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ABSTRACT

Applications to learn control of unfamiliar dynamical systems with increasing auton-
omy are ubiquitous. From robotics, to finance, to industrial processing, autonomous
learning helps obviate a heavy reliance on experts for system identification and
controller design. Often real world systems are nonlinear, stochastic, and expensive
to operate (e.g. slow, energy intensive, prone to wear and tear). Ideally therefore,
nonlinear systems can be identified with minimal system interaction. This thesis
considers data efficient autonomous learning of control of nonlinear, stochastic sys-
tems. Data efficient learning critically requires probabilistic modelling of dynamics.
Traditional control approaches use deterministic models, which easily overfit data,
especially small datasets. We use probabilistic Bayesian modelling to learn systems
from scratch, similar to the PILCO algorithm, which achieved unprecedented data
efficiency in learning control of several benchmarks. We extend PILCO in three prin-
ciple ways. First, we learn control under significant observation noise by simulating
a filtered control process using a tractably analytic framework of Gaussian distribu-
tions. In addition, we develop the ‘latent variable belief Markov decision process’
when filters must predict under real-time constraints. Second, we improve PILCO’s
data efficiency by directing exploration with predictive loss uncertainty and Bayesian
optimisation, including a novel approximation to the Gittins index. Third, we take a
step towards data efficient learning of high-dimensional control using Bayesian neu-
ral networks (BNN). Experimentally we show although filtering mitigates adverse
effects of observation noise, much greater performance is achieved when optimising
controllers with evaluations faithful to reality: by simulating closed-loop filtered
control if executing closed-loop filtered control. Thus, controllers are optimised w.r.t.
how they are used, outperforming filters applied to systems optimised by unfiltered
simulations. We show directed exploration improves data efficiency. Lastly, we
show BNN dynamics models are almost as data efficient as Gaussian process models.
Results show data efficient learning of high-dimensional control is possible as BNNs
scale to high-dimensional state inputs.
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CHAPTER 1

INTRODUCTION

1.1 CONTROL OF DYNAMICAL SYSTEMS

The world contains all sorts of dynamical systems, from vehicles, to financial markets,
to electrical systems, many of which we wish to control in some way. Control is
about continually deciding appropriate responses to a system’s state, as that state
changes, to influence the system towards desirable outcomes. Good decisions are not
always obvious, having both short-term and long-term consequences. Sequential
decisions making tasks are particularly complex, since decisions now affect the
availability and consequence of decisions later.

A block diagram depicting the process of control is given Fig. 1.1. For concrete-
ness we use the term ‘robot’ to collectively describe the system, controller, sensors
and subjective beliefs (state estimation) modules seen in Fig. 1.1 (although control is
by no means limited to physical, robotic systems). We start with the robot’s estimate
of current system state x̂ (e.g. configuration of a robotic arm), from which a controller
π decides on a control output u (e.g. the amount of voltage to apply the arm’s actua-
tors). The control decision u influences the system dynamics f , which changes the
system’s state x. As part of closed loop control, a sensor g makes a (possibly noisy)
observation y (e.g. potentiometer readings of the arm’s configuration) of the state
x, with which the robot updates its subjective state estimate x̂. The robot’s goal is
minimising cumulative cost, each cost representing the objective ‘undesirability’ of
state x. For example, the cost could be the distance between arm’s welding nozzle
and the location to weld. Designing a good controller π for this task requires under-
standing the effects that voltages have on the robotic arm, and physical constraints
on x or u. In this thesis, we consider control of nonlinear dynamical systems f with
Gaussian sensor noise from g.
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State estimation Controller π System f Cost

Noisy Sensor g

x̂ u x

y

Fig. 1.1 A block diagram example of closed loop control of a dynamical system using
feedback. Open loop control corresponds to removing the feedback loop (dashed arrows). Without
sensors, state estimation is dead-reckoned, with increasing error as time progresses.

1.2 DATA EFFICIENT LEARNING OF CONTROL

‘Big data’ is a common technology buzzword to describe datasets so large that previ-
ously simple tasks of transfer, storage, query, and analysis of data pose challenging
problems. Company executives, journalists, and consultants often use the phrase
‘big data’, no doubt to impress each other with their grand visions of detailed con-
sumer datasets in 21st century commerce, and to highlight challenges associated
in learning from large distributed datasets. In this thesis, we are not impressed
with big data, but the very opposite: we are impressed with small data. For many
real-world problems, data is slow or expensive to acquire. If so, data efficient learning
helps to make better use of existing data, and judiciously select new data. Bayesian
learning makes efficient use of existing data, by seamlessly combining data with our
prior knowledge and by yielding probabilistic predictions – more informative than
point-predictions. In addition, active learning helps judiciously choose what data to
collect next, by seeking specific data that is most likely to improve performance.

The specific context of small data learning we are interested in is control. We
are interested in autonomously learning how to control initially-unfamiliar systems
with minimal system interaction (i.e. data collection). To do so, we consider two
aspects of control, system identification (learning the input-output mapping of
an unfamiliar system) and controller design (optimisation of a controller function
to minimise an objective loss function). Autonomous learning disqualifies many
traditional approaches to system identification that require human experts, including
specification of a system’s differential equations governing the dynamics, Lyapunov
analysis, or other types of graphical analysis. Traditional control approaches also
treat system identification and controller design as separate, sequential phases of
learning to control a system. Only after a system is identified, is a controller designed.
Learning a system in this way is called passive learning (opposed to active), and can
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be extremely data-inefficient. Without giving the robot a chance seek data likely
to assist dynamics modelling and controller design, much of the data collected
during a system identification phase could be redundant. Yet for systems that are
slow, expensive to operate, or prone to wear and tear, such superfluous data is an
unnecessary cost.

A solution to autonomous, data efficient learning of control is dual control: simul-
taneous system identification and controller optimisation. By contrast, traditional
control theory assumes known dynamics whereas dual control assumes unknown
dynamics a priori (Wittenmark, 1995). Reinforcement Learning (RL) addresses the
same problem as dual control, sometimes associated with discrete state spaces, but
applicable to continuous states also (Sutton and Barto, 1998). RL learns to control
unfamiliar systems through a process of trial and error, similar to a child learning
to ride a bicycle. In this thesis, we concentrate on episodic tasks. The robot has
repeated trials to interact with a system over a finite time horizon before ‘reset’ to an
initial state. Our goal is to minimise the total expected cost accumulated over a fixed
number trials (episodes).

Many RL algorithms can provably find near-optimal controllers eventually, but
they can take many trials to do so. In this thesis we develop data efficient RL algo-
rithms by 1) using Bayesian modelling of the system’s stochastic nonlinear dynamics,
2) evaluate controllers according to how they are used (which we call being ‘faithful
to reality’), and 3) balancing exploration and exploitation (defined later). As we
shall see in this thesis, Bayesian modelling is particularly critical for data efficient
learning and small datasets. Bayesian modelling’s probabilistic foundation avoids
overfitting models, unlike many control methods that conduct system identification
using least squares estimation on polynomials or neural networks. Such probabilistic
system identification is important during controller design, offering informative
probabilistic-predictions of state trajectories (opposed to point-predictions) used to
optimise a controller (Deisenroth, 2009).

1.3 CONTRIBUTIONS

This thesis achieves unprecedented data-efficiency in learning to control some vari-
ations of the cart-pole and cart-double-pole swing-up tasks. Doing so, this thesis
contributes to the field of data efficient learning of control is several ways:

1. We introduce a novel probabilistic framework to evaluate controllers that make
decisions from filtering observations in § 3.3. Filtering helps mitigate the effects
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of sensor-noise on state estimation, and integrating a filter into a system is
often straightforward. However, simulating such a controller (for controller
improvement) is much more challenging and one of our novel contributions.
Simulating filtered control required analytically capturing the plausible dis-
tributions over the robot’s future belief states. Accurate simulations must be
faithful to reality. Thus, each possible belief within the analytic distribution
updates and decide controls in simulation in the exact same way as happens
for a single belief during system execution.

2. We derive Gaussian process predictions for inputs of a hierarchical uncertainty.
Specifically, inputs which are Gaussian random variables, whose mean pa-
rameters are themselves Gaussian random variables. Such mathematics were
required in § 3.3 since belief states represent subjective probability distribu-
tions, thus distributions over belief states formed hierarchical distributions.

3. We introduce a new type of Markov Decision Process (MDP) called latent
variable belief MDP in § 3.4. A belief MDP is an alternate interpretation to
the well known Partially Observable MDP (POMDP). We generalise POMDPs
to latent variable belief MDPs which model both belief variables and latent
state variables. Two benefits are an ability for the robot to understand the
consequences of incorrect prior assumptions, and an ability to use different
dynamics models offline during system simulation and online during system
execution. During offline simulation, slow-yet-accurate models can be used,
whereas during online execution, fast-yet-inaccurate dynamics models may be
required instead, the performance of which can be evaluated by the accurate
dynamics model in advance.

4. We derive an approximate mean and variance of a controller’s predictive cumu-
lative cost distribution. Both moments are useful for directed exploration using
Bayesian Optimisation (BO) in § 4.4. This improves upon pure-exploitation
PILCO algorithm.

