not the most general formulation, but due to ??, for most practical
applications this suffices. Any results however, can be extended to a GP with a
non-zero mean function.

Since our observations ~y are corrupted by independent Gaussian noise, there
is a simple closed form for

~y „ N p~0, Kq (12)

where K :“ K´ ` σ2I.

Here, k is a kernel and σ2 is the noise level. This model can be used to make in-
ferences about many quantities of an underlying function — derivatives at points,
integrals over sections to name a few. However, the three quantites that are rele-
vant for probabilistic regression are the predictive distribution, the log-likelihood
and the derivative of the log-likelihood with respect to the kernel parameters.

The predictive distribution shown in Equation 13, is the distribution on the
value of an unknown datapoint, given the observed training pairs. In a Gaussian
process this distribution is a 1D Gaussian, and so is specified by its posterior
mean and posterior variance. Since the distribution is Gaussian, the posterior
mean is also the most likely value (MAP) of y for that datapoint. This makes it a
good candidate if we need to make a point prediction, and it is the optimal choice
under the assumption of a squared-loss error metric. The posterior variance pro-
vides a measure of the uncertainty in the prediction at a given test point. It can
be used to calculate confidence bounds as the model predicts a 95% chance that
the point will be within the interval rµ ´ 2σ , µ ` 2σs.

The log-likelihood (Equation 14) is the log of the probability that the model
generated the observed data. This quantity is generally used to make compar-
isons between different models — those with a higher value of the log-likelihood
are more likely to be a good model of the data. Commonly in Gaussian process
regression, we choose between different GP models (ie ones with different ker-
nel) by picking one with the highest value of the log-likelihood. It is possible
to calculate the derivative of the log-likelihood with respect to parameters of the
kernel (Equation 15), which allows us to perform gradient optimization of the
hyper-parameters to find a kernel that is most appropriate for our data.
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3.4 numerical implementation

~y˚ |~y „ N pK˚x K´1~y , K˚ ´ K˚x K´1Kx˚ ` σ2Iq (13)

L “ ´ 1
2
~yᵀK´1~y ´

1
2

logpdetpKqq ´
N
2

logp2πq (14)

dL
dθ

“ ´
1
2
~yᵀK´1 dK

dθ
K´1~y ´

1
2

Tr
ˆ

K´1 dK
dθ

˙

(15)

3.3.1 Interpretation of kernels

The only parameter of a Gaussian process is a kernel (though the kernel itself
may have parameters). The choice of kernel defines the class of functions which
regression is performed over. It not only specifies which functions are considered,
and those that are not, but it specifies how likely any individual function is be-
fore having observed any datapoints. For example, a kernel that prefers “smooth
functions” would find the function illustrated in Figure 3a to be much less prob-
able than the function illustrated in Figure 3b.

(a) A function with low prior probability (b) A function with high prior probability

Figure 3: A likely and unlikely function based on a kernel that prefers smooth
functions

There are two ways to gain insight into the distributions defined by a kernel.
One is to look at samples drawn from the Gaussian process with that kernel —
essentially giving us an idea of what the “typical” function looks like, and the
other is to look at the predictive distribution given an example set of data. The
prior samples shown in Figure 4a and Figure 4c shows that the Squared Exponen-
tial (or SE) kernel is representative of smooth functions, while the linear kernel
represents linear functions. The predictive distributions illustrated in Figure 4b
and Figure 4d show that the choice of kernel has a huge influence on the result-
ing predictions. This is why the selection of an appropriate kernel is such an
important task.

3.4 numerical implementation

For many numerical implementations of probabilistic models, the calculations are
not performed by directly implementing the formula used to define the model.
This is due to the limitations of computing hardware and the requirement of fixed
precision or floating point representations of numbers. Since computers can only
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(a) Samples from the SE kernel

2 0 2 4 6 8 10 12

0

5

10

(b) Predictive dist. for the SE kernel

1 2 3 4 5 6 7 8 9 10
20

15

10

5

0

5

(c) Samples from the linear kernel

2 0 2 4 6 8 10 12

0

5

10

(d) Predictive dist. for the linear kernel

Figure 4: Samples from the prior and the predictive distribution of the SE and
Linear kernels. The prior samples show functions that are likely under
the prior and the predictive distribution is plotted as the posterior mean
and a 95% confidence interval.

store a finite representation of any given number, rounding errors are introduced
through different calculations. Algorithms which are not sensitive to these errors
are known as numerically stable, while those that can be affected by these are
numerically unstable.

Matrix inversion, an operation that is central to the definition of GPs is a nu-
merically unstable procedure. While there are algorithms to calculate the inverse,
for certain matrices the round-off errors in the calculation can propagate to cause
very large errors in the resulting inverse. Fortunately, there are very few occasions
where the end result of a calculation is the matrix inverse. Far more commonly
the desired quantity is one of the form K´1~v. In the case of GPs, these quantities
are K´1~y (in Equation 13 and Equation 14) and K´1Kx˚ (in Equation 13). The
problem ~x “ K´1~v, often written K~x “ ~v, is known as a system of linear equa-
tions and there are numerically stable methods for solving these.

The default methods for solving linear systems of equations, for example lin-
solve or A\b (when A is not sparse) in Matlab or numpy.linalg.solve in Python,
use a factorization method to perform this calculation. These techniques are much
more numerically stable than explicitly inverting a matrix and come at the same
computational cost. Standard implementations of Gaussian processes also rely

18



3.4 numerical implementation

on factorization to calculate the other required terms in Equations 13-15, such as
the log-determinant, in a numerically stable way.

3.4.1 Factorization methods

Factorization methods decompose a matrix K into a product of simpler matrices
such that quantities of interest can be calculated in a much more efficient and
stable manner. There are two factorization methods that we will use throughout
this thesis, the Cholesky decomposition and the singular value decomposition
(SVD).

The Cholesky decomposition

Figure 5: Illustration of the sparsity pattern of a Cholesky decomposition

The canonical decomposition for PSD matrices, and the most commonly used
in solving Gaussian processes is the Cholesky decomposition. The Cholesky de-
composition decomposes a PSD matrix into the following form:

K “ LLᵀ (16)

The Cholesky factor L is a lower triangular matrix, meaning that all elements
above the leading diagonal are 0. This sparsity pattern is shown in Figure 5. This
structure allows linear systems to be solved in OpN 2 q operations through the
backsubstitution algorithm [Trefethen and Bau, 1997].

In the context of kernel methods, we can interpret the Cholesky factor by not-
ing the equivalence between Equation 16 and Equation 5. The Cholesky factor
defines a feature space Φ “ L that is consistent with K, such that the matrix L is
lower triangular.

The quantities in a Gaussian process can be stably calculated with the formulas
listed in Table 1.

Quantity Formula Computational Cost
logpdetpKqq 2

řN
i log Li i OpN q

K´1~v L´ᵀ
`

L´1~v
˘

OpN 2 q

Tr
”

K´1 dK
dθ

ı

řN
i log L´T

i

´

L´1 dKi
dθ

¯

OpN 3 q

Table 1: Formulas for numerically stable calculation of quantities in GPs
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The singular value decomposition

The most common cannonical matrix decomposition is the Singular Value Decom-
position. This procedure converts any matrix X into the form UΣVᵀ , where U
and V are unitary matrices and Σ is a diagonal matrix. In the case of symmetric
matrices, such as kernel matrices, U “ V, so K “ UΣUᵀ . The diagonal entries
of Σ are called the singular values (which for PSD matrices are equivalent to the
eigenvalues) of a matrix, and each has a corresponding singular vector which is a
column of U. These vectors define an orthogonal basis for X, with the length of
each component being the corresponding singular value.

Figure 6: Illustration of the sparsity pattern of a singular value decomposition

Unlike the Cholesky, it is possible to calculate a k-partial SVD, which is the
first k singular values and vectors of a matrix. This can be used to construct a
low rank approximation to the original matrix rK “ U1:k Σ1:k ,1:k Uᵀ

1:k . Under a
number of matrix norms2, this is the optimal rank k decomposition. The inverse
of this decomposition is easy to compute, as for a singular matrix U´1 “ Uᵀ

and the inverse of a diagonal matrix is simply the elementwise diagonal. So
K´1 “ UᵀΣ´1U.

If we perform SVD on a kernel matrix, we have a different primal representa-
tion of our kernel than with the Cholesky. Because the kernel matrix is positive
semi-definite we know that the singular values will be all positive. Thus we can
safely take the square root of Σ, which is the diagonal matrix of square roots of
singular values.

K “ UΣ
1
2 Σ

1
2 Uᵀ “

´

UΣ
1
2

¯ ´

UΣ
1
2

¯ᵀ

We can interpret this as a feature space Φ “

´

UΣ
1
2

¯

, which is a set of orthog-
onal features of descending “importance”.

In the next section, we will introduce a framework for solving GPs that does
not require the full factorization of the kernel matrix.

2 Frobenius and 2-norm
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4

S O LV I N G G P S W I T H I T E R AT I V E M E T H O D S :
O pN 3 q Ñ O pN 2 I q

In karate there is an image that is used to define . . . “mind like water.” Imagine throwing a pebble
into a still pond. How does the water respond? The answer is, totally appropriately to the force and
mass of the input; then it returns to calm. It doesn’t overreact or underreact . . .

— David Allen, Getting things done

An iterative framework for solving Gaussian Processes was first proposed in
[Gibbs, 1997] and [Gibbs and MacKay, 1997], based on the work of [Skilling, 1993].
This framework demonstrated that the relevant quantities in GP inference could
be calculated via iterative methods — methods that continually refine estimates
of the desired quantities over multiple iterations.

In this section we will take this framework and extend it in a number of ways.
Firstly, we provide specific termination criteria for the iterative methods and
bounds on the prediction error that results from their use. We introduce and
evaluate different estimators for certain quantities, showing substantial improve-
ment over the originals. We extend the framework to include an approximation of
the log-likelihood, which allows for modelling scoring and comparison. Finally
we show how including pre-conditioners within a framework for solving GPs ties
together previously disparate approximation methods for GPs.

4.1 introduction to iterative gps

To introduce iterative methods for solving GPs, we will return to the two obser-
vations about the full factorization method for solving GPs from Section 2.2. The
first is that all quantities are learnt to machine precision. The second is that for a
given training set size the cost of inference is constant, regardless of the complex-
ity of the function being learnt. We will address each of them in turn, showing
how these can be limitations, and how these limitations are avoided in iterative
GP methods.

Firstly, we address the constant cost of inference. Factorization methods for
solving Gaussian Processes always require the same amount of computation for
a given dataset size N, regardless of the actual dataset or kernel. This means
inference is independent of whether the function being learnt is “complicated”
or not. It requires OpN3q operations, regardless of whether the function is an
intricate, subtly varying function or a simple curve. We won’t attempt to define
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yet what a complicated function is, it is sufficient for motivation that we have an
intuition that some functions are harder to solve than others. Figure 7 shows two
regression problems, each with N=40.
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2

Figure 7: Not all functions are created equal

Now the problem here is clear. If we believe that there are some regression
problems that are genuinely hard, and require a large amount of computation to
solve, and all solutions to problems of size N require the same amount of com-
putation, then all problems of size N require the same amount of computation
as the hardest possible problem of that size. This means the time required to solve
a simple line in one dimension is always tied to be the same as the most com-
plicated high dimensional function. In the case of iterative methods, this is not
true. Some problems, that we will term “harder”, will require a larger number of
iterations than those that are “easier”. Iterative methods allow us to only exercise
the computational resources necessary to solve the problem we actually have, not
the most difficult in it’s class. Moreover, we will see that the hardest functions in
the class will only require the same order of computation as the full factorization
method, paying at most a 3x penalty, while the easiest functions can be solved a
full order of N faster.

Secondly, the fact that full factorization calculates quantities of interest to ma-
chine precision is a further limitation. While the gains are entirely dependent
on the problem in question, the potential computational savings for a small con-
cession in accuracy is well illustrated by the Travelling Salesman Problem. The
Traveling Salesman problem is the most well-known NP-hard problem, and an
exact solution requires OpN!q operations. This means that exact solutions can be
found in reasonable time for only very small datasets. However, very large TSP
problems, such as the World TSP problem[Cook], have been calculated by allow-
ing a small error of .05%. This problem, which is made up of every populated city
in the world, has over 2 million points — a size for which exact inference would
take longer than the life of the universe. The approximate solution is shown in
Figure 8. While the computational savings are not this extreme in Gaussian Pro-
cesses, there are still benefits to solving quantities only to the level of accuracy
that we actually require. Iterative methods can take advantage of these savings
by providing a means to calculate solutions to a given error tolerance.
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4.2 background to iterative methods

Figure 8: Rendering of the Travelling Salesman path for all populated cities in the
world

4.2 background to iterative methods

This iterative GP framework is built upon iterative methods for calculating two
fundamental matrix quantities: solutions to linear systems and matrix traces. So-
lutions to linear systems are necessary for all the quantities of interest in GPs (Eq
13 - 15) and the matrix trace appears in the log-likelihood and its derivatives (Eq
14 - 15). In this section we will review iterative methods for calculating these
quantities.

4.2.1 Iterative linear systems solvers

The key equivalence that allows for the iterative solution of systems of linear
equations is between such a linear system, notated by finding x in either:

K~x “ ~y or ~x “ K´1~y (17)

and that of finding the minimum point of a particular quadratic form:

min
x

f pxq “ min
x

1
2
~xᵀK~x´~xᵀ~y (18)

This framework only requires solving linear systems with the Gram matrix, so
K will be PSD. When K is PSD, this multivariate quadratic form is the multi-
dimensional generalization of the 1-D quadratic, illustrated in Figure 9a. It can
be validly imagined as a bowl in N dimensions; the 2 dimensional version is
illustrated in Figure 9b.

Lemma 4.2.1. When K is symmetric and positive semi-definite, the minima of f , the
center of the bowl, is at the solution to K~x “ ~y.

Proof. We can verify that ~x “ K´1~y is indeed the minimum point of Equation 18

by simple substitution. Since the quadratic function is convex, we only need to
check that the derivative is 0.
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(a) Illustration of 1D quadratic
(b) Contour illustration of 2D quadratic

d
d~x

f pxq “ K~x´~y (19)

d
d~x

f pK´1~yq “~0 (20)

This equivalence provides a link between an algebraic problem and an opti-
mization problem. By considering the problem in the frame of optimization, it is
much more obvious how to calculate solutions in an iterative manner. This opti-
mization task can be solved via any gradient based method. There are two partic-
ular gradient methods that we will review that take advantage of the quadratic
structure of the optimization problem. The first is a class of methods known as
conjugate directions. These methods exploit the structure to ensure convergence
within N iterations for an NˆN linear system. The second is conjugate gradient,
which is the most well-known and widely used method of conjugate directions.

Conjugate directions

Imagine that, while optimizing an N-dimensional quadratic, you are given a set of
n linearly independent vectors t~d0, ..., ~dnu which we will call “search directions”.
These are the directions along which you are allowed to move while optimizing
the function. Since they are linearly independent, they form a basis for the space
Rn and the vector required to move from the initial point ~v0 to the optimal point
~vopt can be described as a linear combination of these vectors:

~e “ ~vopt ´~v0 “ α1~d1 ` ...` αn~dn (21)

We use ~e to represent this vector, as we can think of it as the error vector be-
tween the initial solution (~v0) and the correct solution (~vopt). If~α can be calculated
in closed form, then we can take the correct step length in each of these directions,
assuring that we will have converged after taking the correct step in each of the
n directions. The two steps for a set of search directions on the 2d quadratic is
shown in Figure 10.

The method of conjugate directions calculates a set of search directions for
which ~α can be calculated in closed form. At every iteration the algorithm takes
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4.2 background to iterative methods

Figure 10: The steps taken (in orange) by conjugate directions for a certain choice
of search directions from a given starting point (the red cross). The
error vector is shown in yellow.

this optimal step in the direction of one of the ~ds and does not have to worry
about that direction again.

The property that the vectors must satisfy to qualify as valid search direction
is that they are K-conjugate to each other. Two vectors ~di and ~dj (for i ‰ j) are
K-conjugate if:

~dᵀi K~dj “ 0 (22)

Where K is the matrix that defines the quadratic, as seen in Equation 18. In
order to construct a K-conjugate set of search directions from an initial set of basis
vectors, we can use the technique of Gram-Schmidt conjugation. Gram-Schmidt
conjugation takes a set of linearly independent vectors t~u1, ...,~unu and iteratively
constructs a K-conjugate set by setting ~di to be ~ui and then removing all the
components of ~di that are not K-orthogonal to the previous i´ 1 directions.

~di “ ~ui ´

i´1
ÿ

j“0

βij~dj (23)

Since the previous i´ 1 vectors will be K-conjugate, the βs can be described in
a simple closed form, for k P t1, . . . , i´ 1u:

~dᵀk K~di “ ~dᵀk K~ui ´

i´1
ÿ

j“0

βij~d
ᵀ
k K~dj (24)

0 “ ~dᵀk K~ui ´ βik~d
ᵀ
k K~dk (25)

βik “
~dᵀk K~ui

~dᵀk K~dk
(26)

In a similar fashion, we can derive the closed form solution for αi by first
looking at the K-inner product of the search direction ~di with the error vector.
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~dᵀi K~e “
i
ÿ

j“0

αj~d
ᵀ
i K~dj (27)

“ αi~d
ᵀ
i K~di (28)

Due to K-conjugacy, all terms in the summation except for the K norm of ~di
are 0.

αi “
~dᵀi K~e
~dᵀi K~di

(29)

“
~dᵀi K

`

~vi ´~vopt
˘

~dᵀi K~di
(30)

“
~dᵀi pK~vi ´~yq

~dᵀi K~di
(31)

At every iteration i we need to have stored all the previous search directions,
which makes the storage complexity OpNiq. This high storage cost is one of
the reasons that the conjugate directions methods were not particularly popular
before the advent of conjugate gradient [Shewchuk, 1994].

