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We aim to detect minor variant Hepatitis B viruses (HBV) in 38 pyrosequencing samples
from infected individuals. Errors involved in the amplification and ultra deep pyrosequencing
(UDPS) of these samples are characterised using HBV plasmid controls. Homopolymeric
regions and quality scores are found to be significant covariates in determining insertion
and deletion (indel) error rates, but not mismatch rates which depend on the nucleotide
transition matrix. This knowledge is used to derive two methods for classifying genuine
mutations: a hypothesis testing framework and a mixture model. Using an approximate
“ground truth” from a limiting dilution Sanger sequencing run, these methods are shown
to outperform the naive percentage threshold approach. The possibility of early stage PCR
errors becoming significant is investigated by simulation, which underlines the importance
of the initial copy number.

1 Introduction

When an individual becomes infected by a fast evolving virus, such as Human Immunod-
eficiency Virus (HIV-1) or Hepatitis B (HBV), minor variants rapidly evolve. Although
these variants may exist at very low levels, they are hugely important in determining drug
resistance. If a minor variant is resistant to the drug that inhibits the primary strain, it will
rapidly proliferate under this new selective pressure [1]. The treatment will be ineffective
and has helped new drug resistant strains proliferate. As a result, methods to identify minor
variants present in an individual are of great interest for directing treatment. With limiting
dilution Sanger sequencing variants present at 20% or above are detectable. A relatively
new method, which pushes that limit down to around 1%, uses ultra deep pyrosequencing
(UDPS) [2]. UDPS allows short reads of viral DNA to be sequenced at enormous coverage
(around 5000x) and reasonable cost.

We statistically characterise the errors involved in 454 ultra deep pyrosequencing of HBV
using three plasmid controls, and to use this understanding to design appropriate methods
to reliably detect genuine minor variants in a dataset of samples from 38 individuals with
HBV.

HBV DNA was extracted from the blood plasma of 38 infected individuals and sequenced
using 454 pyrosequencing, along with three HBV-1 genomes of known sequence in plasmid
vectors. The processes involved are: extraction, limiting dilution Polymerase Chain Reac-
tion (PCR), amplification PCR, dilution, and pyrosequencing. The RNA/DNA is extracted
from patient plasma, which might contain around 100,000 copies per ml. After extraction
we hope to have an initial copy number of at least 100. Thus by estimating F0 we can esti-
mate λ. Samples with an initial copy number less than 100 were discarded. Amplification
PCR can be performed using several enzymes which give different accuracy-yield trade off.
A Taq blend was used for this dataset.

For this dataset four slightly overlapping regions (“amplicons”) were amplified using eight
custom made primers with known binding sites, making alignment straightforward.

In a previous UDPS study on HIV-1 [3], a Poisson distribution on errors was used in the
homopolymeric and non-homopolymeric regions, which was fitted by Expectation Maximi-
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sation (EM). However, the increased error rate for the Taq blend enzyme results in an
overdispersed error distribution.

2 Statistical analysis

In order to detect which signals in the data represent genuine variants it is necessary to
characterise the amplification and pyrosequencing errors. Three well characterised HBV
plasmid vectors were pyro-sequenced using the same experimental method as the patient
samples (although the initial copy number was significantly higher for the controls, around
100,000, compared to 100-1000 for the patient samples). Deviations from the consensus
sequence represent either PCR or pyrosequencing errors. This control data allows us to fit
an error model.

False discovery rate. In previous studies [3], an error was classified as a genuine mutation
if it is observed at a given position in more than 1% (for example) of the reads. Thus it is of
interest to look at the distribution of these error proportions in the control data to obtain
an empirical estimate of the false discovery rate (FDR) for different thresholds.

Figure 1(a) shows the empirical FDR across all three controls for varying percentage cutoff.
At seven positions across all three controls mismatches occur in more than 1% of reads, so
we estimate the FDR per sample would be 7

3 = 2.3.

(a) Empirical estimate of FDR versus per-
centage cutoff.

(b) Error rate against number of ambiguous
base calls.

Figure 1: Statistical analysis of plasmid control data.

Individual read quality. A previous study [4] found that a small number of poor quality
reads contained a disproportionate percentage of the total errors. Similarly, we found the
worst 2% of reads account for 20% of errors. In [4] reads with lengths outside the main peaks
had increased error rate, which we confirmed. Figure 1(b) shows the strong correlation
between the error rate and the number of ambiguous base calls in a read. Note that only
2% of reads contain any ambiguous base calls, so discarding these is recommended.