5. Of our three BO algorithm, one is novel: an approximate lower-bound to the
famous Gittins index, introduced § 4.3.4.

6. We introduce the a data efficient framework for deep-RL algorithm in Chapter 5,
able to scale to high dimensional observations.
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1.4 OUTLINE

The rest of this thesis proceeds with a summary of background material in Chapter 2,
three novel extensions to PILCO in Chapter 3 – Chapter 5, and conclusions in Chap-
ter 6. Chapters may contain optional sections, marked with a star (*) symbol in their
title, which the reader may safely skip over. Optional sections comprise tangential
work, overly technical work, or incomplete work. To keep track of terminology, we
list the meanings of all symbols and acronyms on page 195. A summary of each
chapter follows:

CHAPTER 2, BACKGROUND: We discuss relevant background, in the control the-
ory and RL literature, including methods for system identification and controller
design. We introduce PILCO, a model-based RL algorithm for continuous state and
action spaces, which has already shown unprecedented data efficiency for a variety
of tasks such as the cart double-pole swing-up.

CHAPTER 3, FILTERED PILCO: We present a data efficient RL method for continu-
ous state-action systems under significant observation noise. Data efficient solutions
under small noise exist, such as PILCO, which learns the cartpole swing-up task
in 30 seconds. PILCO evaluates controllers by planning state-trajectories using a
dynamics model. However, PILCO applies controllers to the observed state, therefore
planning in observation-space. We extend PILCO with filtering to instead plan in
belief -space, consistent with POMDP planning. This enables data efficient learning
under significant observation noise, outperforming more naive methods such as
post-hoc application of a filter to controllers optimised by the original (unfiltered)
PILCO algorithm. We test our method on the cartpole swing-up task, which involves
nonlinear dynamics and requires nonlinear control.

CHAPTER 4, EXPLORING PILCO: PILCO’s extreme data efficiency was largely due
a principled treatment of dynamics uncertainty using a probabilistic model during
controller evaluation to compute the expected cumulative cost of controllers. Using
the same probabilistic model, we additionally compute cumulative cost variance, to
direct exploration towards testing controllers of uncertain cumulative cost. By doing
so, we show we can achieve even greater data efficiency than the unprecedented
performance of PILCO. We compare PILCO against three extensions that intentionally
explore using Bayesian optimisation, testing using PILCO’s original cart double-pole
swing-up task.
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CHAPTER 5, DEEP-PILCO: Deep RL is an emerging force in the RL community,
able to learn control in high dimensional state-space tasks. However, a common
shortcoming of deep RL is data inefficiency, with current approaches requiring thou-
sands of trials to learn even the simplest of tasks. In this chapter we extend PILCO’s
framework to use deep dynamics models, and look at the probabilistic equivalent
of deep RL: Bayesian deep RL. We lay foundations towards data efficient model-
based Bayesian deep RL and demonstrate our approach on the cart-pole swing-up
problem.

CHAPTER 6, CONCLUSIONS: Finally, we provide some conclusions of this thesis
and an outlook of interesting avenues for future research.



CHAPTER 2

LEARNING TO CONTROL DYNAMICAL

SYSTEMS

The purpose of this chapter is to introduce existing literature pertaining to learning
to control dynamical systems. We shall progressively focus our discussion towards
our goal of data efficient learning of control. Doing so, we intend to aid the reader’s
understanding of – and give context to – our novel contributions explained in
Chapters 3–5.

Learning control of dynamical systems is a broad subject. Applications range
form industrial (refining, manufacturing, power), transportation, logistics, electron-
ics, robotics, computer science, to economics. With such breadth of application, the
subject unsurprisingly draws interest from a wide array of academic disciplines.
There is the control theory community itself. Other academic communities also
study aspects of control under various names, parenthesised below. There is the
mathematics community (operations research, optimisation), machine learning (re-
inforcement learning), economics (decision theory), statistics (bandits), computer
science (dynamic programming), and robotics (path planning).

The control problems studied by various academic disciplines often overlap, yet
communication between disciplines is surprisingly limited. Differing notation and
terminology often obscures the similarity of solutions developed by each community,
restricting their potential impact. Nevertheless, our intention in this chapter is to
summarise relevant research from any community and to appeal to readers from
either a control theory, machine learning, statistics, or computer science background.
Most literature we will discuss is from control theory and reinforcement learning
(RL). We will refer the reader to other control theory resources as we discuss them.
For a more detailed summary of RL, we refer the reader to either Sutton and Barto
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(1998); Szepesvári (2010). Sutton and Barto (1998) offers a comprehensive introduc-
tion to RL, whilst Szepesvári (2010) summarises some core ideas of RL in a more
mathematically rigorous way.

We shall present common ideas across disciplines using a common notation.
Whilst our opinion is that RL’s notation is intuitive, we mostly borrow notation from
control theory, being a larger community. Where less standardised notation exists
we adhere to a principle of ‘minimal notation clutter’, using related symbols for
related quantities. For example, a state x and control u will have dimensions X and
U, not n and m as often used. Similarly, process noise associated with state x and
observation noise associated with observation y at time t will be expressed εx

t and
ε

y
t , not v(t) and w(t). As the chapter progresses, a fair amount of notation will be

introduced. To avoid inundating our reader, a nomenclature section is provided
on page 195 which lists all symbols and their meanings. Another reason we use
control theory notation is related to our desire to introduce control theorists to certain
machine learning tools. We wish to re-frame control in a way that is hopefully still
recognisable to control theorists. In particular, we take the unconventional approach
of modelling the process of control probabilistically using Probabilistic Graphical
Models (PGMs). PGMs help show how random (or uncertain) control variables
interrelate by specifying their conditional dependency structure. Such structure
is important for system identification, i.e. fitting a dynamics model to data using
Bayesian inference, and to forwards-simulate stochastic systems.

Our discussion of background literature begins by first describing the process of
control given a controller and knowledge of a system’s dynamics in § 2.1. Second,
we discuss how to design a ‘good’ controller in § 2.2. Third, we no longer assume
a priori knowledge of the system’s dynamics, discussing how to learn dynamics
automatically by collecting data and using machine learning in § 2.3. Fourth, we
discuss data efficient (or sample efficient) learning in § 2.4. Finally, we discuss a
particular algorithm called PILCO in § 2.5, a gold standard for data efficient learning
of control given black-box, continuous-state, low-dimensional systems.

2.1 CONTROL OF DYNAMICAL SYSTEMS

Previously we saw closed-loop control depicted using a block diagram (Fig. 1.1).
Block diagrams, whilst intuitive, can be ambiguous. Here, we instead discuss control
in more mathematically-precise terms. We first introduce each variable and function
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of interest (with RL notation in parentheses), itemised below. Afterwards we discuss
a general set of equations that define their relationship.

State Variables x : The first control variable we introduce is the Markov
system state vector x ∈RX (RL: state s ∈ S), e.g. the joint configuration of a robot.
The Markov state contains all variables relevant to predicting the evolution of
the system to future states.

Control Variables u : We are free to affect the system in a constrained
manner, by manipulating a vector of control variables u ∈RU (RL: action a ∈A).
for example, u could represent the set of voltages we choose to input into
various motors attached to a robot.

Controller Function π : We specify how we will manipulate the control u in
response to an estimated system state x̂ using a controller function (RL: policy
π : x̂t → ut), referred to as closed loop control. Similar to most discrete-time
reinforcement learning we only consider zero-order hold controllers, meaning
the chosen values of control signal vector ut are held fixed between the discrete
timesteps t and t +1.

Dynamics Function f : Changes in the state of the system x are governed by
the system dynamics (or plant) function f : xt×ut → xt+1 (RL: transition function
T ), which we may have complete, partial, or zero knowledge of. We assume
the future state at time t+1 – xt+1 – only depends on the current state xt , control
ut , possibly time t, and the dynamics function f . Given xt , if the next state
xt+1 is conditionally independent of all previous states x0:t−1, the system is
said to be Markov. We assume the Markov property throughout this thesis (a
common assumption), which considerably simplifies controller design through
factorisation. The setting of control decisions manipulating Markov systems is
termed a Markov Decision Process (MDP).

Time t : An important aspect of specifying the control task is whether
time t is discrete or continuous. Some analytic techniques are available for
continuous time, otherwise the time may be artificially discretised to apply
simpler control techniques. Our main focus is discrete time in this thesis. Even
for discrete-time problems, real physical systems operate in continuous time,
so one must specify what a controller should do in between discrete timesteps.
For example, by modelling with discrete-time, we will only consider zero-order
hold controllers. Another point is time-horizon: how long does the control
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task last for? Since we use discrete-time, we will define time horizon T as an
integer number of discrete time-steps (opposed to measuring time in seconds).
The time horizon T can be infinite, but we will work with finite horizons,
typically the order of several seconds in our simulated robotic experiments.
We repeat a control task over E-many trials (RL: episodes), each trial lasting T
timesteps. In this chapter, we will sometimes interchange between continuous
and discrete, relying on context to make sense, rather than using new variables.
All subsequent chapters assume discrete time.

Observation Variables y : A robot often lacks the ability to observe the state
of the system x exactly, or perhaps only observes some of the state vector’s
variables, but not all. If so, state x is called a hidden or latent variable and said to
be ‘partially observed’ opposed to ‘fully observed’. In such cases, we instead
reason about what is directly observed, i.e. readings from the robot’s sensors:
the observed variable y ∈ RY (RL: observation o ∈Ω). Observed variables help
us reason about the plausibility of possible system states x.

Observation Function g : Observations y are read as the output of a sensor or
measurement function g (RL: observation function O : o× x→ R ∈ [0,1], a prob-
ability). For example, the observation y could be what is read from multiple
potentiometer sensors attached to a robotic arm which relate to (but do not
necessarily fully determine) the state of arm’s current configuration.