Conjugate gradient

As mentioned in the previous section, the chief drawback of conjugate directions
is that it needs to keep around all the previous search directions in order to calcu-
late the next. Conjugate gradient solves this problem. It is a conjugate directions
methods whose set of search directions are chosen such that each search direction
depends only on the previous search direction, freeing us from the requirement
of keeping all the preious search vectors in memory. This reduces the storage
complexity from OpNIq to OpNq.

Firstly, this method takes advantage of the fact that the basis vectors do not
need to be specified a priori; each basis vector ui is only required at the ith
iteration. At the ith iteration we take the basis vector to be the direction of steepest
descent at that point of the optimization. The direction of steepest descent is
given by the gradient of the function at that point ~ui “ ~y´K~xi . We will show
that with this choice of basis vectors, all but one of the βijs will be 0, removing
the dependence of the search directions on all but the current and previous basis
vectors. This is due to the fact that these basis vectors are orthogonal to the
previous search directions. So, for i ą j
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~uᵀ
i
~dj “ p~y´K~xiq

ᵀ~dj (32)

“

˜

~y´K

˜

~x0 `
ÿ

i

αi~di

¸¸ᵀ

~dj (33)

“ p~y´K~x0q
ᵀ ~dj (34)

“ ~dᵀ0 ~dj (35)

“ 0 (36)

Another way to phrase this is that the basis vector is orthogonal to the subspace
spanned by the previous search directions. Since the search directions are gener-
ated from the basis vectors, this is the same subspace as the span of the previous
basis vectors. This implies that

~uᵀ
i ~uj “ 0 pfor i ‰ jq (37)

Using this, we can derive a closed form for ~β:

~uj`1 “ ~y´K~xj`1 (38)

~uj`1 “ ~y´K
´

~xj ` αj~dj

¯

(39)

~uj`1 “ ~uj ´ αjK~dj (40)

~uᵀ
i ~uj`1 “ ~uᵀ

i ~uj ´ αj~u
ᵀ
i K~dj (41)

αj~u
ᵀ
i K~dj “ ~uᵀ

i ~uj ´~uᵀ
i ~uj`1 (42)

~uᵀ
i K~dj “

$

’

’

&

’

’

%

1
αi
~uᵀ

i ~ui where i “ j

´ 1
αi´1

~uᵀ
i ~ui where i “ j` 1

0 otherwise

(43)

Since βij “ ´
~uᵀi K~dj
~dᵀj K~dj

, only βi,i´1 are non-zero:

βi,i´1 “
1

αi´1

~uᵀ
i ~ui

~dᵀi´1K~di´1
(44)

“
~uᵀ

i ~ui

~dᵀi´1~ui´1
(45)

“
~uᵀ

i ~ui

~uᵀ
i´1~ui´1

(46)

The full algorithm for conjugate gradient can be implemented as follows:
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~d0 “ ~u0 “ ~y´K~x0 (47)

αi “
~uᵀ

i ~ui

~dᵀi K~di
(48)

~xi`1 “ ~xi ` αi~di (49)

~ui`1 “ ~ui ´ αiK~di (50)

βi`1 “
~uᵀ

i`1~ui`1

~uᵀ
i ~ui

(51)

~di`1 “ ~ui`1 ` βi`1~di (52)

Convergence and pre-conditioning

As pre-conditioning is too often overlooked in implementations, it is worth re-
flecting on this quote from the book Numerical Linear Algebra.

In ending this book with the subject of preconditioners, we find our-
selves at the philosophical center of the scientific computing of the
future.... Nothing will be more central to computational science in
the next century than the art of transforming a problem that ap-
pears intractable into another whose solution can be approximated
rapidly. For Krylov subspace matrix iterations, this is precondition-
ing.[Trefethen and Bau, 1997]

The numerical stability and convergence rate of conjugate gradient (and other
iterative methods for linear systems) are very sensitive to the condition number
of the Gram matrix κpKq. The condition number of a matrix is the ratio between
its largest and smallest eigenvalues.

κpKq “
λmaxpKq
λminpKq

(53)

A low value of the condition number will lead to a numerically stable solution
in a small number of iterations, whereas a problem with a very high condition
number may not converge at all. So ideally we want the eigenvalues of K to be
as tightly clustered as possible, giving it a low value of κ and fast convergence of
our algorithm.

The number of iterations required for Conjugate Gradient to achieve a given
error tolerance is bounded by 1

2
?

κ ln
` 2

ε

˘

, where κ is the condition number of K
and ε is the relative error [Shewchuk, 1994]. Thus the two factors that dictate the
speed of calculating a solution are the condition number and the error tolerance.
Since the number of iterations is proportional to the square root of the condition
number, and the log of the error tolerance, the condition number is usually the
important term.

While we cannot choose the condition number of our matrix, we can instead
attempt to find a transformed linear system that has a smaller condition number.
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More concretely, if we can find a matrix P, such that κpP´1Kq ! κpKq, then we
can solve the linear system P´1K~x “ P´1~b more efficiently to recover the same
value of ~x. This matrix P, known as a pre-conditioning matrix, can be thought of as
an “approximate inverse”, that brings K closer to the identity matrix (which has
the lowest possible condition number of 1 and would require only one conjugate
gradient iteration to solve).

The preconditioner can be visualized as follows: in the context of optimizing
a quadratic form, the singular values of the matrix correspond to an orthogonal
basis of the quadratic bowl. If all the singular values are equal, the bowl is per-
fectly spherical. If the singular values are spread out, the bowl is very narrow in
some dimensions and very broad in others. So geometrically, the preconditioner
attempts to stretch the quadratic bowl such that it is as spherical as possible, as
shown in Figure 11.

Figure 11: Original and transformed problem

The choice of a pre-conditioner is problem specific, but is guided by the follow-
ing considerations:

1. It must be computationally efficient to calculate P´1~v

2. P´1 should be in some sense close to K´1

At one end of the spectrum of choices is the identity matrix P “ I. It adds no
computational overhead as I´1~v “ ~v, however it also does not affect the condition
number of the problem. Alternatively we could set P “ K. This would reduce the
condition number of the problem to 1, however solving K´1~v is exactly the origi-
nal problem. There are many different practical choices that have been developed
that make different trade-offs between computational complexity and reduction
in condition number, some of which we will use later in this thesis.

4.2.2 Stochastic trace estimators

The matrix trace — the sum of the diagonal elements of a matrix — is trivial to
calculate if we have an explicit representation of our matrix. However, we will
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require the ability to calculate the trace of matrices for which we do not have
an explicit representation K, but for which we can calculate K~v for an arbitrary
vector ~v.

There are four estimators that we will consider:

rTrGaussianpKq “
1
m

m
ÿ

i“1

~vᵀi K~vi where ~vi „ N p~0, Iq (54)

rTrRayleighpKq “
1
m

m
ÿ

i“1

~vᵀi K~vi

~vᵀi ~vi
where ~vi „ N p~0, Iq (55)

rTrHutchinsonpKq “
1
m

m
ÿ

i“1

~vᵀi K~vi where ~vij „ Bernoullip.5q (56)

rTrUnitpKq “
N
m

m
ÿ

i“1

Iᵀri KIri where~ri „ CategoricalpNq (57)

In Equation 56, the Bernoulli distribution has outcomes of t`1,´1u, and in
Equation 57, Iri refers to the rith column of the identity matrix.

General bounds

General bounds for each method are derived in [Roosta-Khorasani and Ascher,
2013] and [Avron and Toledo, 2011] that give the number of random vectors re-
quired to satisfy the following inequality:

Pr
´ˇ

ˇ

ˇ
TrpKq ´ rTrpKq

ˇ

ˇ

ˇ
ď εTrpKq

¯

ě 1´ δ (58)

That is, it provides a formula for the number of samples N, required to achieve
a desired degree of relative accuracy ε with probability 1´ δ. These bounds, as
well as the variance of the result from a single sample vector are lised in Table 2.

Vector (ε,δ)-Bound Variance

Hutchinson 6cpε, δq 2
´

}K}2
Fr ´

řN
i“1 K2

ii

¯

Gaussian 8cpε, δq 2}K}2
Fr

Rayleigh 1
2

´

rankpKqκpKq
N

¯2
cpε, δq N

ˆ

řN
i“1 λipKq2 ´

´

řN
i“1 λipKq

¯2
˙

Unit 1
2

´

N maxi Kii
TrpKq

¯2
cpε, δq N

řN
i“1 K2

ii ´ TrpKq2

Table 2: Bounds and variance for the three trace estimators

Where:

cpε, δq “ ε´2 ln
ˆ

2
δ

˙

(59)
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As these are bounds that hold for all matrices, they are not necessarily tight for
the matrices that we will apply them to. Any given kernel will only generate a
subset of PSD matrices, which is itself a subset of all matrices.

However, these bounds do draw a picture of the quantities to which the differ-
ent estimators may be sensitive. From these, as well as experiments in [Roosta-
Khorasani and Ascher, 2013] [Avron and Toledo, 2011], it is show a number of
properties of these estimators. Both the Gaussian and Rayleigh are strongly af-
fected by the condition number and clustering of eigenvalues, the Rayleigh es-
timator can effectively estimate low-rank matrices, whereas Gaussian is heavily
penalized in this regime. The Unit vector is penalized in cases where the di-
agonal of the kernel matrix is highly varied and there is also evidence that the
Hutchinson outperforms the others in some sparse matrix settings.

4.3 posterior mean

As we saw in Section 3.3, the equation for the posterior mean of a GP is:

~µ “ K˚xK´1~y (60)

At training time we have access only to K and ~y, since we don’t know the
location of the test points. Therefore the quantity that we focus on calculating is:

~αopt “ K´1~y (61)

As reviewed in Section 4.2.1, solutions to problems of the form K´1~α can be
solved iteratively using conjugate gradient. Like any optimization algorithm, we
do not need to run it to full convergence, we can instead perform iterations until
a convergence criterion is reached. The only remaining question is how to set the
convergence criterion. Setting the tolerance too large will result in a poor solu-
tion, while setting it too low will result in unnecessary computation.

In order to derive a meaningful tolerance bound, we first look at bounds on
the objective function from Eq 18. Throughout the execution of conjugate gra-
dient, we can calculate converging upper and lower bounds on the value of the
quadratic objective at the optimal point~αopt. Since we know the optimum occurs
at~αopt “ K´1~y, by substitution we have:

fopt “ ´
1
2
~yᵀK´1~y “ ´

1
2
~αᵀoptK~αopt (62)

The upper bound requires that K is of the form K´ ` σI, where K´ is also
PSD, but this is always the case in our construction of GPs (Equation 12). The
bounds at iteration i, derived in [Gibbs and MacKay, 1997]1, are as follows:

1 In their work, the lower bound is calculated using this formula, but using a different set of vectors ~α1i that
are derived from a related conjugate gradient system. This bound results in a monotonically decreasing
lower bound at roughly the same computational cost, but increased implementation complexity. In our
experiments, simply taking the running minimum of the lower bounds using the ~αs from the solve that we
describe was found to be simpler and as efficient.
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Ui “
1
2
~αᵀi K~αi ´~αᵀi ~y (63)

Li “
1

2σ2

`

~yᵀ~y´ 2~αᵀi K´~y`~αᵀi K´K~αi
˘

(64)

Below, we prove these bounds and that they converge to the correct solution
throughout the course of conjugate gradient.

Lemma 4.3.1. Ui is an upper bound on fopt

Proof. At any iteration of conjugate gradient i, we can describe our current solu-
tion vector~αi in terms of the optimal point and an error term: ~αi “~αopt `~εi

Ui “
1
2
`

~αopt `~εi
˘ᵀ K

`

~αopt `~εi
˘

´
`

~αopt `~εi
˘ᵀ

~y (65)

“
1
2
~αᵀoptK~αopt ´~αᵀopt~y`~αᵀoptK~εi `

1
2
~εᵀi K~εi ´~εᵀi ~y (66)

“
1
2
~yᵀK´1~y´~yᵀK´1~y`~εᵀi ~y`~εᵀi K~εi ´~εᵀi ~y (67)

“ ´
1
2
~yᵀK´1~y`~εᵀi K~εi (68)

Since K is PSD and ~εiK~εi converges monotonically to ~0 throughout conjugate
gradient[Shewchuk, 1994], Ui is a montonically converging upper bound on fopt.

Lemma 4.3.2. Li is a lower bound on fopt

Proof. We repeat the same procedure as for the upper bound, replacing ~αi with
~αopt `~εi .

Li “ ´
1

2σ2

`

~yᵀ~y´ 2
`

~αopt `~εi
˘ᵀ K´~y`

`

~αopt `~εi
˘ᵀ K´K

`

~αopt `~εi
˘˘

(69)

“ ´
1

2σ2

´

~yᵀ~y´ 2~αᵀoptK´~y´ 2~εᵀi K´~y`~αᵀoptK´K~αopt ` 2~εᵀi K´K~αopt `~εᵀi K´K~εi

¯

(70)

“ ´
1

2σ2

´

~yᵀ~y´~yᵀK´1
´

K´ σ2I
¯

~y`~εᵀi K´K~εi

¯

(71)

“ ´
1
2
~yᵀK´1~y´

1
2σ2~ε

ᵀ
i K´K~εi (72)

Since K´K is PSD (the product of two PSD matrices) and ~εi converges to~0, Li
is a lower bound on fopt.

We can use the upper and lower bounds to bound the overall approximation
error of fopt:
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Bi “ Ui ´ Li (73)

“
1
2
~αᵀi K~αi ´~αᵀi ~y`

1
σ2

ˆ

1
2
~yᵀ~y`

1
2
~αᵀi KK ~́αi ´~yᵀK ~́αi

˙

(74)

“
1

2σ2

`

~αᵀi K~αi ´ 2~αᵀi ~y`~yᵀ~y`~αᵀi KK ~́αi ´ 2~yᵀK ~́αi
˘

(75)

“
1

2σ2

`

~yᵀ~y`~αᵀi KK~αi ´ 2~yᵀK~αi
˘

(76)

“
1

2σ2 |~y´K~αi|
2 (77)

Gibbs and Mackay[Gibbs and MacKay, 1997] identified Equation 77 as a useful
guide to the accuracy of the approximation of~αi . However, they do not give more
proscriptive advice on how to set the convergence criteria, and the quantity itself
is not necessarily intuitive to set directly. A criteria that we can sensibly set is a
bound on the resulting approximation error in our predictions:

ε2
y “ }K˚x~αi ´K˚x~αopt}

2 (78)

“ }K˚x
`

~αi ´~αopt
˘

}2 (79)

“
`

~αi ´~αopt
˘ᵀ Kx˚K˚x

`

~αi ´~αopt
˘

(80)

“
`

~αi ´~αopt
˘ᵀ

ΦxΦ
ᵀ
˚Φ˚Φ

ᵀ
x
`

~αi ´~αopt
˘

(81)

Since Φ
ᵀ
˚Φ˚ is a rank 1 matrix, its largest (and only) eigenvalue is Φ˚Φ

ᵀ
˚. Com-

bined with the identity ~vᵀX~v ď λmaxpXq~vᵀ~v:

ď Φ˚Φ
ᵀ
˚

`

~αi ´~αopt
˘ᵀ

ΦxΦ
ᵀ
x
`

~αi ´~αopt
˘

(82)

“ K˚
`

~α´~αopt
˘ᵀ K

`

~αi ´~αopt
˘

(83)

Since λmin

´

1
σ2 K

¯

ě 1

ď
1

σ2 K˚
`

~αi ´~αopt
˘ᵀ K2 `~αi ´~αopt

˘

(84)

and from Equation 77

“ 2K˚Bi (85)

In practice, it is likely that this error quantity will need to be bounded in one
of two ways: either in absolute terms, or relative to the underlying noise level.
Firstly, in some applications, a fixed error tolerance ε2

y ď η2
abs is required, in

which case we can use:

2K˚Bi ď η2
abs (86)

B ď
η2

abs
2K˚

(87)
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Where there is no fixed error bound, it is likely that the tolerance should be
set as a reasonable fraction of the noise level ε2

y ď η2
relσ

2. This means that in the
worst case, the error in the mean is a fraction ηrel of the posterior variance.

B ď
η2

relσ
2

2K˚
(88)

An advantage of these criteria is that they are easy to implement in standard
conjugate gradient solvers, whose convergence tolerance is usually with respect
to the residuals |~y´K~α|2.

|~y´K~α|2 ď
η2

relσ
2

K˚
Absolute bound

|~y´K~α|2 ď
η2

relσ
4

K˚
Relative bound

Figure 12: 95% confidence interval on a 1D function, composed of the error in
prediction (red) and posterior variance (yellow)

If desired, this also allows us to fully propagate our uncertainty in the solution
to our predictions: we can calculate a confidence bound on predictions by taking
the posterior variance calculated confidence bound and adding the error bound
term on the posterior mean.

CI95 “ ˘p2σ˚ `K˚Bq (89)

4.3.1 Example datasets

Figure 13 and Figure 14 show the execution of conjugate gradient on two datasets:
the Production of H2SO4 and Daily min temp datasets. In Figure 13a and 14a we
can see how the function converges through the course of conjugate gradient;
each image shows the approximate mean at a given iteration for 5 separate runs
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of conjugate gradient with a different starting vector.

Figure 13b and 14b show the behaviour of the bound at each iteration. This
illustrates the exponential convergence rate of conjugate gradient, seen as a linear
function on the log-scaled plot.
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Iteration 0 Iteration 2

Iteration 5 Iteration 7

Iteration 10 Iteration 13

(a) Function convergence
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(b) Bounds throughout execution

Figure 13: Monthly production of H2SO4 dataset

36



4.3 posterior mean

Iteration 0 Iteration 2

Iteration 4 Iteration 7

Iteration 9 Iteration 12

(a) Function convergence
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(b) Bounds throughout execution

Figure 14: Daily minimum temperature dataset
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4.3.2 Overall performance

Table 3 shows the number of iterations required for convergence for a number
of datasets, at the optimal hyper-parameter setting for that dataset. We can see
from the table that sensibly setting the convergence tolerance on these datasets
can lead to between 1x to 8x improvement in convergence rate and an overall
efficiency gain of 1 to 2 orders of magnitude over the Cholesky method.