Errors occur in 454 pyrosequencing because some proportion of the PCR reactions on a
bead get out of sync [2]. We would therefore expect a cumulative effect along the length
of a read. Error rate against distance from the 5’ end of the read is shown in Figure 2.
There is significant noise, with systematic peaks appearing across all three controls, due to
homopolymeric regions where the indel error rate is increased.

Mismatch rates. We can ignore indels because they are assumed to be PCR/sequencing
errors since frameshifts are almost impossible biologically. The mean mismatch error rate is
1.38× 10−3, and the maximum at one position is 4.2× 10−2. Table 1 shows the mismatch
error rates averaged across all three controls, normalised for the relative frequency of each
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Figure 2: Error rate (mismatch and indel) versus distance from 3’ end for each control.

A G T C
A 9.99e-01 1.39e-03 7.12e-05 3.39e-05
G 4.53e-04 9.99e-01 3.22e-04 1.87e-05
T 1.69e-04 3.73e-05 9.98e-01 1.54e-03
C 4.14e-04 4.74e-05 4.10e-04 9.99e-01

Table 1: Normalised mismatch error rates across controls.

base. As expected, a base is more likely to remain a purine (A or G) or pyrimidine (C or
T). For example, A → G mismatch errors occur around twenty times more frequently than
A → T for example.

Homopolymeric regions. 454 pyrosequencing is known to be particularly error prone in
homopolymeric regions due to carry forward and incomplete extension (CAFIE) errors [2].
Incomplete extension is when the homopolymer is not completed due to insufficient dNTPs.
Carry forward errors occur when a nucleotide from the end of a homopolymer is read a
few bases later on due to incomplete dNTP flushing. For example, if the true sequence is
AAAATCG, it may be read as AAATCGA. We define a homopolymeric region as three or
more identical nucleotides and the immediately flanking nucleotides.

The indel error rate increases from 1.76×10−3 to 2.98×10−3 in homopolymeric regions. The
mismatch error rate is not significantly affected by whether the region is homopolymeric,
staying at 1.13 × 10−3. The increase in the overall error rate in homopolymeric regions is
due only to the increase in indel rate.

Quality scores. The quality scores from the pyrosequencing software relate to the prob-
ability of CAFIE errors, which is somewhat different to Sanger sequencing phred scores.
There is significant correlation between the mismatch error rate and average quality score,
but the effect size is small. Quality scores are not predictive of specific incorrect base calls.

Overdispersion. Even after counting for known covariates the error distribution is
overdispersed making the negative Binomial a more appropriate distribution that the Pois-
son.

Multinomial regression. Several covariates are available at each sequence position: the
consensus sequence, whether the region is homopolymeric and the quality score. Multinomial
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regression allows which specific error occurs to be modelled. The function multinom from
the R package nnet was used, which fits the regression using a neural network and allows
counts rather than raw data unlike other packages.

Including the consensus, homopolymeric, and quality covariates all reduce the Akaike Infor-
mation Criterion (AIC), which implies they are all significant. Figure 3(b) shows a qq plot
of data simulated from the multinomial regression model versus the true data, for mismatch
errors only (a perfect fit would give a straight line). For comparison, Figure 3(a) shows a qq
plot of data simulated from a naive binomial model, ignoring all covariates and taking all
mismatch errors as equivalent. Clearly the multinomial regression provides a significantly
better fit, although the outlying large errors are still not accounted for.

(a) Binomial.

(b) Multinomial regression.

Figure 3: QQ plots of mismatch errors against simulated data.

To test the significance of the parameters in the model a non-parametric bootstrap can be
used [5]. The probability model is approximated by its empirical distribution: delta func-
tions of mass 1

N at each of the N observations. The sampling distribution of each parameter
is estimated by Monte Carlo by sampling with replacement from the original observations.
Coefficients with confidence intervals which do not include zero are significant at a 95%
confidence level. For mismatch errors the consensus base is significant. The homopolymeric
factor is not significant in determining the mismatch error rate. Interestingly the quality
score is also not a significant covariate for the mismatch error rates. Deletion and insertion
errors rates are the reverse: the consensus base is not significant, but homopolymeric regions
are, as are quality scores for insertion errors.