Cost Variable and Function c : A user specifies what they want a robot to
achieve (not how an outcome should be achieved) by defining a ‘cost’ incurred
by the robot for being in a particular state. The user supplies a cost(·) function
(RL: reward function R) which outputs a cost variable ct (RL: reward rt) incurred
at each timestep t for being in a particular state xt . In control theory, the cost
function is usually a function of both the current state xt and current control
chosen ut . If the cost function is stochastic, usually the expected cost is all
that is required to compute the overall loss (discussed below). In RL, the cost
can also depend on the control ut following state xt+1, since this additional
generality still preserves the state’s Markov property. A distinct ‘terminal cost’
is sometimes used, a once-off cost incurred at time T , which we ignore.

Loss Variable and Function J : The overall objective is usually to minimise
the sum of expected costs: Jt = ∑

T
τ=t γτ−tE [cost(xτ)] (control theory: minimise

the expected cost-to-go J, RL: maximise value V , bandits: minimise cumulative
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regret R), which we will refer to as the utility or loss function. An optional
discount factor γ ∈ [0,1] represents an ‘interest rate’, encoding ‘costs incurred
sooner matter more than costs incurred later’. Often γ is ignored, by setting
γ = 1. A trivial difference exists between control theorists who minimise a sum
of costs, and the RL community who maximise a sum of rewards. The triviality
is: reward(x) =−cost(x) =−cumulativeRegret(x)+ constant.

Belief Function b : A belief function b or b(x) is a probability distribution
over the state space RX, representing the robot’s subjective uncertainty con-
cerned with being in any particular state x. When x is partially observed via
noisy observations y, a robot cannot be certain of which state x it is in, but
nevertheless can construct a set of plausible states it might be in. The be-
lief adheres to the Bayesian interpretation that rational actors should update
subjective beliefs according to the rules of probability. For instance, a prior
belief bt|t−1 = bt|t−1(xt) = p(xt |y0:t−1,u0:t−1) may combine with the likelihood
of an observation yt to update a robot’s belief to bt|t = bt|t(xt) = p(xt |y0:t ,u0:t−1).
The first subscript of bt|t−1 refers to the belief function of state x at time ‘t’,
i.e. xt , whilst the second subscript refers to conditioning on all observations
y up until time ‘t−1’ inclusive (notation used by Kalman filtering, described
next chapter). The belief acts as a sufficient statistic that summarises all past
observations y0:t into a single probability distribution. Robot beliefs are not
always explicitly mentioned in control theory as a belief function, yet consid-
ered implicitly when filtering, discussed § 3.2. In computer science beliefs
are explicitly considered in Partially Observable MDPs (POMDPs), discussed
§ 2.2.2. We find explicit handling of a belief function helpful to distinguish
between different types of probabilities we later discuss, e.g. distinguishing
between the probability of the next state of the system p(xt+1) due to objective
system stochasisties, versus subjective beliefs that the robot might have in the
next timestep bt+1|t = bt+1|t(xt+1).

Now that we have introduced the principle variables and functions for control,
we will discuss their relationship with each other (except for the belief, discussed
later). A set of equations, which describe control in sufficient generality to apply
to the majority of continuous-state, continuous-control, continuous-observation,
discrete-time control tasks, follows:
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General equations of discrete-time control:

initial state : x0 = ε
x0 ∈ RX, (2.1)

dynamics : xt+1 = f (xt ,ut , t,εx
t ) ∈ RX, (2.2)

observation : yt = g(xt ,ut , t,ε
y
t ) ∈ RY, (2.3)

policy : ut = π(y0:t ,u0:t−1, t,εu
t ) ∈ RU, (2.4)

cost : ct = cost(xt ,ut ,xt+1, t,εc
t ) ∈ R, (2.5)

loss : Jt = ∑
T
τ=tγ

τ−tE [cτ ] ∈ R. (2.6)

Several sources of random noise (from generic distributions) are present in (2.1)–
(2.6) inducing different stochasticities in the system. Noise variables include: random
initialisation of the system state εx0 , random process noise εx

t in the dynamics f ,
random observation noise ε

y
t modelling an imperfect sensor g, random controller

noise εu
t (either inherent due to imperfect motors or deliberately injected) resulting

in a stochastic controller, and random cost noise εc
t .

RL offers an alternative to modelling functions of noise variables, by instead
using probabilistic models to encapsulate system stochasticities. RL models the
probabilities of events directly. For example, a transition model T (xt ,ut ,xt+1) =

p(xt+1|xt ,ut ; f ). Likewise RL’s observation model models p(yt+1|xt ,ut ,xt+1;g), a policy
models p(ut |x;π), and a reward model models p(ct |xt ,ut ,xt+1;cost). RL implicitly
assumes noise variables are independent and identically distributed (i.i.d.).

2.2 DESIGNING A CONTROLLER

So far we have described the process of control. For instance, we can understand
how the system state x might evolve given a controller π , dynamics f , and sensor g.
In this section, we no longer assume we are given a controller π , but must design a
controller ourselves. Furthermore, our interest is in automatic controller design. As
such we ignore methods that require human experts.
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2.2.1 CRITERIA FOR A GOOD CONTROLLER

Before getting into controller design, we should first address: what defines a ‘good’
controller? Some common criteria (not necessarily mutually exclusive) a user may
be concerned with are:

• an ability to stabilise the system state x close to goal state x∗,

• energy expenditure, e.g. resulting from large voltages |u| ≫ 1,

• transient response time, i.e. time to ||x− x∗||< ε ,

• restricted rate of change of control ||ut+1−ut || (to minimise motor-wear),

• robustness to an inaccurately measured dynamics model f ,

• simplicity, e.g. a linear controller function π , since the properties of linear
controllers are well understood.

Whilst each criterion above poses interesting quantities to measure, predict, and
trade off, we would rather the user specify their desiderata and trade-offs between
each desideratum within a single white-box cost function for us to optimise. By
optimising a sum of costs, we view control as an optimisation problem only, a very
general treatment of control (more general than common goals of stabilising a system
state nearby a reference point), which leads us onto the topic of optimal control.

2.2.2 OPTIMAL CONTROL

An optimal controller is one, which minimises the loss function J. We use the star
symbol (∗) superscript to denote optimality. For instance, the minimum loss J∗ is
attained by following an optimal controller π∗. During the 1960s modern control
theory had established two main interpretations and approaches for ‘optimal con-
trol’ (Fernández Cara and Zuazua Iriondo, 2003). This first was Richard Bellman’s
Dynamic Programming (DP) approach to compute globally optimal controllers (Bell-
man and Kalaba, 1965). DP is well known to most communities. Second was Lev
Pontryagin’s Maximum (or Minimum) Principle (PMP) to compute locally optimal
controllers, well known to the control community (Pontryagin, 1987). We will talk
briefly about DP, and then PMP.
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DYNAMIC PROGRAMMING

Central to DP is the Bellman equation. The Bellman equation defines the loss
function J∗(x) in a recursive relationship. When the state x is fully observed, the
system is a Markov Decision Process (MDP). For discrete-time MDPs, the Bellman
equation is:

J∗t (xt) = min
ut

∫
p(xt+1|xt ,ut ; f )

[
cost(xt ,ut ,xt+1)+ γJ∗t+1(xt+1)

]
dxt+1, (2.7)

which defines the expected cumulative cost (loss) from state x following optimal
control decisions (as given by the min operator) as a recursive relationship. Another
interpretation of the Bellman equation above is as a satisfactory condition that a
given loss function Ĵ is optimal. If we test a given function Ĵ(x), and the function Ĵ(x)
satisfies the Bellman equation ∀xt ∈ RX, then Ĵ = J∗ is optimal. Even loss estimates
Ĵ(x), which are not yet optimal, can converge towards optimality by iteratively
bootstrapping from other loss estimates ‘further down the line’ at xt+1. Given the
optimal loss function J∗t (RL: state-value function Vt : xt ∈RX→R), another important
function is the optimal loss conditioned on a first control (RL: action-value function
Qt : xt×ut ∈ RX+U→ R), which we refer to later:

J∗t (xt ,ut) =
∫

p(xt+1|xt ,ut ; f )
[
cost(xt ,ut ,xt+1)+ γJ∗t+1(xt+1)

]
dxt+1, (2.8)

defining the optimal controller:

π
∗(xt) = argmin

ut

J∗t (xt ,ut). (2.9)

To understand why the Bellman equation (2.7) is recursive, note the loss (defined
(2.6)) is minimised by

J∗t (xt) = min
π

E

[
T

∑
τ=t

γ
τ−tcost(xτ ,π(xτ),xτ+1)

]
(2.10)

= min
π

E

[
cost(xτ ,π(xτ),xτ+1)+ γ

T

∑
τ=t+1

γ
τ−(t+1)cost(xτ ,π(xτ),xτ+1)

]
(2.11)

= min
π

E
[
cost(xτ ,π(xτ),xτ+1)+ γJ∗t+1(xt+1)

]
(2.12)

(Sutton and Barto, 1998, chapter 4). The loss is the least expected cost-to-go over all
trajectories from that state. Both (2.10) and (2.11) show that the global minimisation
of the accumulative cost must equal the minimisation of the next cost and all costs
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after that (whose definition is that J∗t+1(xt+1), resulting in (2.12)). The benefit of such
bootstrapping is solutions to the Bellman equation do not require a search over each
possible state trajectory ξt = {xt ,ut , ...,xT}, exponential in the time horizon T , but
rather polynomial since each state can summarise their cost-to-go independent on
the paths that reach them.

Variants of the Bellman equation exist. For discrete states, the integrals in (2.7)
and (2.8) become sums. The continuous time variant is the Hamilton–Jacobi–Bellman
equation (HJB) discussed below. A third Bellman variant is when the state x is
partially observed through observation y, called a Partially Observable Markov
Decision Process (POMDP), also discussed below.