Dataset N D # Iterations Speed-up
Machine tol ε2 ă .1σ2 ε2 ă .1σ2

MPG 235 7 21 14 5.6x
Births in Quebec 900 1 17 2 150.0x

Bodyfat 151 14 1 1 50.3x
Boston housing 450 13 77 60 2.5x
Australian beer 428 1 15 7 20.4x

Sea levels 450 1 185 130 1.2x
Daily min temp 900 1 53 24 12.5x
Prod of H2SO4 415 1 53 15 9.2x

Table 3: Iterations required to solve different datasets to machine tolerance and
low relative error, as well as the speed-up factor of low relative error over
Cholesky factorization.

4.4 posterior variances

The posterior variance of a test point under the GP model is calculated as follows:

σ2
˚ “ K˚ ´K˚xK´1Kx˚ ` σ2 (90)

Since posterior variances are the quantification of prediction uncertainty, in
cases where it needs to be approximated it is prudent to calculate an upper bound.
This allows quantities such as “a 95% confidence interval” to be translated to “a
greater than 95% confidence” intervals.

We investigate two methods for calculating such upper bounds: those based on
approximations to K and through calculating individual posterior variances with
conjugate gradient, as in [Gibbs, 1997]. We propose two approximate factoriza-
tions bounds: one based on the partial SVD, similar to one proposed in[Freytag
et al., 2013] and another based on a subset of the data approximation. We then
show how to combine these two methods into a single consistent framework and
take advantage of properties of both in the computation of posterior variances. By
allowing different choices at the factorization and refinement stages, we can op-
timize for either space or computation constraints, take advantage of global and
local structure in the variance and adapt the computation in a custom fashion to
the required accuracy of individal datapoints.
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4.4.1 Subset of the data

One of the simplest variance approximation schemes is a subset of the data ap-
proximation. It is easy to see how using a subset of the data will result in an
upper bound on the variance: adding a point to a GP always reduces the uncer-
tainty about the function (or at worst, give us no new information). By removing
points from the dataset, we re-introduce this uncertainty i.e. posterior variance.
More precisely if we split the datapoints into two sets, 1 and 2, we have:

σ2
˚ “ K˚ ´

“

K˚1 K˚2
‰

„

K11 K21
K12 K22

´1 „K1˚
K2˚



` σ2 (91)

“ K˚ ´
“

K˚1 K˚2
‰

«

K´1
11 `K´1

11 K12S´1K21K´1
11 ´K´1

11 K12S´1

´S´1K21K´1
11 S´1

ff

„

K1˚
K2˚



` σ2

(92)

“ K˚ ´K˚1K´1
11 K1˚ ´

ˇ

ˇ

ˇ
K˚2 ´K˚1K´1

11 K12

ˇ

ˇ

ˇ

S´1
` σ2 (93)

Where S is the Schur complement of K. This term can be bounded using the
conjugate gradient bounds in Eq 64 and 63 on the final term with~αi “ 0:

pσ2
˚ “ K˚ ´K˚1K´1

11 K1˚ ` σ2 (94)

qσ2
˚ “ max

ˆ

0, K˚ ´K˚1K´1
11 K1˚ ´

1
σ2 }K˚2 ´K˚1K´1

11 K12}

˙

` σ2 (95)

This formula shows us that as our chosen inducing set is able to fully replicate
the covariance between the test point and the remaining training points, the lower
bound becomes tight. In order to select the inducing set, we suggest a random-
ized greedy scheme similar to that in the Informative Vector Machine[?], though
with a different objective function. The algorithm is shown in Figure 15.

A “ t1, ..., nu, B “ ∅
for i in 1...m do

C “ SamplepA, num_samplesq
x “ arg mincPC KcBK´1

B KBc
B “ BYtxu
A “ A´txu

Figure 15: Point selection scheme

Example

Figure 16 shows the true posterior variance and the upper bound obtained with
the subset of data approximation for different values of M. The boudns are tighter
near to the regions where there are inducing points, which are shown in red. For
a good overall bounding of the variance, the approximation requires the inducing
points to cover the space of training points well.
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M=1 M=8

M=16 M=24

M=32 M=40

Figure 16: Subset variance bounds for the Daily min temp dataset. True variance
in blue, bound in red. The inducing points are also highlighted in red.

Overall performance

The computational cost for variance bound prediction using the subset of the data
approximation is OpM3 `M2 N˚q, where N˚ is the number of test points. Table
4 shows the decrease in required operations relative to Cholesky decomposition
by using the subset of data approximation to reach a given average bound tol-
erances τ. A bound tolerance of τ means that the average relative error of the
bound across all test points was less than τ, ie τ “ .5 means that on average, the
variance bound was 1.5x the true variance. For some datasets, the savings for the
listed τs range from 1 to 4 orders of magnitude, which provides a compelling
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justification to consider the actual requirement for posterior variance accuracy in
any application of GPs.

Dataset τ “ .5 τ “ .2 τ “ .1 τ “ .05 τ “ .01
MPG 1659.3x 118.0x 29.5x 7.4x 1.3x

Births in Quebec 97351.8x 97351.8x 97351.8x 97351.8x 12.6x
Bodyfat 2740.4x 2740.4x 2740.4x 2740.4x 2740.4x

Boston housing 48.1x 9.2x 3.2x 1.5x 0.5x
Australian beer 22016.4x 3522.6x 220.2x 43.5x 2.8x

Sea levels 3.2x 1.5x 1.1x 0.7x 0.3x
Daily min temp 3894.1x 155.8x 25.7x 6.1x 1.0x
Prod of H2SO4 368.0x 51.8x 11.2x 3.8x 0.9x

Table 4: Speed increase for different bound tolerances τ

4.4.2 Partial SVD

The second bound we propose is a partial SVD bound. As we know from Section
3.4.1, a valid feature decomposition of a Gram matrix is the SVD, which results
in the following features:

Φx “ UΣ
1
2 (96)

Φ˚ “ K˚xUΣ´
1
2 (97)

This allows the follwing alternative formulation for the posterior variance:

σ2
˚ “ K˚ ´K˚x pK´ ` σIq´1 Kx˚ (98)

“ Φ˚Φ
ᵀ
˚ ´Φ˚Φ

ᵀ
x

´

ΦxΦ
ᵀ
x ` σ2I

¯´1
ΦxΦ

ᵀ
˚ (99)

Using the Woodbury matrix inversion lemma:

“ Φ˚

´

σ´2Φ
ᵀ
x Φx ` I

¯´1
Φ

ᵀ
˚ (100)

“ Φ˚

´

σ´2Σ` I
¯´1

Φ
ᵀ
˚ (101)

and since Σ is a diagonal matrix of the eigenvalues of K:

“
ÿ

i

σ2

λi ` σ2 Φ2
˚i (102)

If we calculate the first m singular values, then we can bound this quantity on
either side, as we know that the remaining singular values will all be bounded
0 ă Σj ď Σm:
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σ2
˚ ě qσ2

˚ “

m
ÿ

i“1

σ2

λi ` σ2 Φ2
˚i `

n
ÿ

i“m`1

σ2

λm ` σ2 Φ2
˚i (103)

σ2
˚ ď pσ2

˚ “

m
ÿ

i“1

σ2

λi ` σ2 Φ2
˚i `

n
ÿ

i“m`1

Φ2
˚i (104)

Since we only have access to the first m elements of Φ˚ through the partial
SVD, we rephrase both the bounds in terms of only those elements.

pσ2
˚ “

m
ÿ

i“1

σ2

λi ` σ2 Φ2
˚i `

n
ÿ

i“m`1

Φ2
˚i (105)

“

m
ÿ

i“1

σ2

λi ` σ2 Φ2
˚i `

˜

n
ÿ

i“1

Φ2
˚i ´

m
ÿ

i“1

Φ2
˚i

¸

(106)

Using the identity that
řn

i“1 Φ2
˚i “ Φ˚Φ

ᵀ
˚ “ K˚

“ K˚ ´
m
ÿ

i“1

ˆ

1´
σ2

λi ` σ2

˙

Φ2
˚i (107)

“ K˚ ´
m
ÿ

i“1

λi

λi ` σ2 Φ2
˚i (108)

“ K˚ ´K˚xU1:mΣ´1
1:m

pQUᵀ
1:mKx˚ (109)

Where pQ is defined as a digonal matrix where pQii “
Σi

Σi`σ2

Combining Equations 104 and 103 we can obtain a bound on the error of the
variance.

pσ2
˚ ´ σ2

˚ ď pσ2
˚ ´ qσ2

˚ (110)

“

n
ÿ

i“m`1

Φ2
˚i ´

n
ÿ

i“m`1

σ2

λm ` σ2 Φ2
˚i (111)

“

n
ÿ

i“m`1

λm

λm ` σ2 Φ2
˚i (112)

“
λm

λm ` σ2

˜

K˚ ´
m
ÿ

i“1

Φ2
˚i

¸

(113)

“
λm

λm ` σ2

´

K˚ ´K˚xU1:mΣ´1
1:mUᵀ

1:mKx˚

¯

(114)
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Example dataset

We now look at the resulting variance bounds on the same datasets as before. In
this case we can see that the results are no longer local — whereas the subset
bounds are affected by the location of the points in the subset, the svd bounds
appear equally effective in all regions of the data and converge at a similar rate
towards the correct posterior variance. For each value of M the SVD also performs
better than its equivalent subset approximation.

Overall performance

As we also stated in Section 3.4.1, the k´partial SVD is the optimal rank-k ap-
proximation to a matrix, so it is unsurprising that this is a tighter bound than the
subset of the data for a given k. However, it is also substantially more expensive,
requiring OpkN2 Iq operations to calculate. Because of this, we would only rec-
ommend this decomposition in cases where training time computation is not at
a premium, but storage or test time prediction are. Table 5 shows the decrease in
required storage and required computation at test time by using the partial SVD
approximation to achieve various average bound tolerances.

Dataset τ “ .5 τ “ .2 τ “ .1 τ “ .05 τ “ .01
MPG 39.2x 19.6x 15.7x 7.8x 7.8x

Births in Quebec 150.0x 150.0x 150.0x 150.0x 75.0x
Bodyfat 25.2x 25.2x 25.2x 25.2x 25.2x

Boston housing 10.0x 5.0x 3.3x 2.1x 1.2x
Australian beer 71.3x 71.3x 47.6x 35.7x 28.5x

Sea levels 1.2x 1.0x 1.0x 1.0x 1.0x
Daily min temp 100.0x 15.0x 12.0x 10.0x 7.5x
Prod of H2SO4 13.8x 6.9x 5.5x 5.5x 4.0x

Table 5: Reduction in storage and test time computation for different bound toler-
ances

4.4.3 A unified representation

The second method for calculating an upper bound on the posterior variance
of a test point is through conjugate gradient. Returning to the equation for the
posterior variance:

σ2
˚ “ K˚ ´K˚xK´1Kx˚ ` σ2 (115)

the second term is equal to twice the optimal value of the function we optimize
when solving K´1Kx˚ with conjugate gradient. At each iteration of conjugate
gradient we can use the bounds we have already derived in Section ?? to bound
the posterior variance:

σ2
˚ ď K˚ ´~vᵀK~v` 2~vᵀKx˚ ` σ2 (116)
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M=1 M=8

M=16 M=24

M=32 M=40

Figure 17: SVD variance bounds for Daily min temp dataset. True variance in
blue, bound in green.

Where ~v is the vector being optimized with conjugate gradient. We can bring
the subset and partial SVD bounds into this framework by considering them as
a means to calculate an approximate solution to the quadratic form, which can
then be used as the starting point for conjugate gradient ~v0. In this framework,
the SVD and subset bounds of the previous two sections can be considered as
using the respective approximation to determine a starting point, and then per-
forming 0 iterations. The potential advantage of even a small number of extra
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iterations is that the variance structure captured by the approximation is neces-
sarily global, whereas each conjugate gradient system can take advantage of the
local properties of the current test point. The two starting vectors can be calcu-
lated as follows:

~vsubset “

«

~0
K´1

m Km˚

ff

(117)

~vSVD “ U1:mΣ´1
1:m

pQUᵀ
1:mKx˚ (118)

In Equation 117, the non-zero entries correspond to the indicies of m.

Performing this refinement of variance at test time with conjugate gradient is
comparatively expensive; every iteration on a test point requires OpN2q opera-
tions at test time, whereas the initial bound can be calculated in only OpNM2q

operations. This can be useful in cases where very accurate variances are impor-
tant on only a small subset of the test points. However, Chapter 5 will introduce
sets of kernels for which this refinement can be performed much faster, making
this view useful in a broader range of applications.

Example dataset

Figure 18 shows the improvement in posterior variance bounds as conjugate gra-
dient is applied. The dataset chosen is Sea levels for which the subset and SVD
bounds showed very little improvement over full factorization. This shows that
for this dataset, we can achieve speed-ups over Cholesky decomposition by us-
ing conjugate gradient if predictions are only required at a small number of test
locations.

Overall performance

To illustrate the effects of running the conjugate gradient system, we look at the
number of iterations required to achieve a given error bound on the variance,
initializing with the subset of data approximation with M “

?
N. This is shown

in Table 6. The table confirms that using conjugate gradient the bounds converge
exponentially with the number of iterations.

Dataset τ “ .1 τ “ .05 τ “ .01 τ “ .005 τ “ .001
MPG 4 6 8 8 9

Births in Quebec 1 1 1 1 2

Bodyfat 1 1 1 1 1

Boston housing 11 15 21 21 27

Australian beer 1 4 6 6 7

Sea levels 12 18 30 33 42

Daily min temp 1 4 7 9 11

Prod of H2SO4 2 4 8 9 12

Table 6: Extra iterations of conjugate gradient required to achieve certain variance
bound errors
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Iterations =1 Iterations =3

Iterations =5 Iterations =7

Iterations =9 Iterations =12

Figure 18: Improvement in variance bound for different number of refining CG
iterations on the Sea level dataset.

4.5 derivatives

The derivative of the log-likelihood has the following form:

dL
dθi

“ ´
1
2
~yᵀK´1 dK

dθi
K´1~y´

1
2

Tr
ˆ

K´1 dK
dθi

˙

(119)
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We will need to use a stochastic trace estimator to calculate the second term,
so immediately we can see that this will be the more computationally expensive
term: for every iteration of the trace estimator, we will need to solve a linear
system with K. So while the first term requires OpN2 I1q operations, where I1
is the number of iterations to solve the linear system, the second term requires
OpN2 I1 I2q operations, where I2 is the number of samples required for an accurate
estimate from the stochastic trace estimator.

In order to calculate the second term we can choose any of the stochastic trace
estimators from Section 4.2.2. The iterative GP framework of [Gibbs and MacKay,
1997] used Gaussian random vectors, though Hutchinson random vectors are
more common in other applications, being called the “standard Monte Carlo es-
timator”[Avron and Toledo, 2011] for this problem. Since each sample for the
estimator is quite expensive — it requires the solution of another linear system —
it is important to cache the solutions to these linear systems for use in calculating
different derivatives. To do this we define ~β j “ K´1~sj, where~sj are sampled from
our stochastic trace estimator distribution. For each parameter, we then use the
formula:

Tr
„

K´1 dK
d~θi



«
1
M

M
ÿ

j“1

~βᵀ
j

dK
d~θi

~sj (120)

Where M is the number of samples used to estimate the trace. Since the com-
putation for the first term of Eq requires one linear system solve, whereas the
second will require M, it is reasonable to solve ~αopt to a high accuracy. Then,
for each iteration of the stochastic trace estimator, we require that the sample be
accurate to within a small tolerance of the resulting estimate. To bound the error
on the second term, we require a more general bound on the error of the solution
vector of a quadratic form than we have so far derived. We derive a bound on the
norm of the error vector ~ε for a given solution vector ~v to the system defined by
K´1~y. Starting with the error bound on the objective function from Equation 73:

B “
1

2σ2 }~y´K~v}2 (121)

“
1

2σ2 }K~ε}
2 (122)

ě
1

2σ2 λmin pKq
2
}~ε}2 (123)

ě
σ2

2
}~ε}2 (124)

The error bound we wish to enforce is that the error on our sample is a fraction
η of the current estimate of the derivative:
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~εᵀj
dK
dθi

~sj ď η

˜

ĄdL
dθi
`~βᵀ

j
dK
dθi

~sj

¸

(125)

ˇ

ˇ~εj
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

dK
dθi

~sj

ˇ

ˇ

ˇ

ˇ

ď η

˜

ĄdL
dθi
`~βᵀ

j
dK
dθi

~sj

¸

(126)

c

2B
σ2

ˇ

ˇ

ˇ

ˇ

dK
dθi

~sj

ˇ

ˇ

ˇ

ˇ

ď η

˜

ĄdL
dθi
`~βᵀ

j
dK
dθi

~sj

¸

(127)

B ď
2

σ2

˜

η

˜

ĄdL
dθi
`~βᵀ

j
dK
dθi

~sj

¸

ˇ

ˇ

ˇ

ˇ

dK
dθi

~sj

ˇ

ˇ

ˇ

ˇ

´1
¸2

(128)

This is the termination criteria that we use for the conjugate gradient systems
that make up each trace estimate, ensuring this is true for every hyper-parameter
~θi . The second element we require is when to terminate the stochastic trace es-
timator. MacKay and Gibbs[Gibbs, 1997] performed experiments by setting the
number of samples to be 2. We show that while in some instances only 2 samples
results in very high accuracy, this is not universally true. The error on the second
term can be bounded probabilistically; since the estimator of the matrix trace is
a mean of independent samples, an approximate probability that the error in the
estimate is less than .01 can be derived from the standard error:

Pr

˜

ˇ

ˇ

ˇ

ˇ

Tr
ˆ

K´1 dK
dθi

˙

´
ÿ

~βᵀ
j

dK
dθ

~sj

ˇ

ˇ

ˇ

ˇ

ď .01
ĄdL
dθi

¸

ě .95 (129)

2

d

Var
ˆ

ÿ

~βᵀ
j

dK
dθ

~sj

˙

ď .01
ĄdL
dθi

(130)

200

d

1
M

Var
ˆ

~βᵀ
j

dK
dθ

~sj

˙

ď
ĄdL
dθi

(131)

This can be used as a criterion for terminating sampling.