3 PCR Simulation

Early cycle PCR errors could be amplified to a significant proportion of the population
and resemble a genuine minor variant, depending on the initial copy number. Since the
controls had initial copy numbers on the order of 100,000, compared to just 100 to 1000
for the samples, they cannot answer this question. The PCR amplification was simulated
as a stochastic autocatalytic reaction with binary mutations. New DNA molecules inherit
mutations from their parent molecule, and gain new mutations at random at a specified
rate. Using sparse matrices it is possible to represent final populations of around 109 in
1Gb RAM.
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The aim of the PCR simulations is to assess the effect of low initial copy number. Figure 4(a)
shows boxplots of the variance to mean ratio (a measure of overdispersion) for 100 repeats
of the simulation, for varying initial copy number. As expected small initial copy numbers
lead to increased overdispersion.

(a) Variance to mean ratios. (b) FDR based on PCR simulations with
varying initial copy number.

Figure 4: PCR simulation results.

Using the final population we can estimate the False Discovery Rate per sample as a function
of the percentage cut off, as shown in Figure 4(b), assuming a PCR error rate of 10−5. The
multimodal nature of the low copy number error distributions is due to early cycle errors
which result in delta functions at exponentially increasing intervals. These are smoothed by
stochastic effects in the simulation.

4 Classifying genuine mutations

In this section we develop two methodologies for classifying genuine mutations, using the
results of the statistical analysis. Since for mismatch errors rates the quality score and
homopolymeric regions are not significant, estimation of the 4 by 4 nucleotide transition
matrix, Θ, will be important for both methods.

Estimating the nucleotide transition matrix. Our data is the count matrix for the
controls, n, where element i, j is the number of times nucleotide j was observed when the
consensus nucleotide was i. Each row ni: is multinomially distributed with probability vector
Θi:, corresponding to row i of Θ, the transition probability matrix. We specify a Dirichlet
prior on Θ with parameter vector αi:. Thus:

P (Θi:|αi:) =
Γ(

∑
j αij)∏

j Γ(αij)

∏

j

Θαij−1
ij (1)

We parameterise α as follows:

αij =
{

a if i = j
b if i 6= j

(2)

This encodes that no particular mismatch error is more likely, but the probability of no
mismatch is different. (An alternative would be to have different prior parameters for
transition vs. transversion mismatches). The joint distribution over the data D and Θ can
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now be expressed:

P (D,Θ|a, b) = P (D|Θ, a, b)P (Θ|a, b) (3)

=
Γ(a + 3b)4

Γ(b)12Γ(a)4
∏

i

Θnii+a−1
ii

∏

j 6=i

Θnij+b−1
ij (4)

Thus the posterior distribution of each row i of Θ is Dirichlet(nij + αij), and its maximum
a posterior (MAP) estimate is

ΘMAP
ij =

nij + αij∑
k(nkj + αkj)

(5)

because nij + αij is the effective count for nucleotide i going to j. We can fit the hyperpa-
rameters a and b using the evidence framework, maximising P (D|a, b), a Type II maximum
likelihood method [6].

P (D|a, b) =
∫

P (D,Θ|a, b)dΘ

=
Γ(a + 3b)4

Γ(b)12Γ(a)4
∏

i

Γ(nii + a)
∏

j 6=i Γ(nij + b)
Γ(nii + a +

∑
j 6=i(nij + b))

We maximise the log evidence using Newton’s method [?].

4.1 Hypothesis testing

Once an estimate of the nucleotide transition matrix Θ is available the likelihood of a specific
error under the model can be calculated. If we have a position where the consensus nucleotide
is i but nucleotide j is observed ne times out of a coverage of n, then ne is Binomial(n,Θij)
distributed under the null hypothesis of no minor variants. Let βij = nij + αij be the
parameters of the posterior Dirichlet distribution over Θ given the control data n. The
marginal distribution of Θij is then Beta(βij , βi. − βij), where βi. =

∑
j βij . Marginalising

Θ we find

P (nij = ne|β) =
(

n

ne

)
B(ne + βij , n− ne + βi. − βij)

B(βij , βi. − βij)
(6)

Since it is possible to perform this integration analytically there is little additional computa-
tional cost compared to using a MAP estimate. We can calculate a p-value P (nij ≥ ne|β).
Since usually ne ¿ n it will be cheaper to calculate the p-value as follows:

P (nij ≥ ne|β) = 1−
ne−1∑
m=0

P (nij = m|β) (7)

where each term in the sum is evaluated according to Equation 6.

