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Abstract

What is ageing? One definition is simultaneous degradation of multiple organ sys-
tems. Can an individual be said to be “old” or “young” for their (chronological)
age in a scientifically meaningful way? We investigate these questions statisti-
cally using ageing related phenotypes measured on the 12,000 female twins in the
Twins UK study [4]. We propose a simple linear model of ageing, which allows a
latent adjustment ∆ to be made to an individual’s chronological age to give their
“physiological age”, shared across the observed phenotypes. We note problems
with the analysis resulting from the linearity assumption and show how to alleviate
these issues using a non-linear extension. We find more gene expression probes
are significantly associated with our measurement of physiological age than to
chronological age.

The aim of this work is to infer a measure of the “physiological age” of an individual, in this case
using the ten ageing related phenotypes shown in Table 1.

Phenotype Correlation
Lens nuclear dip (cataract) 0.63
FEV (lung function) -0.61
Grip strength -0.38
Telomere length -0.33
Bone mineral density -0.38
Total moles -0.22
DHEAS -0.19
Eye wrinkles 0.16
Neck wrinkles 0.21
Hair loss 0.18

Table 1: Phenotypes used for inferring our measure of physiological age, and Pearson correlation
coefficient to chronological age. Most are self explanatory; DHEAS is an important hormone.

We are interested in whether this measure correlates more strongly to low level phenotypes, such
as gene expression measurements, than chronological age, or the individual phenotypes used. This
continues our previous work of finding low dimensional summaries of high dimensional phenotypes,
but with the added characteristic of the summary being interpretable as ageing. In fact our model
represents “physiological age” as a + ∆, where a is chronological age, and ∆ is the unobserved
variable representing how much older this individual appears biologically than the average.

This work is being performed in collaboration with the Department of Twin Research and Genetic
Epidemiology (DTR) at King’s College London. The DTR manages the largest UK adult twin
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registry of around 12,000 female monozygotic and dizygotic twins, established in 1992 [4]. The
data has characteristics common to many biomedical applications:

1. High missingness. Many variables have up to 80% missing, and the level of overlap be-
tween phenotypes varies considerably. This level of missingness motivates Bayesian meth-
ods which are able to naturally deal with missingness, rather than attempting crude impu-
tation procedures.

2. Heterogeneous data. The data contains continuous, categorical (including binary), ordinal
and count data.

3. High dimensional. The Twins UK database contains over 6000 phenotype and exposure
variables, measured at multiple time points. Modern healthcare records are of the same
nature. For a subset of 800 individuals we have 10,000 gene expression measurements in
three different tissues, and the genotype of 600k Single Nucleotide Polymorphisms (SNPs).

In previous work a general modelling framework was presented for this data [2], allowing these
issues to be straightforwardly and rigorously addressed using Bayesian probabilistic models fit using
Variational Message Passing [5] under the Infer.NET framework [3].

It is helpful when collaborating with clinicians to be able to explain the core idea of a method without
resorting to mathematics. A picture is worth a thousand words, and so is presumably worth a fair
number of LateX symbols. Figure 1 shows an attempt to achieve this: highlighted by a green circle
is a particular 55 year old individual. From the graph of lens nuclear dip (a measure of how bad an
individual’s cataracts are) against chronological age, we see that her cataracts are quite bad for her
age, with a value of around 4.5 compared to the least squares best fit of around 3.9. In fact, we could
anecdotally say that she has the cataracts of a 79 year old, implying an age adjustment ∆ = +24
years.

Our model embodies this idea, but provides additional benefits:

• Optimally aggregating information across multiple phenotypes
• Fitting the noise variance jointly with ∆, preventing overfitting: in the example in Figure 1

the individuals unusually high cataract measurement is likely to be at least partly noise,
which would reduce our estimate of ∆

• Can be extended to allow non-linear variation with age

1 Models

We here describe the probabilistic models we will use to infer our measure of physiological age.
Assume we have observations ynd, n = 1 . . . N, d = 1 . . . D where d indexes the phenotypes and n
indexes the individuals, whose chronological ages an are known. Suitable diffuse priors are specified
on all random variables, but these are not shown for clarity of exposition.

1.1 Linear model

The simplest model we propose is a simple extension of linear regression, as follows:

gnd = bd(an + ∆n) + cd (1)

where

• gnd is the auxiliary variable associated with phenotype observation ynd
• cd is the intercept for phenotype d
• bd is the regression coefficient for phenotype d
• ∆n additional ageing of individual n

One can think of ∆n as input noise, but crucially, its value is common to all phenotypes, embodying
the assumption that there is global systemic ageing which effects all phenotypes. The Infer.NET [3]
code for the core of the model (for continuous phenotypes) is shown in Figure 2.
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Figure 1: An intuitive explanation of our model. This 55 year old individual has the cataracts of a
79 year old, implying ∆ = 24 years.