4.5.1 Experiments

To assess the efficacy of this estimator, we sample hyper-parameters from:

~a “ N p0, 3Iq (132)

~θ “ expp~aq (133)

and assess the derivatives and associated quantities at those points.
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Accuracy of two samples

Figure 19 shows the log relative error in the estimate of the derivative when it is
calculated by taking the fixed rule of two samples. The dataset is generated from
the function f pxq “ sinpxq ` x. Approximately one third of the derivatives have
a realative error greater than 1, which is far too high for a non-stochastic gradient
method to use. This level of error is a strong argument for an adaptive sample
size rule.

50 40 30 20 10 0 10 20
0
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10

15

20

25
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Figure 19: Log relative error of trace estimator for 2 Gaussian samples on a simple
1D dataset

Distribution of iterative convergence across hyper-parameters

Figure 20 shows the distribution of iterations required to solve the linear systems.
The black dotted line represents the cost of Cholesky factorization, and the blue
dotted line represents the average cost of solving a linear system for this distri-
bution of hyper-parameters. We can see from the samples to the right of the
black lines that the iterative method is not universally faster than the Cholesky
decomposition.

Comparison of trace estimators

Figure 21 shows the number of the samples required to achieve a given relative
accuracy of .01 on the Boston housing dataset using the different trace estimators,
with the average shown as the dotted black line. It shows that for this dataset all
three proposed trace estimators outperform the Gaussian estimator.

Overall performance

Table 7 shows the reduction in operations required to calculate derivatives to .01

relative error using the stochastic estimator, rather than Cholesky factorization.
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(d) Births in Quebec

Figure 20: Distribution of required iterations to convergence for RBF on different
datasets

This shows that across these datasets the stochastic estimators are universally
faster, with the Hutchinson performing the best overall.

Dataset Gaussian Rayleigh Hutchinson Unit
MPG 5.2x 7.9x 8.3x 5.0x

Births in Quebec 26.4x 26.4x 26.4x 26.4x
Bodyfat 4.0x 7.8x 8.0x 5.6x

Boston housing 5.6x 6.7x 7.1x 4.4x
Australian beer 17.0x 17.0x 17.0x 17.0x

Community crime 530.0x 843.2x 843.2x 843.2x
Sea levels 18.9x 19.1x 19.1x 19.1x

Daily min temp 5.8x 6.2x 6.2x 5.3x
Prod of H2SO4 19.2x 19.2x 19.2x 19.2x

Table 7: Average reduction in computation required to calculate derivatives using
different trace estimators
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Figure 21: Number of samples required to achieve .01 relative error when calcu-
lating derivatives on the Boston housing dataset

4.6 log-likelihood

The log-likelihood has the following form:

L “ ´1
2
~yᵀK´1~y´

1
2

logpdetpKqq ´
N
2

logp2πq (134)

This quantity is used in some cases in gradient descent algorithms, and also in
cases where models need to be compared against each other. As this quantity is
not necessary for some methods of optimization[?], discussion of this was omit-
ted from Mackay and Gibbs[Gibbs and MacKay, 1997]. However, there are many
applications where model scoring is important.

We already know how to bound the first term with conjugate gradient; the
approximation of the log-determinant is somewhat more difficult. The efficient
calculation of this quantity has been investigated in a number of different con-
texts[Reusken, 2000, Bai and Golub, 1996, Hale et al., 2008, Aune et al., 2014] and
specifically in GPs[Stein et al., 2013, Zhang and Leithead, 2007]. The approach
we take is to use an expansion of the log-determinant. The work of [McCourt,
2008] extends [Barry and Kelley, 1999] to demonstrate how to create such an ap-
proximation to the log-determinant for an arbitrary PSD matrix using the largest
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singular value and the Rayleigh trace estimator. We extend this by proposing the
use of two different bounds on the largest singular value, as well as the alterna-
tive trace estimators shown in Section 4.2.2.

We use the following relationship, where log is the matrix logarithm:

log det X “ Trplog Xq (135)

as well as the Mercator series expansion for the matrix logarithm:

logpI` Xq “
8
ÿ

1“1

p´1qi

i
Xi for X with ´1 ă λmaxpXq ă 1 (136)

Which combine to give:

log detpI` Xq “
8
ÿ

1“1

p´1qi

i
Tr

´

Xi
¯

(137)

For X with ´1 ă λmaxpXq ă 1.

To obtain a matrix whose largest singular value is bounded between ´1 and
1, it is sufficient to divide the matrix by its largest singular value. However, it is
worth noting that the calculation of the largest singular value can itself be quite
expensive, and crucially its convergence depends on a different quantity2 than
the trace estimators. We therefore propose a more general formulation using an
upper bound on the largest singular value pλmax ě λmax . Two bounds that we will
use in experiments are the trace bound and Gershgorin bound.

λmaxpKq ď TrpK´q ` σ2 Trace bound (138)

λmaxpKq ď arg max
i

N
ÿ

j“1

}Kij} Gershgorin bound (139)

Using a bound on λmaxpKq we can rewrite the log-determinant of a kernel
matrix as follows:

log detpKq “ log det

˜

pλmaxpKq
K

pλmaxpKq

¸

(140)

“ n log pλmaxpKq ` log det

˜

I`

˜

K
pλmaxpKq

´ I

¸¸

(141)

:“ n log pλmaxpKq ` log det pI`Dq (142)

“ n log pλmaxpKq `
8
ÿ

1“1

p´1qi

i
Tr

´

Di
¯

(143)

2 the convergence rate of iterative methods for finding the largest singular value is proportional to λ1pKq
λ2pKq
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The choice of D has been made in such a way that its eigenvalues are bounded
between ´1 and 1. We can now approximate this quantity by truncating the
series at a fixed length m and using one of the stochastic trace estimators from
the previous section.

log detpKq « n log pλmaxpKq `
m
ÿ

1“1

p´1qi

i
rTr
´

Di
¯

(144)

Each term in the expansion can be bounded as follows:

}TrpDiq} ă NλmaxpDiq (145)

ă N

˜

1´
λminpKq
pλmaxpKq

¸i

(146)

While the error for truncating at m can be bounded with this term, it is not
generally tight enough to be useful in practice. However, this shows us that, like
linear systems, the convergence rate depends largely upon the condition number
of K. As such, it is likely that pre-conditioning will be as important for approxi-
mating the log-determinant. Pre-conditioning for this estimator can be achieved
with the following identity:

log det K “ log det
´

PP´1K
¯

“ log det P` log det
´

P´1K
¯

(147)

The effects of this will be reviewed in Section 4.7.
The total number of operations required is based on the truncation of the series,

m, and the number of samples required for the trace estimates, p, leading to a total
computational cost of OpmpN2q operations. p can be chosen based on the sample
variance, as with the calculation of the derivative, and the series can be truncated
at a point where the terms fall below a given tolerance.

4.6.1 Experiments

To assess this approximation, we evaluate it at a set of hyper-parameters sampled
from the same distribution as Section 4.5.

Trace estimator comparison

We first look at the distribution of required p for different estimators, using the
same distribution of hyper-parameters as Section 4.5.1, illustrated in Figure 22.
Once again, the three proposed estimators outperform the Gaussian.

Series truncation

Figure 23 shows the number of terms of the series that are needed to achieve
a .01 relative error tolerance on the bodyfat dataset using different bounds on
the largest eigenvalue. The values of m are bounded at 50, as this is the point
at which the iterative method is no more efficient than Cholesky decomposition.
The trace bound is clearly inferior to both the Gershgorin and SVD, a trend which
is consistent across all datasets.
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Figure 22: Histogram of required samples to achieve .01 relative accuracy on the
Boston housing dataset

Overall performance

Table 8 shows the average computational savings by using the iterative method to
an accuracy of .01 over Cholesky factorization. For this calculation, the Rayleigh
and Hutchinson provide a substantial speed-up over the Unit and Gaussian sam-
pling schemes. While the performance increase compared to factorization is not
as large as for the previous quantities, there are still order of magnitude speed-
ups for some datasets.

4.7 pre-conditioners

Due to the importance of pre-conditioning linear systems, there is a literature ded-
icated to the choice of pre-conditioners, and to “general purpose” pre-conditioners[Benzi,
2002, Srinivasan et al., Barrett et al., 1994]. However, by definition a general
purpose pre-conditioner can only ever be so useful — the entire point of a pre-
conditioner is to integrate prior knowledge about the problem structure in or-
der to convert it to a related problem that is easer to solve iteratively. For GPs
there are many pre-conditioners that use detailed knowledge of the problem, and
knowledge about individual kernels, that can be easily obtained from standard
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Figure 23: Histogram of required value of m for different bounds on the bodyfat
dataset

Dataset Gaussian Rayleigh Hutchinson Unit
MPG 9.5x 62.7x 62.7x 18.9x

Births in Quebec 1.2x 3.4x 3.4x 3.6x
Boston housing 2.7x 4.3x 4.4x 4.5x
Australian beer 1.4x 2.9x 2.9x 5.2x

Sea levels 2.0x 2.7x 2.7x 3.3x
Daily min temp 1.1x 3.5x 3.5x 3.7x

Bodyfat 5.2x 15.6x 15.8x 12.6x
Prod of H2SO4 1.4x 2.6x 2.6x 3.9x

Table 8: Reduction in computation required to calculate the log-likelihood using
different trace estimators

methods for approximate GPs.

At a very general level approximate GP methods[Snelson and Ghahramani,
2006, Williams and Seeger, 2001] tend to share a common base: they approximate
the full kernel matrix K with a matrix K̃ which can be inverted efficiently and
use that matrix in place of the full kernel matrix. Returning to the definition of pre-
conditioners, the pre-conditioning matrix P shoudl be chosen such that P´1K « I
(which can be satisified by P « K) and such that P can be efficiently inverted. So,
rather than using rK in place of K, it can be used as an iterative pre-conditioner
P “ rK. When the aim of a Gaussian Process approximation is to approximate
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the full GP (as opposed to provide a different prior[Quiñonero Candela and Ras-
mussen, 2005]), then using the framework of pre-conditioning offers substantial
advantages. Foremost, it avoids the problem of catastrophic failure. Most GP ap-
proximations are parameterized by an integer M, representing the number of data
points or basis functions used in the approximation. As M becomes too small to
approximate the kernel matrix well, directly using the approximate kernel matrix
as a replacement for the true one will result in arbitrarily poor predictions. Pre-
conditioning the linear system, on the other hand, will still return bounds on the
solution error and will simply converge more slowly.

By setting the initial point of optimization, v0 “ K̃´1~y, the direct approxima-
tion is a special case where the number of iterations are 0 and the bounds are not
checked. As an iteration or bound check requires OpN2q operations, both may
be too expensive in some circumstances. In this case however, an alternative is
to consider restricted classes of kernels (Chapter 5), rather than to use a direct
approximation and hope for the best.

4.7.1 Example pre-conditioners

This section will look at the effect of a number of different pre-conditioners on
the convergence rate of the iterative solution to an SE Gram matrix. All the
pre-conditioners can be computed and inverted in OpNM2q operations, with the
exception of the partial SVD, which requires OpN2 Iq.

Local GPs (Block Jacobi)

The Block Jacobi pre-conditioner is one of the simplest general pre-conditioners
and is equivalent to the local GPs model[Snelson and Ghahramani, 2007]. In this
context it is constructed by choosing subset of points of size M and forming a
block diagonal matrix P where Pij “ kp~xi ,~xjq if the points are in the same subset,
and 0 if not. Since the resulting matrix is block diagonal, it can be inverted in
OpNM2q operations.

rP “ K ˝ pIb 1q

where ˝ is element-wise multiply and b is the Kroneckor product.

Nystrom approximation

The Nystrom approximation[Williams and Seeger, 2001, Drineas and Mahoney,
2005] for a Gram matrix is a low-rank approximation constructed from a subset
of the training points m.

rP “ KxmKmKmx ` σ2I

PITC

PITC[Snelson and Ghahramani, 2007] is an approximate GP model that exactly
models the full GP relationship within clusters of the data and approximates the
remaining covariances with a low-rank matrix (The model of PITC is described
more fully in Section 5.2.3). The resulting approximation is:
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rP “ KxmK´1
m Kmx `

´

K´KxmK´1
m Kmx

¯

˝ pIb 1q

From the form of the approximation, we can see that PITC can be though of as
a combination of the local GPs and Nystrom approximation.

Partial SVD

Another general preconditioner is to take the M-partial SVD of the noise-free
kernel matrix:

rP “ U1:mΣ1:mUᵀ
1:m ` σ2I

This will be impractical in most circumstances, due to the high cost of the
partial SVD, but is included in the experiments as a useful benchmark.

4.7.2 Results

We assess the effect of the different pre-conditioners on the convergence of solving
linear systems, the speed-up of which affects the mean calculation, posterior vari-
ance refinement and derivative calculation, and the effect of the pre-conditioners
on the approximation to the log-determinant.

Pre-conditioning linear systems

Figure 24 and Figure 25 show the improvement that can be made by pre-conditioning
linear systems. Figure 24 shows the distribution of the ratio of the iterations re-
quired by pre-conditioned systems compared to the standard solver and Figure
25 shows how the average improvement changes as the approximation quality M
is increased. For this dataset PITC is the best pre-conditioner, although this is not
true for all the datasets. Those that have more local structure tend to be better
served with a PITC pre-conditioner, while those without can be solved faster with
an SVD pre-conditioner. In all cases these two were superior to the Block Jacobi
and Nystrom approximations.

The overall results for decrease in computation of derivatives is listed in Table
10. The savings are shown for pre-conditioners where M “

?
N, which is the

point at which the cost of inverting the pre-conditioner is equal to the number
operations for one iteration of conjugate gradient. While this point is not neces-
sarily the optimal in terms of computational efficiency, it is a sensible default in
that it asymptotically adds no computational complexity and in practice the cost
of one extra iteration is small regardless of problem size. It shows that for these
datasets, a PITC pre-conditioner achieves a modest improvement of between 1-3x
over standard conjugate gradient.

Pre-conditioning the log-likelihood

Figure 26 shows the reduction in required terms to effectively approximate the
log-likelihood for the sea level dataset. The PITC pre-conditioner brings the
stochastic estimator to be more efficient in all but one out of twenty instances.
The effect of the pre-conditioning is also shown in Table 11, by comparison with
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Figure 24: Ratio of required iterations between standard and pre-conditioned sys-
tems on the simple 1D dataset. Values of greater than 1 indicate a
pre-conditioner that slowed down convergence.
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Figure 25: Reduction in required operations due to different pre-conditioners on
the simple 1D dataset

Table 8, the number of operations required is reduced by between 4x-40x. It is
interesting to see that for two datasets the unit estimator performs better on the
pre-conditioned system, but the Hutchinson estimator remains the best general
purpose choice.
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SVD Nystrom PITC Block
MPG 4.7x 3.5x 3.5x 0.5x

Births in Quebec 3.0x 3.0x 3.0x 1.5x
Bodyfat 1.0x 1.0x 1.0x 1.0x

Boston housing 2.4x 1.8x 1.4x 0.4x
Australian beer 7.0x 7.0x 7.0x 0.7x

Sea levels 0.8x 0.8x 1.9x 0.8x
Daily min temp 2.9x 2.3x 2.3x 0.7x
Prod of H2SO4 2.1x 1.7x 2.5x 0.9x

Table 9: Decrease in number of iterations to solve the linear system at optimal
hyper-parameters over standard conjugate gradient by using various pre-
conditioners with M “

?
N

Gaussian Rayleigh Hutchinson Unit
MPG 0.8x 1.5x 1.5x 1.5x

Births in Quebec 2.8x 2.8x 2.8x 2.8x
Bodyfat 1.2x 1.8x 1.8x 2.8x

Boston housing 1.1x 1.4x 1.4x 0.9x
Australian beer 1.6x 1.6x 1.6x 1.4x

Sea levels 2.3x 2.5x 2.5x 2.6x
Daily min temp 1.5x 1.6x 1.6x 2.3x
Prod of H2SO4 2.3x 2.3x 2.3x 2.3x

Table 10: Decrease in operations required to calculate derivatives over standard
conjugate gradient by using the PITC pre-conditioner with M “

?
N

Gaussian Rayleigh Hutch Unit
MPG 180.8x 180.8x 180.8x 180.8x

Births in Quebec 9.6x 98.9x 101.7x 15.4x
Bodyfat 39.7x 43.1x 43.1x 43.1x

Boston housing 5.9x 19.4x 19.5x 14.5x
Australian beer 10.1x 37.1x 38.2x 83.1x

Sea levels 5.0x 12.5x 12.5x 12.0x
Daily min temp 8.8x 102.9x 104.7x 26.4x
Prod of H2SO4 17.6x 122.1x 122.1x 166.0x

Table 11: Decrease in operations required to calculate the log-determinant by us-
ing the iterative estimator with a PITC pre-conditioner with M “

?
N

compared with Cholesky factorization
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(b) Using the Gershgorin bound with pre-conditioning

Figure 26: Distribution on the number of required terms m to achieve .01 relative
error in the log-determinant for the sea level dataset.
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5

E F F I C I E N T K E R N E L S : O pN 2 I q Ñ O pN M I q

To them, I said, the truth would be literally nothing but the shadows of the images.

— Plato, The Republic

A key property of the framework of Chapter 4 is that the methods never re-
quire direct access to the elements of the Gram matrix, as they only interact with
it through the evaluation of the dot product of a vector with the matrix1. The N2

term from the OpN2 Iq operations required to solve a GP in the framework comes
from the N2 operations required to perform this matrix-vector product. This
means that the framework can be substantially faster than OpN2 Iq when using a
kernel for which the Gram matrix can be multiplied by a vector in less than N2 op-
erations. There are many such kernels, and we will classify them by defining the
idea of an M-efficient kernel. An M-efficient kernel is one for which the matrix-
vector product with a Gram matrix of size N that it generates can be performed
in OpNMq operations. While there have been investigations to construct routines
for approximate matrix-vector products[Greengard and Strain, 1991, Lang et al.,
2005, Yang et al., 2003] that are very effective under certain circumstances, we
restrict our focus here to classes of kernels for which the matrix-vector product
can be calculated exactly.