*DYNAMIC PROGRAMMING IN CONTINUOUS TIME: In continuous-time we aim to
optimise

J∗(xt , t) = min
π

∫ T

t
e−

τ−t
ρ cost(xτ ,π(xτ ,τ),τ)dτ, (2.13)

subject to the continuous-time system dynamics constraints dx/dt = f (xt ,ut , t), and
where e−

τ−t
ρ replaces γ as the continuous-time discounting of future costs, where ρ is

a discounting-rate parameter. Since time is continuous, the loss J∗ is not defined by
a recursive relationship (as (2.7) is), but rather a Partial Differential Equation (PDE)
called the Hamilton–Jacobi–Bellman equation (HJB) (Bellman, 1965; Doya, 2000):

− 1
ρ

∂J∗(xt , t)
∂ t

= min
ut

(
cost(xt ,ut , t)+

∂J∗(xt , t)
∂xt

f (xt ,ut , t)
)
. (2.14)

As a PDE, the continuous-time loss function J∗ is solved analytically. However, only
a small number of circumstances exist where (2.14) is analytically solvable. One
example is systems with Linear dynamics functions f and a Quadratic cost functions
(LQ). Another example is the continuous-time underactuated pendulum task (which
has nonlinear dynamics) with quadratic cost function. Unfortunately, solving such
differential equations is too difficult for more complex problems in general. Thus
the discrete-time models are more common.

DYNAMIC PROGRAMMING WITH LATENT STATES: A robot will be uncertain about
its current state if unable to fully observe the outcomes of its own transitions through
a state space. ‘Partial observability’ describes the situation where a robot receives
noisy observations which provide some information but not conclusive information
as to which state the robot transitioned into. Such a system is called a Partially Ob-
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servable Markov Decision Process (POMDP) Astrom (1965); Sondik (1971). POMDPs
use a belief function b(x). As part of optimal control under uncertainty, a robot must
maintain (continually update) its belief. Starting with:

bt|t(xt) = p(xt |y0:t ,u0:t−1), (2.15)

then executing control ut and making observation yt+1 from prior belief bt|t the robot
updates its belief using Bayes rule:

bt+1|t+1(xt+1)
.
= p(xt+1|y0:t+1,u0:t) (2.16)

= p(xt+1|bt|t ,yt+1,ut) (2.17)

=

∫
bt|t(xt)p(xt+1,yt+1|xt ,ut ; f ,g)dxt∫∫

bt|t(xt)p(xt+1,yt+1|xt ,ut ; f ,g)dxtdxt+1
. (2.18)

In RL, the probability weighting p(xt+1,yt+1|xt ,ut) is decomposed into two meaning-
ful terms, each of which might be known otherwise in the process of being learned
from data:

p(xt+1,yt+1|xt ,ut ; f ,g) = p(xt+1|xt ,ut ; f )︸ ︷︷ ︸
transition model

· p(yt+1|xt ,ut ,xt+1;g)︸ ︷︷ ︸
observation model

. (2.19)

The belief is a distribution yet still considered as a belief-state or information-state
that the robot is currently in (opposed to a physical state x). The POMDP Bellman
equation for optimal loss as a function of the belief is:

J∗t (bt|t) = min
ut

∫
bt|t(xt)

∫∫
p(xt+1,yt+1|xt ,ut ; f ,g)

×
(
cost(xt ,ut ,xt+1)+ γJ∗t+1(bt+1|t+1)

)
dyt+1 dxt+1 dxt , (2.20)

noting bt+1|t+1 is a function of ut and yt+1 as per (2.17). An alternate interpretation
of POMDPs is that they are in fact belief-MDPs in (MDP over belief space, not state
space) which has its own ‘Belief-MDP’ Bellman equation (Kaelbling et al., 1998):

J∗t (bt|t) = min
ut

∫
p(yt+1|bt|t ,ut ; f ,g)

×
(
cost(bt|t ,ut ,yt+1)+ γJ∗t+1(bt+1|t+1)

)
dyt+1, (2.21)

where

cost(bt|t ,ut ,yt+1)
.
=

∫∫
bt|t(xt)p(xt+1,yt+1|xt ,ut ; f ,g)

×cost(xt ,ut ,xt+1)dxt+1 dxt . (2.22)
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Notice the close similarity between the belief-MDP Bellman equation (2.21) and the
original MDP Bellman equation in (2.7). The principle difference is the physical state
x is exchanged for a belief b. This analogy is why POMDPs are often referred to as
‘belief-MDPs’.

PONTRYAGIN’S MINIMUM PRINCIPLE

Pontryagin’s Minimum Principle (PMP) is a sufficient condition to a control path
ξ = {x0,u0, ..,xT} being locally optimal subject to the dynamics constraints dxt/dt−
f (xt ,ut) = 0 (Pontryagin, 1987). Approaches that aim to satisfy the PMP are termed
variational approaches, multiplier approaches, or trajectory optimisation. Often Lagrange
multipliers are used to handle an optimisation under constraints. Even though the
PMP concerns local optimality, it is often used to find candidate trajectories that
are possibly globally-optimal, serving as a necessary condition of global optimality.
The PMP minimises: minu0:T J(x0) = minu0:T

∫ T
0 cost(xt ,ut)dt subject to the constraints

ẋ = f (x,u), x0 = εx0 , and any constraints on u.
The PMP only solves the control signal from the current state Jt(xt), not all

possible states Jt(x)∀x ∈ RX. As such, a PMP solution is often much cheaper to
compute than DP solutions. Additionally, the PMP does not suffer from DP’s
‘curse of dimensionality’ problem. PMP can easily scale to problems of high state-
dimensionality, X≫ 1. PMP methods start with a nominal trajectory, generated from
random controls for the first optimisation step, otherwise the trajectory from the
previous optimisation step. Then the trajectory is updated, usually with gradient
methods. Once converged, the trajectory ξ ∗ is locally-optimal.

2.2.3 CONTROLLING LINEAR-DYNAMICAL SYSTEMS

A vast amount of mature literature exists when the dynamics and observation
functions are known to be linear equations (or linear differential equation in the
continuous-time case), i.e. f (x,u, t) = Atx + Btu + εx

t and g(x,u, t) = Ctx + Dtu + ε
y
t ,

where At ,Bt ,Ct ,Dt are known matrices at each timestep. Many textbooks have been
written on linear control theory. Some include Åström and Wittenmark (2013);
Nise (2007); Ogata and Yang (1970). Perhaps a more clearly written textbook is
Aström and Murray (2010). For a more mathematical treatment see Sontag (2013).
The advantage of linear dynamics, quadratic cost, and Gaussian noise is how well-
understood properties of the system are. Question of frequency-response, transient
response times, and steady-state errors of a system are easily answered, questions
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a practitioner often cares about when designing a controller. In addition, it is well
understood how to tune a controller to optimise each desideratum above.

For example, the state of many classical mechanics setups have dynamics f often
expressible with second-order Ordinary Differential Equations (ODE). For example,
the state of an object-positions in a mechanical spring-dampener-inertia system with
force control inputs, or the state of currents in an electrical inductor-resistor-capacitor
network with voltage control inputs. In such settings, PID (Proportional-Integral-
Derivative) controllers are suitable (Nise, 2007):

π(y0:t) = Kpet +Ki

∫ t

0
eτdτ +Kd

det

dt
, where error et = x∗− yt (2.23)

is the difference between the present state xt (perhaps noisily observed as yt) to
a desired goal state x∗. Controller parameters are Kp, Ki, and Kd must be tuned.
The name PID comes from three correcting terms: Proportional, concerns present
error, applying a corrective control signal in proportion with the present error signal;
Integral, concerns past error, by being proportional with longterm steady-state errors;
and Derivative, concerns future error, by being proportional to the rate of change of
error in time, and thus ‘predicting’ future error to minimise overshooting etc. Tools
to design PID controllers (i.e. optimise parameters Kp, Ki and Kd) include the Laplace
transform and Root-Locus methods for stability analysis, and the Fourier transform
and Bode plots for frequency analysis (Nise, 2007).

If in addition to Linear dynamics the cost is Quadratic (LQ), then the global-
optimisation problem is convex. For example, cost(x,u, t) = xTQtx+uTRtu+2xTNtu.
Globally optimal controllers for LQ systems have closed-form solutions both in
discrete and continuous time (the HJB equation (2.14) has an analytic solution in
such case). If the state x is fully observed and no process noise εx

t exists, then
the optimal controller is the Linear Quadratic Regulator (LQR) (Stengel, 1986).
Otherwise, if the state x is only partially observed through observation y, then as
long as the observation noise ε

y
t is additive and Gaussian distributed (and the system

satisfies a condition known as observability, see Kalman (1959)), an analytic solution
is also possible. The optimal controller is the application of the LQR controller
to the state estimation by a Kalman filter, termed a Linear Quadratic Gaussian
controller (LQG). An LQG controller is a function of the least-squares estimate of the
state given previous observations and controls: π∗(bt|t) = π∗(x̂t) =−Lx̂t where x̂t =

E
[
bt|t
]
= E [p(xt |y0:t ,u0:t−1)]. Linear dynamical systems have the desirable property

of certainty equivalence, where optimal control is only dependent on the expected
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belief, not a function of the full belief-distribution bt|t(xt) which nonlinear optimal
control must consider.

2.2.4 CONTROLLING NONLINEAR-DYNAMICAL SYSTEMS

Although dealing with linear dynamical systems is well understood, the real world
often involves nonlinear dynamics. To complicate matters further, the range of
possible control outputs u will have physical limitations. As such, there is usually no
such thing as linear controller functions π in the real world. Some major difficulties
in controlling nonlinear dynamics are:

• The optimisation task of finding globally-optimal controllers is now non-
convex in general. Solving for globally-optimal controllers of nonlinear dy-
namics is intractable.