Figure 2: Infer.NET [3] code implementing the linear model (Equation 1) for continuous variables,
with the key likelihood term highlighted.
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How the observations themselves are generated under this model depends on the data type, as fol-
lows.

Continuous variables. Continuous variables are modeled simply by adding Gaussian noise to
gnd:

ycnd ∼ N(ycnd; 0, σ2
d) (2)

σ2
d ∼ IG(σ2

d; 1, 1) (3)

where IG is the inverse-Gamma distribution.

Binary variables. For binary variables we use a logistic link function σ(x) = (1 + e−x)−1 in an
analogous manner to logistic regression.

ybnd ∼ Bernoulli(σ(gnd)) (4)

Ordinal variables. Ordered categorical (ordinal) variables are common in biomedical data, for
example, severity of a condition. Assume we have a Gaussian predictor variable g and an observed
ordinal variable y ∈ [1, .., J ]. Let the likelihood function be

P (Y = j|g) = σ(τj − g)− σ(τj−1 − g) = σ(g − τj−1)− σ(g − τj) (5)

where the logistic function σ(x) = 1/(1 + e−x) and {τj : j = 0..J} are interval boundaries with
τ0 = −∞, τj−1 < τj , τJ = +∞.

1.2 Non-linear model V1

A straightforward mechanism to obtain nonlinear regression models is to use a mixture of experts
where the input itself determines the cluster assignment. For example consider the following model
on one variable:

π ∼ Dirichlet(α) (6)
zn ∼ Discrete(π) (7)
xn ∼ N(mzn , vzn) (8)
yn ∼ N(bznxn + czn , φzn) (9)

where π are mixture weights, zn are cluster assignments, x is the input variable, y is the output,
mk, vk are means and variances for a naive Bayes model of which cluster to use based on x, and
bk, ck are coefficients and intercepts for the regression model. This is a finite version of the Dirichlet
Process mixture of General Linear Models [1].

Combining this method of obtaining nonlinearity with the ageing model in Equation 1 results in the
following model:

πd ∼ Dirichlet(α) (10)
znd ∼ Discrete(πd) (11)
an ∼ N(mdznd

−∆n, vdznd
) (12)

ydn ∼ N(bdznd
[an + ∆n] + cdznd

, φ−1
dznd

) (13)

where

• πd are the mixture weights for phenotype d
• znd is the cluster assignment variable for individual n in phenotype d
• mdk, vdk are the mean and variance for naive Bayes in cluster k of phenotype d
• bdk, cdk are the coefficient and intercept respectively for the k-th regression model for phe-

notype d

Here we have a separate nonlinear function (modelled using Equation 9) for each phenotype. Note
that we implement this model as an ∼ · · · rather than an + ∆n ∼ · · · · · · since in a probabilistic
model a random variable such as ∆n cannot have multiple generating mechanisms (an is non-
random so it can simply by replication). Binary and ordinal variables are treated analogously to the
linear model.
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Figure 3: Plots of ∆ against age (note the different y-scales) for the three different models. Left:
linear model. Centre: Non-linear V1. Right: Non-linear V2.

1.3 Non-linear model V2

In the Results section below we will see that for our purpose of inferring ∆ the nonlinear model
proposed above actually has some highly undesirable behaviour. We show this can be alleviated
by replacing the naive Bayes link from the input variable x to the cluster assignment z with a
multinomial regression model, as follows for the one dimensional setting:

hnk = skxn +mk (14)
zn ∼ Discrete(σ(hn)) (15)

yn ∼ N(bznxn + czn , φ
−1
zn ) (16)

Extending this to the ageing model is in fact more straightforward than for the previous model.

hndk = sdk(an + ∆n) +mdk (17)
znd ∼ Discrete(σ(hnd:)) (18)

ynd ∼ N(bdznd
[an + ∆n] + cdzn , φ

−1
d ) (19)

The binary and ordinal observation models are analogous to those used in the linear case.

2 Results

We run various experiments to validate the models and inference, which is performed using Varia-
tional Message Passing [5] under the Infer.NET framework [3].

2.1 Comparing models

We expect that the ∆ values we learn will be roughly independent of age, so plotting learnt ∆ values
against age as shown in Figure 2.1 is a useful diagnostic. For the linear model we see the variance
of ∆ is large, and ∆ shows significant dependence on age. The model uses the additional flexibility
provided by ∆ to help fit non-linear trends of the phenotypes in age, which is clearly undesirable.
This motivates using a non-linear model, for example non-linear model V1 (see Section 1.2). How-
ever, for this model (with K = 2) the dependence of ∆ on age is actually much worse. This is due
to the naive Bayes construction of the dependence of the cluster assignment z on the input variable
x, which results in a factor N(an;mdznd

−∆n, vdznd
) = N(∆n;mdznd

− an, vdznd
) in the model.