Feature engineering is often cited as the “the most important factor” [Domingos,
2012] for the success of learning algorithms. For kernel methods, this directly
translates to the kernel being the most important factor for success. There will
never be a single best kernel for all tasks [?], so the utility of kernels methods is
increased by having a large array of kernels available.

In this chapter we propose three classes of kernels with controllable complexity
M. The first is based on graphical models and includes commonly used sparse
kernels such as FITC and PITC. The second is a new style of kernel based on ran-
dom partitions. The final class is designed to model global and local behaviour
in high dimensions and is based on compactly supported kernels.

5.1 background

In the inference framework of Chapter 4, the number of operations required to
solve a GP is proportional to the time taken to perform the dot product of the

1 With the exception of the trace bounds in Section 4.6
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Gram matrix with a vector, which we will hereafter refer to as a matrix-vector
product. Additionally, the space requirement is proportional to the space re-
quired to store the Gram matrix. To construct a framework for M-efficient kernels
we review class of matrices that can be stored in OpNMq and where the matrix-
vector product can be performed in OpNMq operations

There are a number of classes of structured matrices that obey this property,
however most are not useful in the context of GPs as it is difficult to design
general kernels to satisfy the structural assumptions in these matrices. Toeplitz
structured kernel matrices are encountered in practice, but only when a stationary
kernel is evaluated on a grid[Saatci]. In this section we restrict our focus to kernels
that can be applied to arbitrary datasets. There are two classes of matrices that,
along with the ` operator, will form the basis for all the efficient kernels we
discuss. These are low-rank matrices and sparse matrices.

5.1.1 Low-rank matrices

Low-rank symmetric matrices can be expressed as K “ UUᵀ, where U P RNˆM ,
which is illustrated in Figure 27.

Figure 27: Illustration of a low-rank matrix

Matrix-vector products can be calculated in OpNMq operations by performing
the calculation in the following order:

K~v “ U pUᵀ~vq (148)

If we have the matrix in the above form, then we also have direct access to all
its eigenvalues.

Lemma 5.1.1. UUᵀ has M non-zero eigenvalues, and the corresponding eigenvalues
and eigenvectors are

!

1
}Ui}

Ui , }Ui}
2
)

.

Proof. Let Σ be the diagonal matrix of eigenvalues i.e. Σii “ }Ui}
2. The singular

value decomposition can be written as

K “
´

UΣ´
1
2

¯

Σ
´

UΣ´
1
2

¯ᵀ
(149)

“ UUᵀ (150)
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From which it follows that the largest eigenvalue is:

λmax pUUᵀq “ arg max
i
}Ui}

2 (151)

5.1.2 Sparse matrices

Sparse matrices are matrices that have a small number of non-zero entries com-
pared to their size. We will use the terminology M-sparse matrices to refer to
sparse matrices which have OpMq non-zero entries per row/column resulting in
OpNMq non-zero entries.

Individual

Sparse matrices are implemented natively in most programming environments,
and its matrix-vector product can be calculated in OpNMq operations. The Gersh-
gorin eigenvalue bound (Eq 139) can be calculated directly in OpNMq operations.

Figure 28: Illustration of a sparse matrix

Product

The matrix-vector product of a product of sparse matrices can also be efficiently
evaluted in OpNMq:

S1 pS2~vq

and a bound on the eigenvalues can be obtained via the product of the bounds
on S1 and S2.

λmaxpS1S2q ď λmaxpS1qλmaxpS2q (152)

5.1.3 Addition

A GP with a sum of kernels k “ k1` k2 is equivalent to modelling the function as
the sum of two independent functions, one modelled with k1 and the other with
k2. This is illustrated in Figure 29. For two efficient kernels, the computational
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Figure 29: Additive kernel

cost of the matrix-vector product of their sum is the sum of the cost of the indi-
vidual matrix-vector products, since vector multiplication distributes over matrix
addition (as in Equation 153).

pK1 `K2q~v “ K1~v`K2~v (153)

A bound on the largest eigenvalue can be obtained by the following basic iden-
tity:

λmaxpK1 `K2q ď λmaxpK1q ` λmaxpK2q (154)

5.2 graphical model kernels

Taking advantage of conditional independence structure in statistical models is
one of the cornerstones of efficient inference. Gaussian Processes are no exception
— kernels with graphical model structure are by far the most common type of ker-
nels defined specifically for efficient inference[Csató and Opper, 2001, Sudderth
et al., 2004, Weiss and Freeman, 2001]. Many of these were originally proposed
as approximations to full Gram matrices, but it was shown in [Quiñonero Can-
dela and Rasmussen, 2005] that it can be equally useful to consider these not as
approximations, but an alternative choice of computationally efficient kernel. In
this section we will review the meaning of graphical models in the context of
Gaussian Processes, demonstrate a number of common fast kernels that can be
described with graphical models and show how the M-efficiency of a kernel is
defined by its graphical model.

5.2.1 Background

Graphical models are used to encode the conditional independence structure of
a problem and are critical for efficient inference in many models. The reader is
assumed to be familiar with the notation for directed and undirected graphical
models. See [Koller and Friedman, 2009] for a comprehensive review.

In parametric models, it is usually easy to understand what the graphical struc-
ture of a problem means. It illustrates that the datapoints are drawn from distri-
butions that depend only on a subset of the total parameters and the parameters
themselves may be drawn in a similarly structured fashion. A simple example is
the model:
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µ „ N pµ0, σ0q (155)

xi „ N pµ, σq (156)

which is illustrated in Figure 30a. We can clearly see in the graph that x de-
pends only on µ and σ (the dependence on µ0 and σ0 is mediated through µ).

(a) Parametric graphical model (b) Non-parametric graphical model

Figure 30: Example graphical models

However, in non-parametric models there are no parameters in the traditional
sense. The only elements in the graphical model are the data points, as illustrated
in Figure 30b. The generative interpretation is still correct — we can generate the
datapoints by sampling from conditional distributions — but it’s now far less
intuitive. An alternative, more enlightening definition of what graphical models
mean in the context of Gaussian Processes is based on the relationship of two
points xa and xb that the graph defines as being conditionally independent of
each other given a set of points C.

Definition 2. If xa KK xb | C then knowledge of the value of xb would not change
our prediction of the value of xa, given the value of the points in C. Equivalently,
xb contains no additional predictive information about xa, above what is already
contained in C.

River buoy example

An example of a problem with conditional independence of data points is the
river sensor network, which is illustrated in Figure 31. Deployed in the river net-
work are a number of buoys that measure the flow rate of the river. The flow
rate varies smoothly over the distance of the river but can be affected by local
conditions. To predict the flow rate at a given buoy, we would only required the
value of the buoys that are directly upstream and downstream from it (Figure
31b). This knowledge entails the graphical model overlayed in Figure 31c.
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(a) A river network, with flow rate monitoring buoys at the X’s.

(b) The prediction of the buoy highlighted
in orange is conditionally indepen-
dent of all other buoy measurements,
given the measurements at the buoys
in yellow.

(c) It is clear that the underlying graphical
model is represented by the following
graph.

Figure 31: River network example.

Inducing points

If some buoys in the network were broken, this wouldn’t change the underlying
structure of the problem, but we would no longer be able to observe the values at
these points. When defining these graphs, all training and test datapoints must
be part of the graph, however we can also include points that are neither in the
training nor test set. These points are referred to as either inducing or latent
points. In this case, these broken buoys would be inducing points, as we can
not observe them and may not want to predict at them, yet they are necessary to
describe the structure of the problem.

If the training and test points are independent given the latent points, then this
graphical model bears a strong similarity to traditional parametric models.
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Chordal graphs

An important set of undirected graphical models are chordal graphs, as these are
the set of graphs for which efficient closed form inference has been proved to be
possible[Koller and Friedman, 2009]. Chordal undirected graphical models can
be translated into factor graphs without loops, and hence can be solved via belief
propagation and similar algorithms.

Definition 3. A graph is chordal if every cycle of length > 3 has a chord (an edge
between two points on the cycle that is not itself part of the cycle).

(a) Chordal graphical model (b) Non-chordal graphical model with of-
fending cycle highlighted

Figure 32: Example graphical models

During this section we will only be considering chordal graphs. The efficiency
of methods on undirected graphical models are related to the size of the maximal
clique in the graph, which is the largest fully connected component of the graph.

Gaussian Processes

A graphical model does not entirely define a Gaussian Process, it merely describes
properties of it. There are always many (infinite in fact) Gaussian Processes that
are consistent with a given graphical model. An undirected graphical model G
can be represented by a symmetric binary matrix G, where:

Gij “

#

1 if ti, ju P G
0 if ti, ju R G

(157)

For a Gaussian distribution to obey the conditional independence relationships
of a graphical model G, it is equivalent to say:

K´1 ˝G “ 0 (158)

ie the sparsity pattern of the inverse of the Gram matrix is given by G. In order
to fully specify the distribution for chordal graphs, it is sufficient to specify the
covarinces for the corresponding non-zero elements of G[Shental et al., 2008].

Using this property we can show that when xa KK xb } C,

Kac “ KabK´1
b Kbc (159)
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(a) Graphical model G

»

—

—

—

—

—

—

—

—

–

1 1 1 0 0 0 0
1 1 1 1 0 0 0
1 1 1 1 0 1 0
0 1 1 1 1 0 0
0 0 0 1 1 0 0
0 0 1 0 0 1 1
0 0 0 0 0 1 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(b) Matrix representation G

Figure 33: A graphical model and its equivalent adjacency matrix

Proof.
»

–

Ka Kab KaC
Kba Kb KbC
KCa KCb KC

fi

fl

´1

“

»

–

¨ 0 ¨

0 ¨ ¨

¨ ¨ ¨

fi

fl

Applying the block matrix inversion lemma to the above:

„

¨ 0
0 ¨



“

„

Ka Kab
Kba Kb



´
“

KaC KbC
‰

K´1
C

„

KCa
KCb



0 “ Kab ´ KaCK´1
C KCb

Kab “ KaCK´1
C KCb

5.2.2 Definition

A graphical model kernel is any kernel that has a graphical model that is not fully
connected. To perform a matrix-vector multiplication we start by picking a set of
separating variables such that a KK c | b.

K~v “

»

–

Ka Kab KabK´1
b Kbc

Kba Kb Kbc
KcbK´1

b Kba Kcb Kc

fi

fl

»

–

~v1
~v2
~v3

fi

fl (160)

We perform:

~k0 “ ~v2 `K´1
b Kba~v1 (161)

«

~k1
~k2

ff

“

„

Kb Kbc
Kcb Kc

 „

~k0
~v3



(162)

K~v “

»

—

–

Ka~v1 `KabK´1
b

´

~k1 ´Kba~v1

¯

~k1
~k2

fi

ffi

fl

(163)
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Figure 34: Separation of a graphical model into three sets of points: a, b and c.

Equations 161 and 163 can be calculated in OpM3
bq + OpMa Mbq operations.

Equation 162 is the same style matrix vector product on the remainder of the
graph when the points in a are removed. This leads the overall computational
requirements to be OpNM2

maxq, where Mmax is the size of the maximal clique in
the graph. This is not necessarily a tight upper bound, and some methods are
faster when K´1

b is correctly cached. For example, by selecting the cliques in a
sensible order, a multiplication with a FITC Gram matrix can be performed in
OpNMq operations. If the graphical model contains inducing points, this same
formula can be used by setting the ~v values for the inducing points to 0 and only
evaluating the elements of K~v that correspond to non-inducing points.

Therefore a graphical model kernel with a graph of max clique size M is at
least M2-efficient.

5.2.3 Example graphical models

In this section we review a set of existing kernels that are members of this class
of graphical model kernels.

Known feature space

Any kernel with a known feature space whose dimensionality D is much smaller
than N, can be implemented efficiently by observing that any D linearly indepen-
dent observations fully specify the function. This means that all points are con-
ditionally independent given any D linearly independent points. This includes,
among many examples, the linear kernel as well as fixed basis function approxi-
mations such as Random Kitchen Sinks.

FITC

The Fully Independent Training Conditionals (FITC) approximation, introduced
as Sparse Pseudo-input Gaussian Processes in [Snelson and Ghahramani, 2006], is
likely the most common graphical model structured GP approximation currently
in use. The graphical model for FITC shows that the training and test points are
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(a) Graphical model for FITC and fixed
rank methods

(b) Graphical model for PITC

(c) Graphical model for a 1st-order
Markov chain

Figure 35: Illustrations of graphical models. Training points are shaded in blue
and inducing points in red. Thick lines between groups of fully con-
nected points indicate connections between all elements.

conditionally independent given an inducing set (Illustrated in Figure 35a).

The distribution of a FITC GP is:

KFITC “ KxmK´1
m Kmx `

´

K´KxmK´1
m Kmx

¯

˝ I

Where ˝ is the element-wise matrix product. Figure 36 shows an illustration of
this model applied to the Squared Exponential kernel.

PITC

The Partially Independent Training Conditionals (PITC) method was introduced
in [Snelson and Ghahramani, 2007] as an extension to FITC that considered not
just the global structure of the problem, but also the local structure. In this model,
all points belong to one of D clusters C1, ..., CD . The conditional independence
structure assumption for PITC is that a point xi in cluster Cj is independent of all
points xk R Cj given Xm. Instead of a point being independent of all other points
given the inducing set (FITC), it is independent of all points that are not in its
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(a) Prior samples
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(b) Posterior distribution

Figure 36: Prior samples and posterior distribution for the RBF-PITC kernel

cluster, given the inducing set. This is illustrated in Figure 37.

KPITC “ KxmK´1
m Kmx `

´

K´KxmK´1
m Kmx

¯

˝ pIb 1q (164)

(a) Prior samples
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(b) Posterior distribution

Figure 37: Prior samples and posterior distribution for the SE-PITC kernel

Markov

A common assumption in time series models is that the data is Markovian —
that the prediction at a given point is independent of all observations given the
M observations either side of that point. A 1st-order Markov graphical model is
illustrated in Figure 35c.

5.3 random partition kernels

In this section we show how to derive a kernel from a random partition, and a
method to create an M-efficient approximation to the kernel. Random partitions
can be thought of as randomized clusterings of a dataset. Clustering can be a
useful means to specify a kernel as it is a task which is usually quite intuitive, and
for which there are many efficient algorithms. There has recently been interest in
using K-means and other clustering algorithms to generate features for difficult
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classification tasks[Coates and Ng, 2011, 2012] which bears similarity to this work,
but approached from a non-kernelized, non-probabilistic perspective.

5.3.1 Background

Clustering

Clustering has a long history in machine learning and statistics precisely because
it as a very simple and intuitive task. Originally, clustering methods were de-
signed to find “the best” partition of a datset. More recent probabilistic methods
allow uncertainty and instead learn a distribution on what the clusterings of the
data might be. These distributions are known as partition distributions, and sam-
ples from them are random partitions.

A cluster C in a dataset D is a non-empty subset of D. A partition of D is the
segmentation of D into one or more non-overlapping clusters $ “ tC1, ..., Cju. ie:

Ci X Cj “ H (165)
ď

i

Ci “ D (166)

The following is an example dataset and an example partition of that dataset:

D “ ta, b, c, d, e, f u (167)

$ “ tta, eu, tcu, td, b, f uu (168)

A random partition of D is a sample from a partition distribution P . This distri-
bution is a discrete pdf that represents how likely a given clustering is. We will
use the notation $paq to indicate the cluster that the partition $ assigns to point a.

Random partitions have been studied extensively in the field of non-parametric
Bayesian statistics. Well-known Bayesian models on random partitions are the
Chinese Restaurant Process [Aldous, 1985], the Pitman-Yor Process [Pitman and
Yor, 1997] and the Mondrian Process [Roy and Teh, 2009], while many other com-
binatorial models can be used to define random partitions.

Defining distributions

There are many ways of defining a probability distribution: for example, by spec-
ifying the probability density function, the cumulative density function or the
moment generating function. An alternative way to define a probability distribu-
tion is by defining a random program.

Definition 4. Random Program.
A random program is a program that takes a source of randomness U1, U2, ¨ ¨ ¨

as input and returns an output in a set S .
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Any program of this form can be viewed as a program that generates samples
from some distribution on S . This should not be unfamiliar: any time a program
is written to sample from a specific distribution, it is a random program. However,
the converse is also true: any random program is a sampler for some distribution,
and thus the random program defines a distribution. This correspondence is not
1-to-1: two programs may define the same distribution, but importantly every
computable random program defines a distribution on S . Therefore, in order to
define a random partition of size N, it is sufficient to define a random program
where S is the set of partitions of size N.

5.3.2 Definition

The Random Partition Kernel can be described succintly using a metaphor in the
tradition of the CRP [Aldous, 1985] and IBP[Griffiths and Ghahramani, 2011].

We consider The Colonel, who is the host of a cocktail party. He needs to deter-
mine the strength of the affinity between two of his guests, Alice and Bob. Neither
Alice and Bob, nor the other guests, must suspect the Colonel’s intentions, so he
is only able to do so through surreptuous observation. At the beginning of the
evening, his N guests naturally form into different groups to have conversations.
As the evening progresses, these groups evolve as people leave and join different
conversations. At m opportunities during the course of the evening, our host
notes whether Alice and Bob are together in the same conversation. Figure 38

illustrates the clusterings at different observation times.

(a) Clustering at t=1

(b) Clustering at t=2

(c) Clustering at t=3

Figure 38: Illustration of the cocktail party at different times throughout the
evening

As the Colonel farewells his guests, he has a very good idea of Alice and Bob’s
affinity for one another, based on the number of conversations they participated
in together.
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A partition distribution naturally leads to a kernel in the following way:

Definition 5. Given a partition distribution P , we define the kernel

kP pa, bq “ E rI r$paq “ $pbqss$„P

to be the random partition kernel induced by P , where I is the indicator function.