• Open loop control, which is undesirable even for linear systems, can be com-
pletely unusable given nonlinear systems can be chaotic.

• Certainty equivalence, whilst true in linear systems, is generally not true for
nonlinear systems. Consequently, belief variance is critical to compute and
cannot be pre-computed (opposed to Kalman filters which can pre-compute
future variances, discussed next chapter).

• Inference is no longer tractable.

Like linear systems, much of the control literature of nonlinear systems is still
concerned with various stability guarantees, some of which involve an expert present.
For example, Lyapunov or asymptotic stability analysis, Poincaré maps, limit cycles,
bifurcation analysis (i.e. how the stable fixed points appear/disappear as a function
of system parameter values) are some common tools to address control of nonlinear
systems (Khalil, 1996; Slotine et al., 1991). As before we will instead only concern
ourselves with ‘control as optimisation’, and find controllers that optimise the loss
function J.

Given linear systems were so well understood, and nonlinear systems entail
such difficulties, a first approach to control a particular nonlinear system involves
checking whether a system’s dynamics can be safely linearised. Even though a system
may not be linear, it is often safe to assume linear dynamics within a small operating
range about some operating point (x′,u′). Linearising a system around (x′,u′) opens
the door to linear control tools and methods. If multiple operating points exist, a set
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of linear controllers can be trained, one controller per operating point, termed gain
scheduling. Alternatively, we can linearise a system around a different point (x′,u′) at
each timestep t = {0,1, ..,T}. Doing so, we can still conduct local analysis to provide
linear-control guarantees (under our assumptions of linearity at each time point)
but lose global properties. An example is iterative-LQR (iLQR) control. For instance,
from xt+1 = f (xt ,ut) to xt+1 ≈ xt + ẋt∆t, where

ẋt ≈ f (x′,u′)+
∂ f (xt = x′,ut = u′)

∂xt︸ ︷︷ ︸
At

(xt− x′)+
∂ f (xt = x′,ut = u′)

∂ut︸ ︷︷ ︸
Bt

(ut−u′). (2.24)

By a change of variables, this can be rewritten in linear form: ˙̄xt = At x̄t +Bt ūt . Notice
that iterative linearisation at each time point (2.24) is equivalent to controlling a
time-varying linear dynamical system. Incorporating a time dependence acts as a
substitute for not modelling global nonlinearities directly. Even though the dynamics
may be known to be nonlinear time-invariant, they are treated as if they were linear
time-variant, with different linearisations per timestep.

A special class of nonlinear systems is ‘control affine’ systems, e.g. used by Xie
et al. (2015). A system is control affine if ẋ = f1(x)+ f2(x)u, meaning a system possi-
bly nonlinear w.r.t. x yet linear w.r.t. u. If matrix f2(x) has rank ≥ X (the dimension
of state x) then the system is ‘fully actuated’ (at point x in the state space at least).
With fully actuated systems we can apply a control technique called ‘feedback lin-
earisation’, a way to algebraically linearise a system by cancellation of nonlinear
terms distinct from Jacobian-linearisation (2.24). The motivation is again that appli-
cation of well-understood linear control methods can then be applied. The matrix
f2(x) is rectangular in general, but for simplicity let us assume f2(x) is square. If
rank( f2(x))≥X then f2(x) is invertible and feedback linearisation uses a controller of
the form: u = f−1

2 (x)[v− f1(x)], where v is our choice to manipulate. By substituting
the expression for u above into a control affine system, the nonlinearities cancel,
leaving a linear equation ẋ = v. By focusing on controls v instead of u, the dynamics
become a linear function. We are free to inject any forces into v as long as our
actuators can provide the torques we request. Feedback linearisation is a powerful
tool and should be considered if its conditions are satisfied. Exceptions to applica-
bility include systems with uncertainties, state constraints, control constraints, or
underactuated systems whose rank( f2(x))< X prevents f2(x) inversion, in which case
feedback linearisation is inapplicable.
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If the system is not control-affine, a popular closed-loop control method is Model
Predictive Control (MPC) (Garcia et al., 1989). MPC satisfies (or attempts to satisfy)
Pontryagin’s Minimum Principle (PMP) discussed previously on page 17. At each
timestep, MPC takes the current state xt and uses a dynamics model to simulate
forwards a single trajectory ξt = {xt ,ut , ...,xτ}multiple timesteps where τ ≤ T . The
loss J(ξt) is computed, and improved by gradient decent, until a locally optimal
path ξ ∗t is found. Then the first control ut is executed, resulting in the system moving
forward a single timestep, to new state xt+1. The process then repeats. At time t = 0,
the path ξ0 is usually randomly initialised. Otherwise usually MPC initialises ξt with
shifted elements from the previously-optimised path ξ ∗t−1. Note MPC’s simulation
time horizon τ is not necessarily as long as the task’s time horizon T . τ is usually less
if running online and computationally-limited. Since the simulation-horizon gets
shifted forward one timestep too, MPC is also called receding horizon control, as MPC
then optimises ξt+1 = {xt+1,ut+1, ...,xτ+1}. MPC has different variants including
direct shooting, direct transcription, and direct collocation (Benson et al., 2006;
Enright and Conway, 1992). Direct shooting uses a set of controls x0,u0,u1, ...,uT

to simulate a system with known dynamics ẋ = f (x,u) to evaluate all x0:T then
computing J(x0). Direct transcription instead optimises a nominal trajectory ξt , not
by simulation, but by specifying dynamical constraints on x for the optimiser, often
easier given optimising software since the simulation and associated chain rule of
loss gradients does not need to be implemented. Direct collocation instead uses
‘collocation points’ between xt and xt+1 for greater accuracy over Euler integration.

Advantages of MPC include being a general method for nonlinear control, since
MPC does not make many assumptions about the nature of the system. MPC is
even useful in some linear systems in the place of PID controllers, which have
difficulties with large time delays and high-order dynamics. Disadvantages of MPC
applied to stochastic systems are subtle. Often MPC is implemented such that
simulation is open loop, whilst the execution of MPC is closed loop. For instance,
MPC optimises trajectories under the assumption of determinism, but inevitably
transitions stochastically to a new state xt+1, a fact not anticipated when optimising
the control path ξt . Nevertheless MPC still compensates for such prediction errors
with feedback during execution and re-optimising a new control path ξt+1 beginning
at the corrected state xt+1. We will show later in § 3.3.6 that such mismatches between
open loop simulation and closed loop execution result in biased predictions of losses
(predicted losses < executed losses) yielding suboptimal controllers. By contrast,
other methods such as iLQR and iLQG have simulators that are ‘faithful to reality’,
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simulating closed-loop feedback control along trajectories since execution involves
closed-loop control. Even though PMP nonlinear control methods are locally optimal,
and globally optimal methods (e.g. using DP) are intractable, locally optimality is
often ‘good enough’, and often the only choice for large state dimensionality X tasks.

For the rest of this thesis we focus on local-optimality for tractability reasons.
Some alternatives to single trajectory optimisation are deterministic and stochastic
path-planning algorithms. Path planning algorithms use tree or graphs, e.g. the A∗,
rapidly-exploring random trees (Lavalle, 1998), or probabilistic roadmaps (Kavraki
et al., 1996) algorithms well known in robotics. For an overview see LaValle (2006).

2.2.5 FUNCTIONAL FORMS OF CONTROLLERS

Before concluding this section, we should discuss options for specifying the function
form of the controller function π . From (2.4) we had the generalised controller
ut = π(y0:t ,u0:t−1, t,εu

t ;ψ) where we now introduce optional controller parameters ψ ,
and assume visible states xt instead of noisy observation yt for ease of explanation.

LINEAR

Linear controllers have the form:

π(x;ψ) = ψx, (2.25)

ψ ∈ RU×X. (2.26)

Such a form is ideal for stabilising a system state x with small variations around
a goal state x∗. LQR and LQG controllers for the infinite-time horizon use linear
controllers.

ITERATIVE-LINEAR

In § 2.2.4 we also discussed how using iterative linearisation treats nonlinear time-
invariant dynamics functions as if they were linear time-variant dynamics functions.
A similar trick can be used with the functional form of a controller function as well.
Iterative-linear controllers have the form:

π(x, t;ψ) = ψtx, (2.27)

ψt ∈ RU×X, (2.28)

ψ = {ψ1, ...,ψT}. (2.29)



2.2 Designing a Controller 23

There exists no linear controller that can swing up and stabilise the cart double-pole
system (seen Fig. D.2), e.g. PID controllers or linear controllers using fixed matrices
multiplied by the state estimate. Yet a sequence of linear controllers indexed by time
can successfully do so (e.g. Pan and Theodorou (2014)). Advantages of sequential
linear controllers is speed and easier optimisation without numeric instabilities
(opposed to RBFs, discussed next). A disadvantage is the system is rendered partially
open-loop control. Whilst the system is not technically open-loop (the control output
at time t is a linear function of the state), the linear function itself is open-loop,
and not a function of the state, opposed to gain scheduling approaches. This is
problematic since no linear controller can control the cart-double pole swing up
task. If the controller gets ‘out of sync’ with the state of the system, there is little
hope of recovering. This occurs with imprecise starting times of the system, or if
the controller simply fails to swing-up the pendulum the first time, the controller’s
linear function will change to be appropriate for stabilising an inverted pendulum,
not swinging up the pendulum, even though a second attempt at swinging-up is
required.