4.2 A mixture model

The observed mismatches are generated by two processes: PCR/sequencing errors and gen-
uine mutations. A two component mixture model can be used to represent this, where
the mixture proportions correspond to the probability a particular mismatch is a genuine
mutation rather than an error. We use Expectation Maximisation, iterating between fitting
the mixing proportions and model parameters, but with the error model from the control
data. To model the genuine mutations we use a codon mismatch matrix, since this allows
the incorporation three desirable features:

1. Synonymous mutations are more likely than non-synonymous mutations.
2. Non-synonymous mutations which result in a physiochemically different (e.g. dif-

ferent polarity) amino acid, are unlikely because they effect protein function.
3. Mutations which result in a stop codon are very rare because the shortened protein

would be non-functional.
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The number of parameters in the codon model, 642 = 4096, is very large so Bayesian
inference is ideal to prevent overfitting. We model and infer the codon mismatch matrix in
the same way as nucleotide mismatch matrix, only now the indices are over codons rather
than nucleotides.

Expectation step. We estimate the mixture proportions holding the model parameters
fixed. Let mi be a binary latent variable equal to 1 if codon mismatch i is a genuine
mutation, and equal to 0 if it is an error. To calculate the probability that mismatch i is a
genuine mutation, πi, we use Bayes’ rule assuming equal priors (i.e. mutation and error are
equally likely a prior):

πi = P (mi = 1|Di, Θerror, Θmutation) =
P (Di|mi = 1, Θmutation)

P (Di|mi = 1,Θmutation) + P (Di|mi = 0,Θerror)
(8)

where Di is the data associated with mismatch i (i.e. reference and query codon, how many
repeats and coverage), and Θmutation and Θerror are the current estimates of the codon
transition matrix for the mutation and error models respectively.

Maximisation step. This step involves updating the codon mutation matrix Θmutation

using the mixing proportions calculated in the previous step. The counts used now are a
weighted sum, with the weights given by the mixing proportions.

nij =
{ ∑

k nk1(rk = i, qk = j) if i = j∑
k nkπk1(rk = i, qk = j) if i 6= j

(9)

where rk and qk are the reference and query codons respectively for mutation k, 1(·) is one
if the statement is true (zero otherise), and nk is the number of times this codon mismatch
is observed. Note that for counting the number of times mismatches do not not occur for a
codon, the mixing proportion is effectively one since no mutation (nor error) has occurred.

5 Results

No ground truth is available: which mismatches really are genuine mutations? Limiting
dilution Sanger sequencing results are available for one of the samples however. This method
is not able to detect minor variants at very low levels, so some genuine mutants will not
be detected. Never-the-less, this is the closest to ground truth available for comparing
the classification methods. The data consist of 95 sequences, which we aligned to the 454
consensus sequence [7]. ROC curves for each method are shown in Figure 5(a). Since some
genuine mutations will be missing from the “ground truth” set, the number of false positives
will be over-estimated and the number of true positives under-estimated, but the relative
performance of the methods can still be assessed.

The more sophisticated methods outperform the percentage cutoff along most of the curve.
The mixture model performs worse than the hypothesis testing method at most levels.
This may be due to overfitting of the large number of parameters in the mutation model
codon mismatch matrix which is currently MAP estimated. Given the large number of
parameters in the model integrating over the posterior would be prudent. Figure 5(b)
shows a boxplot of the number of genuine mutations classified by the hypothesis testing
method for treated versus untreated patients. The number of detectable mutations in the
treated patients is significantly higher due to the increased selection pressure. This shows
the kind of biologically significant results that these methods can enable.

6 Conclusion

I have statistically characterised the errors inherent in 454 pyrosequencing, and used the re-
sults to design methods for detecting genuine variants which outperform the naive threshold
method commonly used. I have used computer simulations of the PCR to help understand
how initial copy number determines the probability of false positives resulting from early
cycle errors.
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(a) ROC curve comparing classification method
performance.

(b) Boxplots of number of mu-
tations depending on treat-
ment.

Figure 5: Classification results.

As mentioned in Section 5, the somewhat disappointing performance of the mixture model
maybe due to overfitting of the large parameter mutation model. To overcome this inte-
gration over the posterior of the codon transition matrix should be performed, rather than
using a MAP estimate.

A more ambitious aim would be to incorporate more multivariate information into the clas-
sification methods. For example, if two mismatches always co-occur, it is highly unlikely
they are errors but feasible that they both occur in the same minor variant. A computa-
tionally intensive method would be to attempt to infer the hidden phylogeny of the minor
variants. Both these methods are complicated by the fact that the sequences only cover
some of the region of interest. Each amplicon would have to be considered separately, but
the phylogenies would need to be consistent for each.

454 pyrosequencing offers the potential to both answer questions about the evolution of
drug resistance in fast evolving viruses and provide an affordable diagnostic alternative
to expensive functional assays. I hope the analysis and methods presented here will help
achieve these goals.
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