That is, the kernel is defined to be the fraction of the time that two points are
assigned to the same cluster.

Lemma 5.3.1. kP pa, bq constitutes a valid PSD kernel.

Proof. First we define:

k$pa, bq “ I r$paq “ $pbqs

To prove that kP is PSD, we decompose the expectation into the limit of a
summation and show that the individual terms are PSD.

kP pa, bq “ E rI r$paq “ $pbqss$„P (169)

“ lim
nÑ8

1
n

n
ÿ

$„P
I r$paq “ $pbqs (170)

“ lim
nÑ8

1
n

n
ÿ

$„P
k$pa, bq (171)

For any dataset of size N, the kernel matrix for k$ will be an NˆN matrix that
can be permuted into a block diagonal matrix of the following form:

ZK$Zᵀ “

»

—

—

—

–

1 0 . . . 0
0 1 . . . 0
...

...
. . . 0

0 0 0 1

fi

ffi

ffi

ffi

fl

where 1 is a matrix with all entries equal to 1, 0 is a matrix will all entries 0

and Z is a permutation matrix. Each 1 matrix represents a single cluster.

From this we can conclude that ZK$Zᵀ is PSD, as it is a block matrix of PSD
matrices. Further, since a permutation does not affect the eigenvalues of a matrix,
K$ is PSD. Since K$ is PSD for any dataset, k$ must be a valid kernel. Finally,
since a linear combination of kernels with positive coefficients is also a valid
kernel, kP is a valid kernel.
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m-approximate kernel

This structure allows for a simple approximation scheme that only requires the
ability to sample from the distribution P .

Definition 6. The m-approximate Random Partition Kernel is the fraction of
times that $ assigns a and b to the same cluster over m samples.

kP pa, bq « k̃P pa, bq “
1
m

m
ÿ

$„P
k$pa, bq

This m-approximate partition kernel is m-efficient, and defines a distribution
over piecewise constant functions. Samples from the prior and the posterior dis-
tribution of a random partition kernel are illustrated in Figure 39 (the particular
random partition is the Fast Cluster partition, which is described in Section 5.3.3).
We can clearly see here that it defines a distribution over piece-wise constant func-
tions. It can be seen in the samples from the prior (Figure 41b) that a given
random partition kernel is not a distribution over all piece-wise constant func-
tions, but rather there are a finite number of jump locations that are determined
by the clustering algorithm.
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(a) Prior samples
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(b) Posterior distribution

Figure 39: Prior samples and posterior distribution for FastCluster kernel

Convergence of m-approximate kernel

Lemma 5.3.2. If the samples from P are independent then the bound on the variance of
the approximation to kP pa, bq is O

´

1
m

¯

.

Proof. If $ are independent samples from P , then

k$pa, bq „ Bernoulli pkP pa, bqq

and k̃P pa, bq is the maximum likelihood estimator for kP pa, bq. The variance of
the ML estimator for a Bernoulli is bounded by 1

4m .

In Figure 40 we see how the posterior converges as we increase the number of
samples M.
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(f) M=28

Figure 40: Posterior converging with increasing M

Implementation

A partition matrix can be implemented as a product of sparse matrices SSᵀ where

Sij “

$

&

%

1?
}$pjq}

if $pjq “ i

0 otherwise
(172)

Where }$pjq} is the size of cluster $pjq.
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Optimizing sample weights

A further extension to this kernel is to relax our interpretation of the random
partition kernel and learn cluster specific weights w1, . . . , wm to be set when opti-
mizing the GP. This more general formulation gives us the kernel form:

k̃opt
P pa, bq “

m
ÿ

i“1

wik$i pa, bq (173)

In Figure 41 we see the results of a standard and optimized weight random
partition kernel side by side.
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(a) FastCluster without weights
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(b) FastCluster with optimized weights

Figure 41: Effect of cluster specific weight optimization

5.3.3 Random partitions

To demonstrate the potential of this method, we first show how to obtain random
partitions from a large class of existing algorithms. Then we focus on a particular
example, the Fast Cluster Kernel, to illustrated properties of kernels derived from
this method.

Stochastic clustering algorithms

Any standard clustering algorithm (K-means [MacKay, 2003a] and DBSCAN [Es-
ter et al., 1996] being just a couple of examples) generates a partition for a given
dataset. Adding any element of randomness to the algorithms (if it does not al-
ready exist) results in a stochastic clustering algorithm. Elements of the clustering
algorithm that can be randomized include:

1. Initializations

2. Number of clusters

3. Subsets of the data (Bagging)

4. Subset of the features

5. Projections of the features
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The output for a stochastic clustering algorithm is a random partition. As a
simple concrete example, the output of K-means with random restarts returns a
random partition.

Ensembled tree methods

A large class of random partitions can be derived from ensembled tree methods.
We use this term to refer to any method whose output is a collection of random
trees. By far the most well known of these are Random Forest [Breiman, 2001]
and Boosted Decision Trees [Freund and Schapire, 1997], though it also includes
Bayesian Additive Regression Trees [Chipman et al., 2010], Gradient Boosting Ma-
chines with decision trees [Friedman, 2000] and many others.

As a tree defines a hierarchical partition, it can be converted to a partition
by randomly or deterministically choosing a height of the tree and taking the
partition entailed by the tree at that height.

Example: Fast cluster kernel

To illustrate some of the properties of the Random Partition Kernel, we propose
the following random partition, which we call “FastCluster”. The algorithm is as
follows: First, sample a subset of the dimensions which will be used to measure
distances for the partition. Then, select a random number of cluster centres M
uniformly from t2, 4, ..., Nu and randomly sample M unique cluster centers from
X. Assign every point to the cluster associated with its nearest centre, measured
only on the subsampled dimensions. The pseudocode is shown in Figure 42.

~d „ Bernoullip.5, Dq
M „ Samplepr2, 4, ..., Ns, 1q
C „ Samplepr1, ..., Ns, sq
for a P D do

$paq “ argmincPC
´

}pXc ´ Xaq d ~d}
¯

Figure 42: Algorithm for Fast Cluster

5.4 sparse and low-rank kernels

The final class of efficient kernels we propose are sparse and low-rank kernels.
These are kernels for which the Gram matrix is the sum of a sparse and a low-
rank matrix. This class is particularly suited to the framework of Chapter 4. While
random partition kernels have sparse known features and thus can be solved
efficiently with iterative methods in the primal and graphical model kernels can
be solved efficiently in the dual with factorization via belief propagation, sparse
and low-rank kernels are uniquely suited to iterative solvers in the dual.
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5.4.1 Background

Sparse and low-rank matrices are tied very much to the idea of the global and
local modelling of functions.

Local clusters

There have been a number of approximations and kernels that are based around
the idea that there is distinct global and local structure in functions. That is, that a
function can be modelled well by splitting interactions into local effects, that only
occur between points that are close, and global effects, that can be summarized
by a number of basis functions much smaller than the total number of points.
PITC, which we have already seen in Section 5.2.3, was one of the first models to
be based on this assumption. The definition of its Gram matrix in Equation 164

reveals it to be a low-rank and sparse matrix, which shows there is some overlap
between this class and graphical model kernels. PITC suffers from some limita-
tions in modelling short term interactions, as it requires the data to be segmented
into clusters for the local function modelling. This is especially problematic in
cases where there are no obvious clusters of the data, such as time-series mod-
elling.

Compactly supported kernels

Compactly supported kernels[Zhu, 2012] are those such that for a given a, kpa, bq
is only non-zero for b in a finite region of space. For the stationary kernels that
we consider, this means that k is only non-zero for points that are within a certain
distance C of each other. This property means that the resulting Gram matrix is
sparse. The idea of constructing an efficient low-rank and sparse kernel from a
compact kernel was investigated in [Vanhatalo and Vehtari, 2012], which proposes
a sum of a FITC kernel and a compactly support kernel. One of the limitations of
this work is the reliance on a sparse factorization method for calculations, rather
than an iterative framework.

Sparse factorization methods — such as the sparse Cholesky — are factoriza-
tion methods that take advantage of the structure of a sparse matrix by calculating
only the non-zero elements of the resulting Cholesky factors. This means that the
method is often substantially faster than a full factorization for sparse matrices.
However, the resulting sparsity pattern of the Cholesky matrix is less sparse than
that of the original matrix. In some instances, a sparse matrix may lead to an en-
tirely dense Cholesky factor, in which case the required number of operations is
OpN3q. While we have already made the case that the framework of Chapter 4 is
generally preferable to factorization due to the incorporation of error tolerances,
in this specific example the worst case bound of the iterative method OpN2 Mq,
where the full I “ N iterations are required, can actually be substantially faster
than the worst case bound of OpN3q of sparse factorization.
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5.4.2 Definition

The kernel is defined as the sum of a low-rank kernel and a sparse kernel.

kpa, bq “ klow´rankpa, bq ` ksparsepa, bq (174)

Two examples are shown in Figure 43
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(a) PITC kernel
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(b) FITC + compact support kernel

Figure 43: Posterior distributions for different low-rank and sparse kernels

There are two practical requirements for using compact support kernels in an
efficient scheme such as this. Firstly, the compactly supported kernels we will
use have a cut-off parameter, C, that defines the distance past which points are
uncorrelated. To construct an M-efficient kernel with tuneable efficiency a value
of C must be chosen such that the number of non-zero entries in K is OpMNq.
Secondly, we need to identify the non-zero entries of K efficiently — it is unaccept-
able to simply generate the full matrix to find which values exceed the threshold,
as this would require N2 operations.

The first problem is a quantile estimation problem; we need to identify the M
N th

percentile of the elements of the distance matrix. This quantity does not need
to be identified to a high degree of accuracy, only sufficiently so that it doesn’t
select so few points as to be a poor approximation, nor so many that the problem
becomes computationally intractable. This can be achieved by sampling MN
entries of the distance matrix at random and selecting the empirical percentile.
The second problem, finding points within a certain distance of a given point, is
a common issue in information retrieval and there are a number of techniques to
solve this problem: k-d trees[?] and ball trees[?], for example, can be constructed
in OpDN log Nq and require OpNq storage.

5.4.3 Compactly supported kernels

There are a number of different classes of sparse kernels [Zhu, 2012, Fasshauer],
so in this section we will review one of the most commonly used classes, a previ-
ously proposed extension, and present a new efficient class based on this.
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Wendland compact support

The Wendland family[Wendland, 1995] of compactly supported kernels are a fam-
ily of kernels that define a prior over piece-wise polynomial functions. The family
can be generated by the repeated blurring of a delta spike kernel[MacKay, 1998,
Morse et al., 2005]. The family is parameterized by a polynomial order p, a decay
term η and a cut-off distance C. The kernel is defined as follows:

kη,ppa, bq “
ˆ

1´
}a´ b}

C

˙η`d

`

ψη,p

ˆ

}a´ b}
C

˙

(175)

Where:

ψη,pprq “
p
ÿ

i“0

βi,priψη`2k´iprq (176)

β0,0 “ 1 (177)

β j,p`1 “

p
ÿ

i“j´1

βi,p
ri` 1si´j`1

pη` 2p´ i` 1qi´j`2
(178)

and C ą 0 and η ě d`1
2 .

This kernel is compactly supported since the value is 0 for any points for which
}a´ b} ą C. Increasing the polynomial order of the family results in increasingly
smooth functions: samples from the prior of the Wendland order 0 kernel are
shown in Figure 44a and the posterior distribution for a simple dataset is shown
in Figure 44b. The smoother order 3 kernel is similarly illustrated in Figure 44c
and Figure 44d.

From the figures we can see that while the higher order kernel results in a
smoother function, the piecewise polynomial nature of the function leads to a
strong chance of overfitting.

Compactly support RBF

A number of authors use a compactly supported radial basis function (RBF) ker-
nel (CS-RBF) by multiplying an RBF kernel with the 0th order Wendland ker-
nel[Hamers et al., 2002, Genton, 2002]. The RBF used in these cases is a Squared
Exponential.

kCS´RBFpa, bq “ kRBFpa, bqkWendlandpa, bq (179)

Figure 45 shows a compactly supported RBF using both the 0th and 3rd order
Wendlands. While they look very similar to the Wendland diagrams in Figure 45,
there are subtle differences, especially noticable in the variance.
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Figure 44: Prior samples and posterior distribution of the 0th order Wendland
kernel

Exponentiated Wendland

Based on the Wendland family, we propose a new class of kernels — the expo-
nentiated Wendland family.

kpa, bq “ ekwendlandpa,bq (180)

The Gram matrix that is generated by this kernel can be expressed as:

K “~1~1ᵀ ` S (181)

where:

Sij “

#

0 if kpxi , xjq “ 0
ekpxi ,xjq ´ 1 otherwise

(182)

While this is no longer compact, it can be expressed as the sum of a sparse and
low rank matrix, which means that it is still efficient. The 0th and 3rd members
of the family are shown in Figure 46
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Figure 45: Prior samples and posterior distribution of the 0th order Wendland
kernel
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Figure 46: Prior samples from exponentiated compact kernel
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5.5 experiments

In this section we demonstrate the performance of some example kernels from
the proposed classes, and show that posterior variances in these kernels can be
refined faster than OpNMIq by using conjugate directions with a specific set of
basis vectors.

5.5.1 A return to conjugate directions

A remaining limitation of the framework of Chapter 4 is that refining variance
estimates uses conjugate gradient, at a cost of OpMNq per iteration for a test data
point. If the computational cost is affordable it is likely the best choice, however at
test time it would not be unusual for OpMNq to be a prohibitive cost. In this case,
we can still refine variances at a cost cheaper than a single iteration of conjugate
gradient. Recall that conjugate directions allows us to select any set of linearly
independent basis vectors (Section 4.2.1). The rows of K form such a basis and in
the case of these fast kernels the matrix-vector product between K and a row of
K can be calculated in OpM2q.

This can be done in the following way: at each iteration i of conjugate direc-
tions, the search direction is a linear combination of the previous i basis vectors.
If the unit vectors are m-efficient, then the ith search direction will be im-efficient.
This means at each iteration, the cost is bounded by OpM2iq, and the total cost
up to the ith iteration bounded by OpM2i2q. While the bounds under conjugate
directions do not necessarily decrease monotonically, as in conjugate gradient, we
can take a running lower bound.

In this case, for small number of iterations (which is likely all that we can af-
ford), conjugate directions is actually substantially more efficient. We illustrated
the difference between the two methods in Figure 47. The basis vectors for conju-
gate directions were selected for each test point by locating the 50 nearest training
points and sampling uniformly from within that set. In nearly all of the datasets
tested, conjugate directions was able to achieve a tighter variance bound in fewer
operations than a single iteration of conjugate gradient.

While these experiments prove that conjugate directions is a viable alterna-
tive for varaince refinement for fast kernels, it is likely that further gains can be
acheived by judicious selection of the basis vectors used.

5.5.2 Kernel comparison

To support the validity of the classes of kernels suggested in this chapter, we
present the performance of a selection of example kernels as speed-accuracy
trade-off plots (Figure 48 - 55), as suggested in [Chalupka, Krzysztof and Williams,
Christopher KI and Iain Murray, 2013].The axis on the plots measure computation
in number of operations and predictive performance as log predictive likelihood,
the log probability of independently predicting the points in a test set. In these
plots the top left corner represents the ideal location, representing high accuracy
and low computational requirements. Plotted for reference are the SE-RBF kernel
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(a) MPG dataset
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(b) Boston housing dataset
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(c) Australian beer dataset
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(d) Daily min temp dataset
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(e) Prod of H2SO4 dataset
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Figure 47: Average relative error in variance estimate vs number of computations
used to refine variance

solved with the framework of Chapter 3 and Cholesky decomposition. For each
kernel we show the results for a 10-efficient and 25-efficient version of the kernel.

These plots show two baselines: the squared exponential RBF kernel solved
with the Cholesky method and the iterative method. They have the same predic-
tive likelihood, but in almost all cases, the iterative method is an order of mag-
nitude faster than the Cholesky. Further, we can see that the M-efficient kernels
generally achieve at least another order of magnitude speed-up over the iterative
squared exponential kernel, in many cases with little loss in predictive accuracy.
In more than half the cases, at least one of the fast kernels performance is an
order of magnitude better, in terms of predictive log-likelihood. In half of the
datasets (Figures 48,49,53,55) the Exponentiated Wendland kernel achieved the
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highest predictive accuracy, which suggests it is worthy of further investigation.
Thus in almost all datasets shown, judicious choice of an M-efficient kernel and
an iterative solver allows for many orders of magnitude speed improvements
over a Cholesky solver and a squared exponential kernel, with no less in pre-
dictive performance and in some cases, substantial improvement in predictive
performance.
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Figure 48: Australian beer dataset
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Figure 49: Quebec births dataset
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Figure 50: Sea levels dataset
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Figure 51: MPG dataset
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Figure 52: Bodyfat dataset
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Figure 53: Daily min temp dataset
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Figure 54: Boston housing
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Figure 55: Production of H2SO4
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6
E F F E C T I V E O P T I M I Z AT I O N O F G P S : C O N S TA N T FA C T O R
I M P R O V E M E N T S

Climb if you will, but remember that courage and strength are naught without prudence, and that a
momentary negligence may destroy the happiness of a lifetime. Do nothing in haste, look well to
each step, and from the beginning think what may be the end.

— Edward Whymper, Scrambles amongst the Alps

Up until this chapter, we have been largely concerned with GPs that have a
given kernel and hyper-parameters. The last element of a framework of Gaussian
Processes for machine learning is a method for kernel and hyper-parameter se-
lection. For a fixed set of kernel hyper-parameters Gaussian Process regression
can be viewed as a kernel smoothing technique, or linear regression with a fixed
set of basis functions, which does not fully capture what many would consider
to be the full scope of “learning”[MacKay, 2003b]. Kernel and hyper-parameter
selection affords us the chance to learn deeper structural properties of the func-
tion that we are modelling. This can occur within different frameworks: there
are examples of learning kernels through exploring compositional search trees
[Lloyd et al., 2014, Duvenaud et al., 2013], others that learn the spectral density
of a kernel[Wilson and Adams, 2013] and a framework to optimize kernel hyper-
parameters through a stochastic programming formulation[Anitescu et al., 2012].
In the overwhelming majority of cases though, the kernel is learnt through the
gradient-based optimization of a set of kernel hyper-parameters for a fixed ker-
nel form that is chosen by a human expert. This is the framework for which we
explore the effective implementation.