Such an issue would not be a problem if the dynamics were linear. For example,
optimal control using iLQR or iLQG controllers of finite-time horizons use iterative-
linear controllers. Such time dependence only exists because of an approaching
time-horizon, not because the system requires different linear controllers to control
different regions of the state space.

RADIAL BASIS FUNCTION NETWORK

A very flexible controller function is Radial Basis Function (RBF) networks with
Gaussian basis functions. RBF controllers, like neural networks, can approximate
any continuous function if the network is large enough. Hence, RBFs are attractive
for learning nonlinear control autonomously, without the need of a human to specify
task-dependent controller functional forms. A Gaussian RBF network per control
output u = [1, ...,U] is possibly defined:

uu = π
u(x;ψ) =

R

∑
p=1

wu
p exp

−1
2

X

∑
x=1

(
xx−µ

p
x

σu
x

)2
 , (2.30)

ψ = {w1
1, ...,w

U
R ,µ

1
1 , ...,µ

R
X ,σ

1
1 , ...,σ

U
X }. (2.31)

The idea is each RBF will only ‘activate’ if the state x is close enough to the centroid
µ in some (e.g. Euclidean) space, in this case measured if within length-scale σ ,
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contributing to the output with weighting w. A drawback of using RBFs is nu-
merical instability: optimising the controller with gradient decent can result in
pairs or centroids very close to each other µi ≈ µ j with large opposing weights
wi ≈−w j, |wi| ≫ 1. Such weights can grow without bound, resulting in the two large
yet similar numbers subtracting from each other, resulting in a loss in precision.

2.3 MODELLING THE SYSTEM’S DYNAMICS

So far we have discussed how to design a controller under the assumption that we
knew the dynamics f and observation function g. A term for such fully-known
functions is ‘white-boxes’, where all the internal structure of the box is known, e.g.
the Newtonian ODEs that describe the physics of how a system changes. Knowledge
of both the dynamics and observation function has been a critical component of all
control methods we have discussed so far, allowing anticipation of future events
that can evaluate a controller, giving us the chance to then optimise the controller.
Indeed trajectory based approaches such as MPC or iLQR largely depend on accurate
knowledge of dynamics models, with negligible dynamics uncertainty. In this section
we no longer assume we know the systems dynamics f a priori (we will, however,
assume g is still known). We instead discuss how to model a system’s responses to
previously observed control inputs using a dynamics model p( f ). We will discuss:
1) the benefits of using a model for controller design, 2) how to learn a dynamics
model from data (online or offline) termed system identification, and 3) choices of
models we can use and their associated assumptions. System identification is about
learning the input-output mapping of both functions only as a mathematical relation.
An explanation of the internal representation that gives rise to such a mathematical
function is not required.

2.3.1 NO MODEL

First we should discuss whether models are necessarily for controller design. The
short answer is ‘no’ — even globally-optimal controllers are discoverable without
retaining any dynamics knowledge. Control theory techniques include extremum
seeking control or iterative learning control discussed § 2.3.2. Reasons to avoid models
include online executability with insufficient time to train a model or high dimen-
sional state spaces (e.g. pixel spaces), which many models cannot scale to.
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Several such model-free methods exist in RL. For small numbers of discrete states,
the estimates for the optimal loss of each state can be tabulated, and eventually
the optimal losses can be learned using Q-learning (Watkins, 1989). If the number
of states is too great (or continuous), locally-optimal controllers can be designed
using value-function approximation. Such approaches choose a functional form of the
value function, whose parameters are fitted by regression of (2.7), i.e. attempting to
satisfy the Bellman equation, using batches of logged dynamics data, e.g. sequences
of input-output tuples {xt ,ut ,xt+1}. However, such approaches can take 100-1000s
episodes to learn simple tasks (Ernst et al., 2005; Heess et al., 2015; Lagoudakis and
Parr, 2003). A third approach which neither requires a model nor the logging of any
data is policy-gradient methods (Sutton et al., 1999), e.g. the REINFORCE algorithm
(Williams, 1992). The REINFORCE algorithm estimates the expected cumulative cost
gradient (gradients w.r.t. policy parameters) using a sample-average and a trick
to cancel our dynamics function gradients (since they do not explicitly depend on
policy parameters). However, this estimator is high variance. Like value-function
approximation, policy gradients are applicable in high dimensions, optimise locally-
optimal controllers, but unfortunately they are data intensive.

2.3.2 GREY-BOX, PARAMETRIC SYSTEM IDENTIFICATION

A grey-box system is one where some aspects of the dynamics are known a priori,
but not all. For instance, we have some important insights into the system, but
more can be learned. A common example is where the system dynamics functional
form is known (e.g. the ODEs), yet parameter values are unknown. This is often
the case when the physical process is well understood by a human expert yet some
parameters are difficult to measure, e.g. moments of inertia and coefficients of fric-
tion. Such cases warrant parametric system identification, where our model of the
dynamics matches the functional form of the known dynamics, with the parameters
fitted to data (Xie et al., 2015). Some methods fit a system’s parameters using maxi-
mum likelihood estimation or least squares estimation which can lead to overfitting
(Durbin and Koopman, 2012, chapter 7); other methods using Bayesian inference
to learn posteriors over parameters are preferable to avoid overfitting (Durbin and
Koopman, 2012, chapter 13). An aesthetic solution is incorporating unknown dy-
namics parameters into the state representation x, transforming a learning task into
a POMDP planning task (Duff, 2002; Ross et al., 2008; Webb et al., 2014). Tasks with
finite numbers of states and controls can be similarly solved. For example, one
may use two Dirichlet parameters to model the probability of each of the finitely-
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many state-control-state transitions (Poupart et al., 2006). Note, such solutions are
inapplicable to more general continuous-state ‘black-box’ systems.

ROBUST CONTROL

If the grey-box system parameters can only be learned or measured beyond a certain
confidence level, then robust control techniques are warranted. A robust controller’s
performance does not change greatly if the system’s parameters are altered slightly
(Ioannou and Sun, 2012). For example, a set of ODEs may only present an idealised
version of the system, or parameters were measured within some tolerance. Robust
control tries to deal explicitly with these modelling errors, when uncertain parame-
ters and disturbances occur within tight sets. The aim is to give good performance
(usually stability) in presence of errors. For example, high gain feedback control
helps make a system robust to small errors in dynamics-parameters (Ioannou and
Sun, 2012, section 1.2.1). A well known robust control methods is H-infinity loop-
shaping, with trajectories robust to disturbances (McFarlane and Glover, 1992) (the
name deriving from the use of the infinity norm).

From a Bayesian perspective, design of robust controllers is only well defined
given a prior distribution of possible dynamics p( f ). Without explicit expressions of
dynamic’s uncertainties, treated according to the rules of probability, then ‘robust
control’ methods appear ad hoc, and a measure of a controller’s ‘robustness’ can
be unclear. Vague definitions, e.g. ‘robust controller tolerates a range of different
dynamics without much change in performance’ or ‘controller designed for one
system still works well under other systems’ do not help determining whether one
controller is ‘more robust’ than another nor ‘optimally robust’. By ignoring prior
information p( f ) and instead design controllers with intentional insensitivity to
an unspecified range of possible dynamics, or simply a set of bounds, a controller
resists fully exploiting relevant dynamics knowledge to otherwise act optimally
under expectation of the prior belief. This brings into question how much the
property of robustness contributes to an expected increase in the loss (Jaynes, 2003,
section 21.2).

ADAPTIVE CONTROL

Whilst robust controller functions are fixed and applied to fixed partially-unknown
systems, adaptive controllers adapt to time-varying systems (usually defined by time-
varying system parameters), i.e. where xt+1 = f (xt ,ut , t). Alternatively, the adaptive
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controller can be applied to systems which are initially unknown. Even though the
system itself may be time-invariant, the information we have about the system is
time-varying. Adaptive controllers must continually re-estimate system parameters
online during system execution to adapt to the changing system. Often the context
involved a slow but steady drift of system parameters. As an example, an aircraft
whose weight changes as it burns fuel continually alters the plane’s dynamics.
Different from robust control, adaptive controllers do not require a prior on bounds
of uncertain time-variant parameters. Controllers can be very simple, e.g. ‘iterative
learning control’ used for stabilisation, as an auto-tuning proportional-controller:

ut+1 = π(yt) = ut +Kpet , where error et = x∗− yt . (2.32)

Full auto-tuning PID controller gains (Kp,Ki,Kd) are implemented under adaptive
pole placement techniques. However, by adapting PID controller gains with no
model to summarise the data seen the controller can adapt in ways that destabilise
the system without a clear way to restore the system. Without a dynamics model
p( f ), such undesirable events can not be predicted in advance of them happening.
It remained unclear how to prove longterm stability of adaptive controllers. Such
controllers could initially adapt well to a changing system and later fail (Anderson,
1985; Hespanha et al., 2003).

2.3.3 BLACK-BOX, NONPARAMETRIC SYSTEM IDENTIFICATION

A black-box dynamical system f is one we know little about a priori. Neither
ODEs nor parameters are known, nor whether f is even expressible as an analytic
function. Application of a grey-box solution by assuming a particular functional
forms (e.g. polynomial) risk inability to model (or at best underfit) the arbitrarily-
complex function. Instead, the modelling black-box systems can follow a cycle
of data collection, model selection, model fitting (inference), then validation. If a
model does not pass the validation stage, a different function may be required. With
unknown dynamical functional forms, highly flexible and expressive approximating
functions, such as NNs and RBFs, are attractive choices of models, both able to
approximate any continuous function with enough nodes/centroids. A network
structure is chosen in advance of model training, yet it is not always clear what
structure a NN might need. Too few nodes, and the model will underfit the data.
Too many, and the computational complexities rises, as does the ability of the model
to overfit the data.
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Nonparametric models, such as K-nearest neighbours, instead have model com-
plexities, which grow in proportion to the size and complexity of the growing dataset,
mitigating effects of a model underfitting the data. Nonparametric models and uni-
versal approximating functions avoid requiring prior dynamics knowledge from
human experts specifying the dynamics’ function form, instead modelling dynamics
directly from data. In addition, nonparametric models do not require knowledge of
how complex the unknown dynamics might be since the model’s complexity grows
with the available data. However, even though nonparametrics avoid underfitting,
not all avoid overfitting.