This aggressively regularises ∆n towards mdznd
− an. Typically with K = 2 one cluster is used for

younger individuals, and one for older, resulting in the two linear regions in the middle plot around
age 30 and 60. To fix this behaviour we introduce the non-linear model described in Section 1.3.
Figure 2.1 (right) shows the improvement: the variance of the ∆ values is much reduced compared
to the linear model, and there is no noticeable dependence on age. Cluster assignment for this model
with K = 3 is shown in Figure 2.1. The remainder of the paper will assume this model.
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Figure 4: Cluster assignments for six continuous phenotypes for non-linear model V2 with K = 3
mixture components.

Phenotype Chronological age Physiological age
Lung function (FEV) Inf Inf
Lens nuclear dip 185 80
Grip strength 85 168
Hip/Neck BMD 209 227
Telomere length 80 55
DHEAS 4 7
Total moles 50 51

Table 2: Hold out test. Values are log10(p) where p is the p-value for the Spearman rank correlation
hypothesis test.

2.2 Biological validation

In order to validate ∆ we perform the following imputation experiment. For each phenotype in
turn we learn ∆n with this phenotype held out, i.e. using all phenotypes but the current one. If
the inferred “physiological age” (∆n + an) is a biologically meaning estimate of global systemic
ageing, then we would expect it to be a better predictor of the held out phenotype than chronological
age. We assess this in two ways. Firstly we use the standard Fisher transformation hypothesis test
for the Spearman rank correlation coefficient calculated using R, as shown in Table 2.

We see that for grip strength, bone mineral density, DHEAS and total moles, the p-value is more
significant for physiological age than for chronological age, suggesting that these phenotypes in-
deed exhibit common ageing. The negative result for lens nuclear dip and telomere lengths suggests
that these phenotypes do not share any ageing behaviour with the other phenotypes included here.
Unfortunately the p-values for lung function underflowed to 0. A second approach is to use Bayes
factors between the non-linear model in Equation 16 conditioned on chronological or physiological
age. The results are shown in Figure 2.2, where we are also able to include binary variables unlike
for the Spearman test. The results are broadly consistent with the hypothesis testing approach: grip
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Figure 5: Bayes factors between non-linear models with the input as (learnt) physiological age
compared to chronological age.

strength, bone mineral density and DHEAS have positive Bayes factors, implying that learnt phys-
iological age is more predictive for these variables than chronological age. The binary phenotypes
grey hair, neck wrinkles and eye wrinkles also all have positive Bayes factors.

2.3 Association to gene expression variation

If our measure of physiological age is more biological meaningful than chronological age, then we
might expect to find more significant associations to low level molecular phenotypes such as gene
expression microarray measurements. For around 900 of the individuals in Twins UK cohort we
have gene expression measurements in three tissues: fat, blood (specifically LCLs) and skin. To test
for association we use a linear mixed model of the form

[expression] = W × [age] +B × [confounders]︸ ︷︷ ︸
fixed effects

+M × [family ID]︸ ︷︷ ︸
random effects

(20)

where age will physiological or chronological, confounders includes technical confounders such
as batch number, and family ID is simply a factor shared by each twin pair. The number of sig-
nificant associations (separated into up and down regulation) in each tissue for both physiological
and chronological age is shown in Table 3. The False Discovery Rate was controlled to 0.05 using
permutation testing. For skin and fat, where significant associations are found, physiological age
always gives more associations than chronological age.

3 Discussion

We have proposed a novel model for inferring an individual’s physiological age from multiple age
related phenotypes, including a straightforward extension which can be used when the linearity
assumption is problematic. We have some encouraging results: our measure of physiological age
is a better predictor of various phenotypes than chronological age, even when learnt without those
phenotypes, and is significantly associated with more gene expression probes than chronological
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Age Regulation Fat Blood Skin
Physiological Down 297 0 1134
Chronological Down 211 1 1093
Physiological Up 306 0 967
Chronological Up 207 0 908

Table 3: Counts of gene expression probes found to have significant association (at an FDR of 0.05)
to physiological or chronological age, separated by up or down regulation.

age. More discouraging is that some phenotypes which are clearly correlated with age are actually
predicted more poorly by physiological age.

This suggests several ideas for future research. If the problem is that the assumption of global
systemic ageing is ill conceived, then maybe learning different ∆ values for different organ systems
could be considered. This could be done in an automated way or using biomedical prior knowledge.
Which model fits the data best here is of fundamental relevance to understanding the ageing process:
e.g. is there such a phenomenon as accelerated global systematic ageing?

Another potential problem is that outliers in one phenotype have an unreasonably strong effect
(leverage) on the final value of ∆. Using a heavy tailed likelihood such as a Student-t distribution
would be a straightforward extension to address this problem which would not require significant
changes to the inference procedure.

From a medical perspective, understanding ageing is clearly pertinent given the ageing Western pop-
ulation. Learning what factors, environmental or systemic, encourage “successful”, healthy ageing
is essential.

Finally, it could be of great medical interest to perform a GWAS on ∆ to discover causative SNPs
which result in different rates of ageing.
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