When optimising kernel hyper-parameters via gradient-based optimisation,
there are two choices that have an impact on the overall computational require-
ments. The first is the optimisation objective, the quantity with respect to which
the hyper-parameters are being optimized. Traditionally this is the log-marginal
likelihood of the data, but we propose several alternatives in Section that can be
evaluated much more efficiently. The second is the use of effective pre-conditioning.
As the optimization space for kernel hyper-parameters is not quadratic, as was
the optimization space in Section 4.7, we require a more general idea of pre-
conditioning, that we put forward in Section . We then go on to propose a number
of efficient pre-conditioners for Gaussian Processes in Section 6.2.2.
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6.1 the optimization objective

GPs have traditionally been optimized by calculating the derivatives of the log-
likelihood with respect to the kernel hyper-parameters ~θ and then performing a
gradient optimization method. In practice this is usually either non-linear conju-
gate gradient, L-BFGS or a truncated Newton method[Authors, 2014][Rasmussen
and Nickisch, 2010].

Alongside the traditional method of GP optimization we propose two objective
functions — one derived from a variational framework and another from valida-
tion error. Like having a choice of kernels, it is beneficial to having a choice of
objective functions for optimization, due to the different goals of regression. For
example, in some cases the only relevant goal may be to return the best predic-
tions on a given test set, while in others the goal may be to model the function
for different purposes.

6.1.1 Validation

The first objective we suggest is a lower bound on the validation predictive loss.
As the objective of GP regression is often to achieve the best possible predic-
tive distribution, we can estimate this by evaluating the predictive distribution
against a held-out validation set. This has the benefit that it directly penalizes
the quantity that we are most interested in which, unlike the classical loss, does
not depend on predictive covariance between points. This does mean that it is
an inappropriate loss function in circumstances where posterior covariances are
important. On the downside, unlike the classical loss, we must remove some dat-
apoints from our training set in order to construct a validation set.

The formula for the validation loss is:

Lval “ ´
1
2

ÿ

i

˜

pyi ´ µiq
2

σ2
i

` log σ2
i ` log 2π

¸

(183)

We can use the upper and lower bounds on posterior variances from Section
?? to lower bound this objective function, and this lower bound is the objective
function that we will use for optimization:

Lval ě
qLval (184)

“ ´
1
2

ÿ

i

˜

pyi ´ µiq
2

qσ2
i

` logpσ2
i ` log 2π

¸

(185)

The derivatives for this objective are as follows:
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d qLval

d~θj
“

ÿ

i

´
pyi ´ µiq

qσ2
i

dµi

d~θj
´
pyi ´ µiq

2

qσ4
i

dqσ2
i

d~θj
´

1
pσ2

i

dpσ2
i

d~θj
(186)

“
ÿ

i

´
pyi ´ µiq

qσ2
i

ˆˆ

dK´
d~θi

´K´K´1 dK
d~θi

˙

K´1~y
˙

´
pyi ´ µiq

2

qσ4
i

dqσ2
i

d~θj
´

1
pσ2

i

dpσ2
i

d~θj

(187)

The total cost of calculating the derivatives is that of calculating the variance
bounds and their derivatives, as well as two linear system solves. In the case of the
subset variance bounds, without refinement, the computational cost is OpNMpI`
Mqq operations.

6.1.2 Variational

The second objective function that we derive is based on a variational approxi-
mation. Whenever a variational approximation is made to a distribution there
is an associated lower bound on the log-likelihood, sometimes refered to as the
evidence lower bound, or ELBO[Jordan et al., 1999]. This type of lower bound has
been derived for low-rank GPs in [Titsias, 2009b] and extended in [Titsias, 2009a,
Hensman et al., 2013].

We take this form of bound further by extending it beyond low-rank GPs to
those that have a low-rank posterior covariance and arbitrary posterior mean.
This results in an approximation that is at least as good as a fully low-rank ap-
proximation and better in all cases except where the true posterior mean is low-
rank. In cases where an M-efficient kernel (as described in Chapter 5) is used,
this can be calculated with no increase in computational complexity over the low-
rank variational approximation.

A variational approximation to a full distribution P is made by finding the dis-
tribution in a restricted class Q that is the closest to P in terms of KL-divergence.
The resulting bound on the full likelihood is:

Lvar “ log P´DKL pQ } Pq (188)

Since the KL divergence is always positive, this is a lower bound on log P that
is tight when the exact and approximate posteriors are the same. To form our
bound, we approximate the posterior distribution of the GP with an approximate
posterior Qp~θ,~αq that is defined as follows:

~µ˚ “ K˚x~α (189)

Σ˚ “ K˚ ´K˚mK´1
m Km˚ (190)

For this form of Q, the lower bound is:
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Lvar “´
1
2

´

~yᵀK´1~y` log det K` N log 2π
¯

´
1
2

´

TrpΣ´1
P ΣQq `

´

K´K´1~y´K ~́α
¯ᵀ

Σ´1
P

´

K´K´1~y´K ~́α
¯¯

´
1
2

ˆ

N´ log
ˆ

det ΣQ

det ΣP

˙˙

(191)

Where ΣP and ΣQ are the posterior variances at the training points under each
distribution.

ΣP “ K´K´K´1K´ (192)

ΣQ “ K´KxmK´1
m Kmx (193)

We will not be able to efficiently calculate this bound, so we will derive a
further lower bound that can be efficiently calculated. To begin with, we separate
the terms into “fit”, “penalizers” and “constants”:

Lvar “L f it
var `Lpenalier

var `Lconst
var (194)

“´
1
2
~yᵀK´1~y´

1
2

´

K´K´1~y´K ~́α
¯ᵀ

Σ´1
P

´

K´K´1~y´K ~́α
¯

pFitq

´
1
2

TrpΣ´1
P ΣQq ´

1
2

log det K`
1
2

log
ˆ

det ΣQ

det ΣP

˙

(Penalizer)

`
N
2
`

N
2

log 2π (Constants) (195)

Starting with our attention on the fit term, we can bound the second element
by observing that the smallest eigenvalue of ΣP is bounded below by σ2, and thus
the largest is of Σ´1

P is bounded above by 1
σ2 .

L f it
var “ ´

1
2
~yᵀK´1~y´

1
2

´

K´K´1~y´K ~́α
¯ᵀ

Σ´1
P

´

K´K´1~y´K ~́α
¯

(196)

ě ´
1
2
~yᵀK´1~y´

1
2σ2

´

K´K´1~y´K ~́α
¯ᵀ ´

K´K´1~y´K ~́α
¯

(197)

“ ´
1
2
~yᵀK´1~y´

1
2σ2 p~y´K~αqᵀ

´

I´ σ2K´1
¯2
p~y´K~αq (198)

The term can be further bounded by observing that
`

I´ σ2K´1˘ is PSD with all

eigenvalues between 0 and 1. This implies that~vᵀ
`

I´ σ2K´1˘~v ě ~vᵀ
`

I´ σ2K´1˘2
~v

ě ´
1
2
~yᵀK´1~y´

1
2σ2 p~y´K~αqᵀ

´

I´ σ2K´1
¯

p~y´K~αq (199)

“ ´
1

2σ2 p~y
ᵀ~y´ 2~yᵀK ~́α`~αᵀK´K~αq (200)

This is the same as the conjugate gradient lower bound from Equation 64.
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Secondly, we turn our attention to the penalizer term:

Lpenalier
var “ ´

1
2

TrpΣ´1
P ΣQq ´

1
2

log det K`
1
2

log
ˆ

det ΣQ

det ΣP

˙

(201)

We can simplifiy the log determinants by using the block log-determinant for-
mula:

log det K “ log det Km ` log det
´

K m ´K mmK´1
m Km m

¯

(202)

and since K m ´K mmK´1
m Km m is a submatrix of ΣQ and the remaining block

can be bounded

log det ΣQ ě log det
´

K m ´K mmK´1
m Km m

¯

`m log σ2 (203)

Which gives us the first bound on the penalizer term:

Lpenalier
var ě ´

1
2

TrpΣ´1
P ΣQq ´

1
2

log det Km ´
1
2

log det ΣP `
m
2

log σ2 (204)

Next we can re-arrange ΣP:

ΣP “ K´K´K´1K´ (205)

“ K´
´

K´ σ2I
¯

K´1
´

K´ σ2I
¯

(206)

“ 2σ2I´ σ4K´1 (207)

“ σ2
´

2I´ σ2K´1
¯

(208)

Which allows us to bound the log-determinant:

log det ΣP “ log det
´

σ2
´

2I´ σ2K´1
¯¯

(209)

“ N log σ2 ` log det
´

2I´ σ2K´1
¯

(210)

and since the eigenvalues of σ2K´1 are bounded between 0 and 1

ď N log σ2 ` log det p2Iq (211)

“ N log σ2 ` N log 2 (212)

Which gives us

Lpenalier
var ě ´

1
2

TrpΣ´1
P ΣQq ´

1
2

log det Km ´
N´m

2
log σ2 (213)
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And finally, von Neumann’s trace inequality gives us that TrpABq ď
ř

λipAqλipBq

ě ´
1
2

ÿ

λipΣ
´1
P qλipΣQq ´

1
2

log det Km ´
N´m

2
log σ2 (214)

ě ´
1
2

ÿ

λmaxpΣ
´1
P qλipΣQq ´

1
2

log det Km ´
N´m

2
log σ2 (215)

ě ´
1

2σ2

ÿ

λipΣQq ´
1
2

log det Km ´
N´m

2
log σ2 (216)

“ ´
1

2σ2 TrpΣQq ´
1
2

log det Km ´
N´m

2
log σ2 (217)

This gives us the final lower bound on the objective:

Lvar ě qLvar (218)

“´
1

2σ2 p~y
ᵀ~y´ 2~yᵀK ~́α`~αᵀK´K~αq

´
1

2σ2 TrpΣQq ´
1
2

log det Km ´
pn´mq

2
log σ2

`
N
2
`

N
2

log 2π (219)

Which results in the following derivatives:

d qLvar

d~θ
“´

1
2σ2

ˆ

´2~yᵀ
dK´

d~θ
~α`~αᵀ

dK´
d~θ

K~α`~αᵀK´
dK
d~θ

~α

˙

´
1

2σ2 Tr
ˆ

dΣQ

d~θ

˙

´
1
2

Tr
ˆ

K´1
m

dKm

d~θ

˙

(220)

Which can be evaluated in OpNM2q operations.

Derivative wrt~α

If we also evaluate the derivative with respect to~α:

d qLvar

d~α
“

1
σ2 K´ pK~α´~yq (221)

We see that for a given setting of ~θ, this is optimized at ~α “ K´1~y, recovering
the exact solution for the GP. However, despite having the same optimal point,
this gradient is not the same as gradient used to optimize ~α in Section 4.3. It is
a multiplicative factor of 1

σ2 K´ different. This factor is not desirable as we know
that conjugate gradient converges as Op

?
κq and the condition number:

κ ppK´ ` σIqK´q ě κ
´

K2
´

¯

“ κpK´q2 ě κpKq2

We already have the tools to recover the original gradients, since we know
that we can pre-condition the system with σ2K´1

´ . However, we don’t actually
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6.2 pre-conditioning

need to calculate the preconditioner at all in this case, since we know that the
gradient after applying the pre-conditioner is ~y´K~α. This is known as implicit
pre-conditioning[Ratliff and Bagnell, 2007].

This property means that when optimizing with this objective, we can choose
to optimize~α and ~θ jointly.

6.1.3 Experiments

The results of optimizing a GP with an isotropic SE kernel against the three dif-
ferent objectives are summarized in Table 12. The optimizations are run to con-
vergence using a standard non-linear CG solver. The “speed” is calculated as the
relative number of operations required compared to the standard objective. The
number of operations is affected by both the number of iterations taken to con-
verge, as well as the different costs of calculating the objective and its derivatives.
The effectiveness of the optimization is measured in terms of log probability per
data point, where higher is better. In terms of predictive accuracy, the results are
split between the full log-likelihood and the validation error, though the valida-
tion error in most cases is between 2x-10x faster.

Standard Variational Validation
Speed Log prob Speed Log prob Speed Log prob

MPG 1.0x 1.11 1.7x -0.40 0.9x 0.41

Births in Quebec 1.0x -7.4 21.4x -7.5 2.4x -1.5
Boston housing 1.0x 2.5 0.9x 1.8 0.6x 0.29

Australian beer 1.0x -5.90 7.9x -6.00 4.9x -1.22
Sea levels 1.0x -2.15 11.8x -3.13 3.5x -3.92

Daily min temp 1.0x -2.03 8.8x -2.20 4.1x -1.39
Bodyfat 1.0x -0.09 202.7x -0.45 175x -0.45

Prod of H2SO4 1.0x -5.33 9.6x -6.05 1.9x -4.32

Table 12: Results for different optimization objectives over different datasets using
the SE kernel

6.2 pre-conditioning

In Section 4.7, we showed that sensible pre-conditioning is an important step to
the optimization procedure in our framework. We will show that when optimiz-
ing the kernel parameters ~θ, pre-conditioning is no less important. The conver-
gence rate of optimizers are still sensitive to a generalized notion of the condition
number of the problem, and as the hyper-parameters are non-convex it can also
affect the quality of the final solution.

In the following sections we give an intuition about the meaning of pre-conditioners
in non-convex optimization, showing how methods such as natural gradients and
Newton’s method can be viewed as a generalization of pre-conditioning, and then
derive 5 different pre-conditioners for hyper-parameters optimization in GPs.
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6.2.1 Introduction to multivariate gradient optimization

In this section we will derive multivariate gradient descent, highlighting the im-
portant choice that results in the difference between many gradient optimization
methods.

Gradient descent

Gradient descent, the simplest of gradient optimization schemes, is often intro-
duced simply as the following equation:

xt`1 “ xt ` η
d f pxtq

dx
(222)

At each iteration, the algorithm takes a step of “size” η in the direction of the
gradient. In 1D the intuition is clearly visible in Figure 56. At the point indicated
by the arrow, the gradient is shown by the red line. We would expect that taking
a reasonable step1 in the direction that the gradient points downward will bring
us closer to a (possibly local) minima.

Figure 56: A function and its gradient at a point

It seems reasonable that this formulation would extend directly to higher di-
mensions; after all, we just want to take steps that reduce the function value,
regardless of the dimensionality of the problem. This seems to imply a simple
extension to the multivariate case:

~xt`1 “ ~xt ` η
d f p~xtq

d~x
(223)

which is multivariate gradient descent. While this seems sensible — and is a
well established optimization method — it transgresses a cardinal sin of first-year

1 This can be calculated using a line search[Boyd and Vandenberghe, 2009]
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undergraduate physics. That is, as it is normally presented it is dimensionally in-
consistent, a point that is rarely mentioned.

As an example, let’s consider the heat shield on a space probe. As it re-enters
the Earth’s atmosphere it begins to heat up and the temperature increases, but
not evenly over the entire shield. We are interested in finding the point on a 1D
section of the probe that reachest the highest temperature, and at what time. We
have a function f px, tq that calculates the temperature at a point on this section
given by a distance from the end x in meters, t seconds after it has entered the
atmosphere. We want to find a local maximum of temperature across these two
variables. In this case, the function we are maximizing returns a temperature
(units K) and takes as inputs a time measurement (units s) and position (units m).
Thus the dimensions of Equation 223 are:

„

s
m



“

„

s
m



` α

„

Ks´1

Km´1



(224)

α are the units of η and there is clearly no choice for them that will make this set
of equations consistent. This is not to say that gradient descent in the multivariate
setting is incorrect — it seems unlikely, given the prevalence and effectiveness of
first order gradient methods. However, this dimensional inconsistency should
serve as a red flag that we have made a mathematical omission somewhere. We
will introduce the more general idea of multivariate steepest descent, which will
resolve this inconsistency.

Direction of steepest descent

In order to properly derive gradient optimization in the multivariate setting, we
start by more precisely defining what we are trying to achieve. One way to define
what we want is that at each iteration of optimization our step be in the direction
of steepest descent. This is exactly what happens when using the gradient in
the 1D case as there are only two directions, left and right, and the direction
descending will clearly be a steeper descent than the one that is ascending.

We can define this direction of steepest descent as the direction of the step of
infinitesimal size that results in the largest decrease in the function value.

arg min
δθ

Lpθ` δθq

subject to |δθ|X ă ε
(225)

In the limit of ε Ñ 0.

This gives us the direction which has the most negative directional derivative;
the direction which is sloped most strongly downward, exactly what our intuition
expected. Crucially though, this answer is with respect to our choice of norm X.

In brief, this norm is necessary because we often have a meaningful notion
of distance in our problems that is different than simply the Euclidean norm on
the optimization space. This choice of norm characterizes the different forms of
steepest descent and is the key factor for the rate of convergence of the algorithm.
It should be noted that while the norm is critical for the convergence rate of the
algorithm, steepest descent has the same convergence assurances for any sensible
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Figure 57: A contour illustration of a 2D function and the direction of steepest
descent at a point

choice of norm. After all, as long as the algorithm is always heading downhill by
some measure, it will converge eventually.

To understand the importance of the choice of norm, consider the following
example: we are optimizing a function f that takes as an argument a 1D Gaus-
sian distribution. We represent this distribution by its parameters: mean µ and
variance σ2. But do we believe that the Euclidean norm on this parameter space
describes our notion of difference between these distributions well? Using this
norm, the distributions in Figure 58a are as similar to each other as the two dis-
tributions in Figure 58b. While in some cases this may well be the correct choice
of norm, in most cases it probably will not.