BAYESIAN NONPARAMETRICS

Bayesian NonParametric models (BNP) are particularly suited for dynamics mod-
elling given their resistance to both underfitting (being Bayesian) and overfitting
(being nonparametric). Overfitting otherwise leads to issues of model bias, and un-
derfitting limits the complexity of the system this method can learn to control. BNP
regression avoids overfitting by considering (integrating-over) all plausible dynam-
ics functions that can explain the data according to the prior, opposed to optimising
a single function which best explains the data. By considering all plausible functions,
BNP models can quantify their predictive confidence, by returning full probabilistic
distributions as predictions, instead of point-estimates as other nonparametric meth-
ods do. Probabilistic prediction is important when accurate simulation of plausible
system trajectories p(ξt) is required during controller design.

A popular BNP model for regression is the Gaussian Process (GP). GPs are
widely used in control for systems identification due to their uncertainty estimates,
which quantify predictive confidence, especially important for robust and data
efficient control (Deisenroth and Rasmussen, 2011; Hemakumara and Sukkarieh,
2013; Kocijan et al., 2004; McAllister et al., 2012; Murray-Smith and Sbarbaro, 2002).
We discuss the basics of GPs here, in the context of being a dynamics models. For
further reading on GPs we recommend Rasmussen and Williams (2006).

Formally, a GP is an infinite set of random variables, e.g. { f (x̃) ∈ R : x̃ ∈ RX+U},
any finite subset of which is jointly Gaussian distributed. Here, a dynamics in-
put point x̃T .

= [xT,uT] in the continuous space of RX+U indexes a single real-valued
Gaussian scalar random variable f (x̃). Being an uncountably infinite set of ran-
dom variables, a sample from a GP defines a random function. Thus, GPs are also
considered as a prior over the space of possible dynamics functions. When com-
bined with data, a GP becomes a posterior over functions. A GP prior is fully
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described by a mean function µ(x̃) = E f [ f (x̃)] and a covariance function (or kernel)
k(x̃, x̃′) =C f [ f (x̃), f (x̃′)], expressed f (x̃)∼GP(µ(x̃),k(x̃, x̃′)). The functional form of k
is restricted to those producing positive definite matrices (Rasmussen and Williams,
2006, section 4.3). The most common covariance function is the squared exponential:
k(x̃, x̃′) = s2 exp

(
−1

2(x̃− x̃′)T
Λ−1(x̃− x̃′)

)
, where s2 is called the signal variance and Λ

is a diagonal matrix of squared length scales defining how smooth we expect the
functions are, and noise variance is Σε . With N-many training data point in training
input matrix X ∈ RN×(X+U) and training output vector y ∈ RN, the GP predictive
distribution is:

f (x̃)|X ,y ∼ N
(
µ(x̃)+ k(x̃,X)β , k(x̃, x̃)− k(x̃,X)(K +Σ

ε)−1k(X , x̃)
)
, (2.33)

β
.
= (K +Σ

ε)−1(y−µ(X)), (2.34)

K .
= k(X ,X), called the Gram matrix. (2.35)

The main benefit of GP dynamics models in control is an ability to model arbi-
trary continuous functions – including uncertainty estimates – with fairly general
and high level assumptions about the system being modelled. Prior assumptions
include only: 1) function smoothness (which is often the case for dynamical systems),
and 2) time-invariant dynamics (most control systems falling into this category).
GPs can model arbitrary continuous functions due to their nonparametric nature.
For example, a GP’s expressiveness is not limited, but generally increases with
more data, generally avoiding underfitting. In addition, a GP’s Bayesian nature
avoids overfitting, critical for data efficient learning (explained § 2.4). By contrast,
polynomials, NNs, and RBFs easily overfit to small datasets and do not provide
uncertainty estimates. Nevertheless, polynomials and NNs are already familiar
and perhaps analysed more by the control community, adept with different tricks
to avoid overfitting such models, such as regularisation and weight-decay. Such
problems do not concern Bayesian methods, which naturally regularise models with
a prior. GPs are also fast gaining popularity, especially in the robotics literature,
resulting in increased theoretical analysis helpful for designing robust controllers.
Recent work by Vinogradska et al. (2016) analyses stability with GP dynamics mod-
els. In particular, the work determines state space regions where a system using GP
dynamics models for finite-time horizon closed-loop control is provably stable.

A downside of GPs is their increased computational complexity (discussed § 2.3.4)
compared to NNs and RBFs. Sparse GPs instead give approximate predictions with
less computational burden. Sparse GPs use a set of M-many inducing points to
capture most of the GP posterior structure. A sparse GP approximates the true
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GP posterior (which uses all N data points) with far fewer inducing points M than
data points N. The result is a GP that still learns from entire dataset, but is able to
circumvent a costly O(N3) training complexity when the approximated function
f is simple in some way, generating much redundancy in the N data points. Two
common sparse GP methods we use are the Fully Independent Training Conditional
(FITC) (Csató and Opper, 2002; Snelson and Ghahramani, 2006) and Variational Free
Energy (VFE) (Titsias, 2009). Theoretical and empirical comparisons of FITC and
VFE are given by Bui et al. (2016) and Bauer et al. (2016) respectively.

2.3.4 TIME COMPLEXITY

Our focus on data efficient algorithms naturally leads to training models with small
amounts of data. Nevertheless, model scalability is still a concern since ‘small’ is
relative, and other scaling factors such as state dimensionality X are still a concern.
Below in Table 2.1 we list of time complexity of each type model previously discussed.
Five catagories of model’s time complexity are considered. The first is training the
model, fitting it to data, which might happen online during an episode or offline
between episodes. Second is the complexity of point-predictions given a trained
model. Computing the prediction’s input-output gradients can incur additional
complexity, but is a necessity for trajectory gradient-based optimisation approaches,
third column. Forth (continued on the next line of the table), considering input-
uncertainty and output-uncertainty when making probabilistic predictions often
incurs further computation to handle how a distribution of inputs and outputs.
Similarly, probabilistic predictions with gradient information is even more complex,
in the fifth column.

Each cell within Table 2.1 is expressed in average-case complexity O notation.
For training data we have points X ∈ RN×(X+U) and targets y ∈ RN×1 where we
use N to denote the number of training datum, X is the state-dimensionality, and
U is the control dimensionality. The time-complexity of GPs can be traded with
accuracy by using a reduced number of inducing points instead M. In deriving GP
complexities for Table 2.1 we assume N ≥M ≥ X+U. For NN predictions given
input and out distributions, we use P-many ‘particles’ to represent distributions
(used in Chapter 5). We assume a small, fixed number of NN layers. We use R-many
RBF centroids. Note both RBF and NN prediction is highly parallelisable, a property
heavy exploited with modern GPUs, but not considered in Table 2.1.
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Table 2.1 Dynamic Models’ Time Complexity

Model Training Point-Prediction Point-Prediction Gradients

GP O(N3X) O(NX(X+U)) O(NX(X+U))

GP-sparse O(NM2X) O(MX(X+U)) O(MX(X+U))
NN O(N(X+U)2) O((X+U)2) O((X+U)3)
RBF O(NRX(X+U)) O(RX(X+U)) O(RX(X+U))

Prob. Prediction Prob. Prediction Gradients

GP O(N2X2(X+U)) O(N2X2(X+U)2)

GP-sparse O(M2X2(X+U)) O(M2X2(X+U)2)
NN O(P(X+U)2) O(P(X+U)3)

RBF O(R2X2(X+U)) O(R2X2(X+U)2)

2.4 DATA EFFICIENT LEARNING OF CONTROL

Earlier in § 1.2 we mentioned our goal is learning control of dynamical systems
in a data efficient way. Most control and RL methods are data-intensive, requiring
much system interaction before learning good controllers. For systems prone to
wear and tear, or expensive to operate, data efficiency is critical. In this section we
will describe 1) a definition of data efficiency used throughout this thesis, 2) how to
improve data efficiency, and 3) some data efficient algorithms from the literature.
Our intention is to help understand the following section, concerning the PILCO

algorithm (Deisenroth and Rasmussen, 2011), and why PILCO is a gold-standard for
data efficient learning of control. For these reasons, we choose to extend the PILCO

algorithm in the following chapters.
In this thesis, we consider learning control over E-many of episodes, each of

which executes from timestep t = 0 to time horizon t = T . The loss of the eth
episode is measured as the cost-to-go from the first timestep at t = 0, i.e. Je

0. We
judge algorithms based on minimising the ‘total loss’ J, the summed losses over all
episodes:

J .
=

E

∑
e=1

Je
0 =

E

∑
e=1

T

∑
t=0

ce
t . (2.36)

The idea is the robot has repeated episodes to interact with a system, learning by
trial and error. Better controllers naturally reduce a particular episode’s loss. But
importantly, the earlier a good controller is discovered, the more subsequent episodes
there are in which to capitalise from that information, to help reduce the total loss J
in (2.36). We assume online execution of episodes that execute too fast to effectively
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learn during an episode. Instead, we assume all learning happens offline between
episodes.