(a) Gaussian with µ “ 0, σ “ 5 and µ “ 1,
σ “ 5

(b) Gaussian with µ “ 0, σ “ .1 and µ “
1, σ “ .1

Figure 58: Two sets of Gaussian distributions with the same distance under the
Euclidean norm
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Solving Equation 225 results in a steepest descent direction of the following
form:

PXp~θtq
´1 d f p~θtq

d~θ
(226)

Where P is recognisable as a pre-conditioning matrix[Boyd and Vandenberghe,
2009]. The difference between this generalized pre-conditioner, and those we
used in Section 4.7 is that this pre-conditioner can vary with ~θ.

Existing methods

To make this connection more concrete, we look at three different choices of
norms that result in the methods of methods of gradient descent, Newton’s
method and natural gradients.

The simplest choice of norm is the Euclidean norm on the parameter vector.
This results in a transformation matrix of I. This provides a resolution to the
dimensional inconsistency of Equation 222: we forgot to explicitly write down
the pre-conditioner. We can check the dimensions are consistent by ensuring that

the units of I~θ “ d f p~θq
d~θ

are consistent:

„

Ks´2 Ks´1m´1

Ks´1cm´1 Km´2

 „

s
m



“

„

Ks´1

Km´1



(227)

This should serve to emphasize the point that whenever performing a multi-
variate gradient method we have made a choice of norm, whether we make it
explicit or not.

Newton’s method[Evtushenko, 1985] is an example of a general purpose gradi-
ent method that can be derived through a particular choice of norm. It is generally
given as the gold standard for optimization in terms of convergence, though of-
ten it is too computationally expensive in practice for large numbers of variables.
The norm resulting in Newton’s method is the Hessian norm, which measures
the distance along the optimization manifold. This is illustrated in Figure 59b.

(a) Epsilon ball for Euclidean norm (b) Epsilon ball for Hessian norm

Figure 59: Comparison of Euclidean and Hessian norm

When optimizing probability distributions, the choice of the symmetrized KL-
divergence as a distance metric results in natural gradients[Amari and Douglas,
1998]. This is a sensible choice of distance between probability distributions; if
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the loss function we are optimizing depends on the distribution and not directly
on the parameters, this is likely going to be a better norm.

How to choose a norm

As with pre-conditioning in the quadratic context, the choice of pre-conditioner,
in this case the norm, is an important factor in the convergence of gradient meth-
ods.

Since the norm is such a critical factor in the convergence of steepest descent,
the question of how to select it for a given problem is a very important one. In-
tuitively, the choice of norm should give us a “sensible” notion of the distance
between two points in the optimization space. For a more detailed understand-
ing of what this means, we need to understand the concept of sublevel sets, their
condition number, and their effect on the convergence of steepest descent.

For a given function f , a sublevel set of a point ~x is the set of points

C~x “ t~xi | f p~xiq ď f p~xqu (228)

Figure 60: Illustration of a sublevel set

Simply put, it is the set of points that are at the same level, or lower, than
a given point. For a convex function, such as the one illustrated in Figure 60,
these points will form a closed region. The width of a sublevel set in a certain di-
rection is the width of the set projected onto that direction, as shown in Figure 61.

The condition number of a sublevel set is the square of the ratio between the
maximum and minimum width of the sublevel set. A width of a sublevel set in a
direction ~v is the length of the projection of the sublevel set onto that vector ~v.

κ “

ˆ

Wmax

Wmin

˙2

(229)

If this number is small then the sublevel set has a similar width in all direc-
tions, if the number is large then it is much wider in some directions than others.
This is exactly analoguous to the condition number of a matrix; if the eigenvalues
are all similar then the condition number is small and if there are some eigenval-
ues that are much larger than others, the condition number will be large. For a
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Figure 61: Illustration of a sublevel set

quadratic objective function, the condition number of the sublevel sets and the
matrix are the same. The convergence of gradient methods depend on this condi-
tion number [Boyd and Vandenberghe, 2009] — the smaller the condition number,
the faster the convergence.

Figure 62: Illustration of a sublevel set

Because of this, we want to choose a norm such that the resulting condition
number is as small as possible. This is not a particularly intuitive statement,
but we can consider the problem in the following manner. Performing steepest
descent with a norm other than the standard Euclidean norm is equivalent to
performing steepest descent with the Euclidean norm in a transformed space. As
an example, if the norm is of the form 〈xa, xb〉P “ xaPxb, this is equivalent to per-

forming descent in the transformed space x1 “ P
1
2 x with the standard Euclidean
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norm. For different norms, the transformation may be non-linear.

Now our previous statement on condition numbers can be interpreted for ar-
bitrary norm: the smaller the condition number of the sublevel sets in the trans-
formed space, the faster the algorithm will converge. Rephrasing with the defini-
tion of sublevel sets: we ideally want points that are the same distance from the
optimum in the transformed space to have the same function value. ie:

f p~xaq « f p~xbq (230)

for〈
~xa ´~xopt,~xa ´~xopt

〉
P “

〈
~xb ´~xopt,~xb ´~xopt

〉
P (231)

For a quadratic norm, Equation 231 defines an ellipse around ~xopt, shown in
Figure 63.

Figure 63: Illustration of a sublevel set

This definition allows us to specify examples of aspirational norms — ones
that would be ideal if they could be used in practice. One such norm would be
where dp~xa,~xoptq “ } f p~xaq ´ f p~xoptq}. In such a space, the condition number of
the sublevel sets would be 1, as all points of the same function value would be
the same distance from the optima.

As an example we consider a quadratic objective function f p~xq “ 1
2~x

ᵀA~x´~x ~Tb,
which will have a minimum ~xopt “ A´1~b. We now show that using the above
norm in this case recovers the ideal quadratic pre-conditioner from Section 4.7.
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dp~xa,~xoptq “ } f p~xaq ´ f p~xoptq} (232)

“
1
2
~xᵀa A~xa ´~xᵀa~b`

1
2
~xᵀoptA~xopt (233)

“
1
2
~xᵀa A~xa ´~xᵀa A~xopt `

1
2
~xᵀoptA~xopt (234)

“
`

~xa ´~xopt
˘ᵀ A

`

~xa ´~xopt
˘

(235)

“ }~xa ´~xopt}A (236)

This is the A-norm distance metric, dp~xa,~xbq “ }~xa ´~xb}A, which results in a
pre-conditioner of A´1.

While we can evaluate a norm of this form, we can’t expect to do closed form
transformations with it most of the time. Instead we should use this as a guide
to the selection of norms. Boiled down to a rough heuristic, this implies that we
select norms such that the distance between two points is proportional to how
much they likely differ in function value.

Further, while we haven’t discussed multi-modal settings, this is not assured to
help in finding an optimal minima, but pre-conditioning will speed convergence
to some minima.

6.2.2 ~θ pre-conditioners

While natural gradients are arguably the best general purpose distance metric
for Gaussian Processes, they are also very expensive to compute. It is therefore
worthwhile investigating alternative norms that attempt to capture some of the
structure of the optimization space, but are not as computationally intensive. In
this section, we use the intuition from Section 6.2.1 to construct a set of efficient
pre-conditioners for optimization, which are summarized in Table 13.

Gradient Distance metric Cost

Standard
ˇ

ˇ~̌θa ´~θb

ˇ

ˇ

ˇ

2
OpDq

Gram |Ka ´Kb|
2
Fr OpDNMIq

Alpha
ˇ

ˇ

ˇ
K´1

a ~y´K´1
b ~y

ˇ

ˇ

ˇ

2
OpDNMIq

Predictive |~µa ´~µb|
2 OpDNMIq

Natural predictive KL
`

p
`

~y | ~µa,~σ2
a
˘

, p
`

~y | ~µb,~σ2
b
˘˘

OpDNMpI `Mqq

Table 13: ~θ gradients and distance measures

Gram gradients

The Gram matrix is a more direct representation of a kernel to a GP than the
hyper-parameters of that kernel.
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A norm we can use to define the distance between two matrices is the Frobenius
norm, used here for its convenient differentiability. The Gram gradient metric is
defined as:

dp~θa,~θbq “
ˇ

ˇ

ˇ
Kp~θaq ´Kp~θbq

ˇ

ˇ

ˇ

2

Fr
(237)

Returning to the definition of steepest descent (Section ??), we wish to solve:

arg max
δ~θ

Lp~θ` δ~θq

subject to
ˇ

ˇ

ˇ
Kp~θq ´Kp~θ` δ~θq

ˇ

ˇ

ˇ

2

Fr
ă ε

(238)

In the limit of ε Ñ 0.

As this is a constrained optimization problem, it can be solved by the use of a
Lagrangian.

Λ “ Lp~θ` δ~θq ` λ

ˆ

ˇ

ˇ

ˇ
Kp~θq ´Kp~θ` δ~θq

ˇ

ˇ

ˇ

2

Fr
´ ε

˙

(239)

As we are allowing ε Ñ 0, we can make first-order approximations to a number
of terms in the equation:

Lp~θ` δ~θq “ Lp~θq `
BL
B~θ

δ~θ (240)

ˇ

ˇ

ˇ
Kp~θq ´Kp~θ` δ~θq

ˇ

ˇ

ˇ

2

Fr
“

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

i

δ~θi
BK
B~θi

ˇ

ˇ

ˇ

ˇ

ˇ

2

Fr

(241)

To avoid tensor notation later on, we take the derivative of the equation above
with respect to an individual hyper-parameter:

B

B~θi

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

j

δ~θj
BK
B~θj

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

Fr

“ 2Tr

¨

˝

¨

˝

ÿ

j

δ~θj
BK
B~θj

˛

‚

B

B~θi

¨

˝

ÿ

j

δ~θj
BK
B~θj

˛

‚

˛

‚ (242)

“ 2Tr

¨

˝

¨

˝

ÿ

j

δ~θj
BK
B~θj

˛

‚

BK
B~θi

˛

‚ (243)

“ 2
ÿ

j

δ~θjTr

˜

BK
B~θj

BK
B~θi

¸

(244)

:“ 2
ÿ

j

δ~θjSij (245)

“ Sᵀ
i δ~θj (246)

For notational clarity, we define a DˆD matrix S such that Sij “ Tr
ˆ

BK
B~θi

BK
B~θj

˙

.

Using these results, we find the optimal point of Λ by setting the gradient to 0.
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BΛ

B~θ
“ 2

BL
B~θ
` λ

B

B~θ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

i

δ~θi
BK
B~θi

ˇ

ˇ

ˇ

ˇ

ˇ

2

Fr

(247)

BΛ

B~θ
“ 2

BL
B~θ
` 2λSδ~θ (248)

0 “ 2
BL
B~θ
` 2λSδ~θ (249)

δ~θ ∝ S´1 BL
B~θ

(250)

With the use of a stochastic trace estimator, the matrix S can be computed at a
cost of OpDNMIq.

Alpha gradients

The second metric we propose is the normed distance of ~α. While this does not
capture anything about posterior variances, it is more directly related to final
quantities of the GP than the Gram matrix. The derivation follows almost exactly
that of Section ??, but with the distance metric replaced by:

dp~θa,~θbq “
ˇ

ˇ

ˇ
Kpθaq

´1~y´Kpθbq
´1~y

ˇ

ˇ

ˇ

2
(251)

arg max
δθ

Lpθ` δθq

subject to
ˇ

ˇ

ˇ
Kpθq´1~y´Kpθ` δθq´1~y

ˇ

ˇ

ˇ

2
ă ε

(252)

Which is solved by the matrix:

Tij :“ ~yᵀ
˜

K´1 BK
Bθj

K´1K´1 BK
Bθi

K´1

¸

~y (253)

δθ ∝ T´1 BL
Bθ

(254)

Construction of T requires OpDNMIq operations. While this is notationally
the same as the complexity for Gram gradients, the I here refers to the number of
iterations required for a linear system solve, rather than a trace estimate, which
is likely to be larger.

Predictive gradients

Another meaningful metric of distance between two GPs is the difference in the
posterior mean at the training points.

d
´

~θa,~θb

¯

“

ˇ

ˇ

ˇ
K´p~θaqKp~θaq

´1~y´K´p~θbqKp~θbq
´1~y

ˇ

ˇ

ˇ

2
(255)

Using the same style of derivation again, this results in the pre-conditioner M
where:
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Mij “ σ4~yᵀK´1 dK
d~θi

K´1K´1 dK
d~θj

K´1~y (256)

This is almost exactly the same pre-conditioner as that derived from~α, with the
addition of a σ4 term. This forces the step-size to be proportional to the square of
the noise level. As before, this derivative can be calculated in OpDNMIq.

Natural predictive gradients

The final distance metric we suggest is natural predictive gradients. This has the
benefit of incorporating information about the variances, without the excessive
cost of natural gradients on the posterior. The metric is:

d
´

~θa,~θb

¯

“ KL
´

p
´

~y | ~µa,~σ2
a

¯

, p
´

~y | ~µb,~σ2
b

¯¯

(257)

Where~σ2
a and~σ2

b are the predictive variances for parameters ~θa and ~θb. Using a
KL-divergence as a distance metric results in the pre-conditioner being the Fisher
Information matrix, which has the following form for multivariate Gaussians:

Iij “
B~µ

Bθi

ᵀ

Σ´1 B~µ

Bθj
`

1
2

Tr

˜

Σ´1 BΣ

Bθi
Σ´1 BΣ

Bθj

¸

(258)

Since it is for the predictive distribution, the posterior variance matrix Σ is a
diagonal matrix where Σii is the posterior variance for point i. We will derive this
for a subset of variance approximation, which is the approximate posterior from
variational derivation, but the iterative bounds from Section 4 can also be easily
used instead. This allows the matrix to be calculated in OpDNMpI `Mqq.

6.2.3 Comparing pre-conditioners

Here we perform a preliminary comparison between the different pre-conditioners,
showing that they are worthy of further investigation. To compare pre-conditioners
we perform steepest descent with a line search on the standard objective function
to convergence and record the number of required iterations, averaged over 5

random initializations, that are required using different gradients. From Seciton
6.2.1 we know that the condition number is proportional to the number of iter-
ations required for steepest descent and that the condition number dictates the
convergence rate for other methods, such as conjugate gradient.

We can see from Table 14 and Table 15 that the number of iterations is improved
by different pre-conditioners. In all cases the optimal parameters found across
the 5 runs were the same, except for Gram gradients in Table 14, which did not
converge due to numerical issues. These preliminary results show that there
is potential benefit for using such pre-conditioners and we conjecture that for
kernels with more complicated structure and parameterization, that this will be
substantially more important.
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Standard Gram Alpha Predictive Natural pred.
MPG 677 565 414 474 481

Boston housing 471 564 537 355 276

Australian beer 841 205 846 202 683

Sea levels 709 445 631 245 563

Bodyfat 705 649 342 373 501

Daily min temp 750 491 656 352 463

Prod of H2SO4 903 122 845 203 635

Table 14: Average number of iterations required for SE-ARD kernel

Standard Gram Alpha Predictive Natural pred.
MPG 425 NA 265 143 231

Boston housing 309 NA 269 258 81

Australian beer 187 NA 186 180 177

Sea levels 184 NA 191 185 175

Bodyfat 646 NA 220 135 124

Daily min temp 396 NA 168 248 198

Prod of H2SO4 187 NA 188 176 170

Table 15: Average number of iterations required for FITC + Exponentiated Wend-
land 3 kernel
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7

C O N C L U S I O N

This thesis has made the argument that for most applications, and certainly for
those involving larger datasets, the most effective framework for implementing
Gaussian processes is based on iterative procedures.

We have also reframed the standard usage of Gaussian processes for regression
from:

Optimize the hyper-parameters of a kernel using a gradient descent
method and then calculate the predictive distribution on test points.

To the following:

Optimize hyper-parameters of a kernel of controllable complexity using
a well pre-conditioned gradient method and then calculate the predic-
tive distribution on test points to the required precision.

7.1 summary of contribution

The main contribution of this thesis was the specification of a fully iterative frame-
work for GP regression, building on the work of MacKay in Chapter 2. This in-
cluded the introduction of termination criteria, introduction of new stochastic es-
timators and the understanding of approximate GP methods as pre-conditioners
to optimization methods.

Secondly, the outlining of efficient kernels, including the specification of the
class of graphical model kernels, to easily incorporate existing efficient kernel
definitions, the introduction of random partition kernels and the introduction of
global and local kernels, which includes the construction of the exponentiated
Wendland family.

Finally, the assessment of different optimizing objective functions for efficient
optimization of GPs and a generalized definition of pre-conditioning, emphasiz-
ing its importance in a joint optimization framework for GPs.

7.2 relationship to existing work

This framework is an extension and expansion of the GP framework of [Gibbs,
1997]. As referenced in the appropriate sections, there are similarities with other,
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less general frameworks such as [Freytag et al., 2013]. Much of the extended lit-
erature on sparse or computationally efficient GPs can be used directly within
this framework, as either a particular M-efficient kernel (Chapter 5) or as a pre-
conditioner (Section 4.7). This includes spectral techniques, state space mod-
els, inducing-point approximations, approximate matrix decompositions, random
projections and many others.

7.3 future work

While this thesis has laid a solid foundation for the implementation of effective
solvers for Gaussian process regression, there are several further avenues that
would result in more effective solvers:

1. Improved pre-conditioners. This thesis has argued strongly that the use
of pre-conditioners is important for optimization of GPs — both in find-
ing solutions in small number of iterations, and with further work, hope-
fully finding good solutions in the highly non-convex optimization space of
hyper-parameters. While we have proposed some sensible initial choices,
the true value of pre-conditioning comes from those that are tailored to
specific kernels and applications.

2. Joint optimization and joint pre-conditioners. The variational objective
opens the way for joint optimization of ~θ and ~α jointly. We believe this
could have potential benefits of simplifying and streamlining optimization,
and that in this regime, joint pre-conditioners will be important to ensure
that steps in ~θ space are balanced with appropriate steps in~α space

3. Cost sensitive optimization methods. The experiments of Chapter 2 showed
that there is a great variation in the cost to calculate derivatives at various
points of the optimization space. Furthermore, in our experiments they
tend to be very expensive in regions of low probability, which are not close
to the final parameter values. Optimization methods that can avoid these
regions may provide an alternative method to stochastic gradients to opti-
mizing difficult functions.
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