Two methods to improve data efficiency are: 1) modelling the system’s dynamics,
and 2) testing different controllers which might be optimal (termed the exploration-
exploitation dilemma in RL (Sutton and Barto, 1998), or dual-control in control theory
(Wittenmark, 1995)). We will focus on the benefits of modelling only here. Balancing
exploration and exploitation is discussed § 4.2.

Using dynamics models to design controllers is generally more data efficient
than model-free control due to a model’s ability to generalise from limited experi-
ence. A model helps to discover and then exploit structure inherent to the control
task. In addition, models help backup (propagate) loss-estimates globally through-
out state-action space given local updates of dynamics knowledge (Atkeson and
Santamaria, 1997; Boone, 1997). Model-free methods can require millions of datum
to solve even low-dimensional tasks such as the cartpole swing-up (Gu et al., 2016;
Lillicrap et al., 2015). Model-based methods by contrast solve similar tasks with
only several hundred datum (Deisenroth and Rasmussen, 2011; Pan and Theodorou,
2014). The major cost associated with modelling – especially accurate modelling
– is the computational demand. When learning any control tasks, a trade off ex-
ists between computational efficiency and data efficiency. Continually retraining
a model as each execution generates additional data is a computational burden,
which can be especially great for flexible Bayesian models such as the GP, as dis-
cussed § 2.3.4. Using the GP model as an example, we can trade off computational
efficiency with data efficiency by changing the number of inducing points used in
sparse GP approximations. An increase in inducing points, decreases computational
efficiency, but increases data efficiency (through more accurate modelling for better
informed controller optimisation). As computation efficiency strongly determines
temporal efficiency, a model-free or fast-inaccurate-model approach may be the
only options when a robot must act constantly in real-time (e.g. infinite time hori-
zon problems, with no chance for offline fitting of computationally heavy models
between episodes). As always, incorporating expert domain knowledge helps to
increase data efficiency, by reducing the set of plausible dynamics models. Yet we
continue to focus on fully autonomous learning: learning from scratch without prior
task-specific knowledge of the system dynamics.

Models do not only increase data efficiency for the current task, but also for new
tasks. For instance, if one changes a robot’s goal by changing the cost function,
the dynamics knowledge (which is task-independent) learned from previous tasks
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is directly transferable to new tasks, speeding up controller design of new tasks.
Model-free approaches by contrast cannot adapt to changing tasks since they only
retain knowledge of the loss function which is specific to a particular task.

Assuming we do have the computational resources and time to model dynamics,
a common problem we must still address is model bias. Model bias typically arises
when predictions are based on only a single model selected from a large plausible
set of models. By assuming a single model is the true latent dynamics function,
controller optimisation becomes susceptible to model errors. This is because selecting
any single model – even the Maximum A Posteriori (MAP) model – from a large
plausible set is quite possibly the wrong model, being just one of the many plausible
explanations of what generated the observed data. And the less data observed,
the greater the number of plausible dynamics models exist that can generate the
observed data. Model-bias is especially problematic when optimising data efficiency,
since the robot constantly learns and acts in the low-data regime where the set of
plausible models is vast (Deisenroth et al., 2015). As discussed, low-data regimes
completely undermine traditional trajectory-based control approaches which rest
heavily on an assumption of model-correctness, such as MPC. Unless model-based
algorithms consider the complete set of plausible dynamics, they will succumb to
model-bias, counteracting the data efficiency benefits of using a model.

Avoiding model bias is made possible with probabilistic dynamics models. Proba-
bilistic models make probabilistic predictions by marginalising over the complete set
of plausible dynamics functions given the data seen so far. To understand how prob-
abilistic models avoid model bias let us consider how the data constrains the space of
plausible models. Since the set of plausible functions p( f ) is only constrained to be
those which could have generated the current data {X ,y}, the set of plausible func-
tions is unconstrained in state-space regions far from where data has been collected.
Thus, in state-space regions far from data, we expect large variation in predictions
between models. Therefore, the act of marginalising over all model predictions at
points far-from-data naturally results in high-variance (highly uncertain) predictions.
Such a property is widely endorsed by the Bayesian community, reflecting ‘honest’
models whose prediction confidences are commensurate with the amount of data
relevant to such a prediction. When the controller optimisation process then use
such a probabilistic predictive model, any expected cost of being in states far from
data thus has little dependence on the controller. In effect, controller optimisation
focuses towards what is known to (probably) improve a controller given data, not
on what might improve a controller based on unsubstantiated predictions from a
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non-probabilistic model far from data. Point-predictions can easily lead controller
optimisation astray, especially in unconstrained regions of the state space where the
function values are arbitrary.

A data efficient algorithm that does propagate dynamics uncertainty throughout
simulation to avoid model-bias is PILCO (Deisenroth and Rasmussen, 2011). As
a result, not only does PILCO avoid being led astray by point-predictions from a
single model, but by concentrating on policies agreeable to most plausible models,
PILCO is more likely to collect data in promising areas of the state space, to help
with future controller optimisation, yielding data efficient learning. We maintain
PILCO is the unbeaten, gold standard of data efficiency of black-box continuous-state
systems and real-time episodes. Although PILCO cannot scale to high-dimensional
state-spaces, it does handle arbitrary cost functions unlike LQ based methods, which
only use quadratic cost functions to simplify optimisation.

2.5 THE PILCO FRAMEWORK

The Probabilistic Inference and Learning for COntrol (PILCO) algorithm is a
model-based policy-search RL algorithm, which achieved unprecedented data effi-
ciency in learning to control the cartpole swing-up problem and others (Deisenroth
and Rasmussen, 2011). PILCO applies to continuous-state, continuous-action, and
discrete-time control tasks of nonlinear, stochastic and time-invariant dynamical
systems. The key to PILCO’s success is its probabilistic dynamics model. A proba-
bilistic dynamics model is used to predict single-step system dynamics, from one
timestep to the next. This allows PILCO to probabilistically predict multi-step sys-
tem trajectories over arbitrary time horizon T , by repeatedly using the predictive
dynamics model’s output at one timestep, as the (uncertain) input in the following

Algorithm 1 PILCO

1: Define controller’s functional form: π : xt×ψ → ut .
2: Execute system with random controls one episode to generate initial data.
3: for episode e = 1 to E do
4: Learn dynamics model p( f ).
5: Simulate state trajectories from p(X0) to p(XT ) using π .
6: Evaluate controller: J(X0:T ,ψ) = ∑

T
t=0 γ t c̄t , c̄t = EX [cost(Xt)|ψ].

7: Improve controller: ψ ← argmin
ψ∈Ψ

J(ψ).
8: Execute system, record data: Xe = [x0:T−1,u0:T−1], ye = x1:T .
9: end for
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timestep. For tractability purposes, PILCO uses moment-matching to keep the simu-
lated state distribution p(x) Gaussian. The result is an analytic distribution of state-
trajectories, approximated as a marginal set of Gaussian distribution over T states,
p(xi) ∼ N ∀ i ∈ [0,T ]. The controller is evaluated using the expected cumulative
cost of the trajectories. Next, the controller is improved using local gradient-based
optimisation, searching over the controller-parameter space. In RL this is termed
policy improvement using policy search. A distinct advantage of moment-matched
prediction for policy search instead of particle methods is smoother gradients and
fewer local optima (McHutchon, 2014). Finally, the controller is executed, generating
additional data to re-train the dynamics model. The whole process then repeats
for E-many episodes. For the remainder of this section we discuss, step by step,
PILCO summarised by Algorithm 1. The user first defines a parametric controller π

function (Algorithm 1, line 1) and then executes an episodes with random controls
(line 2) to generate some initial data.

2.5.1 SYSTEM EXECUTION PHASE

With the controller now defined, PILCO is ready to execute the system (Algorithm 1,
lines 2 and 8). As the systems executes (either as a black-box physics-simulator or
a real robot) new data is generated. This training points Xe and training targets ye

during the eth episode are added to the total training data {X1:e,y1:e}, abbreviated
{X ,y}.

Execution begins from a random initial state x0
sample∼ N

(
µx

0 ,Σ
x
0
)
∈ RX. Then, as

Fig. 2.1 depicts, the controller π , parameterised by ψ , takes the observed state x0

as input, outputting control signal u0 = π(x0,ψ) ∈ RU. Applying control u0 to the
dynamical system in state x0, results in a new system state x1. Repeating until
horizon T results in a new single state-trajectory of data {Xe,ye}.

2.5.2 LEARNING DYNAMICS

To learn the unknown dynamics (Algorithm 1, line 4), a GP is used. As discussed, a
GP does not require much prior dynamics knowledge, only assumptions that dy-
namics are time-independent and are smooth on some (unknown) scale. Importantly,
no task-specific prior knowledge is required. Nevertheless prior knowledge can be
included if available. Some methods train models on ‘batch’ datasets. To maximise
data efficiency, PILCO uses all available data {X ,y}.
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The latent dynamics function is assumed to have the form f : x̃t → xt+1, where
x̃T

t
.
= [xT

t ,u
T
t ] ∈ RX+U. PILCO models the dynamics with X independent GP priors,

one for each dynamics output variable: f a : x̃t → xa
t+1, where a = {1, ...,X} is the

ath dynamics output, and f a ∼ GP(φ T
a x̃,k(x̃i, x̃ j)). Note we implement PILCO with

a linear1 mean function φ T
a x̃. The covariance function k is squared exponential,

with length scales Λa = diag([λ 2
a,1, ...,λ

2
a,X+U]), and signal variance s2

a: ka(x̃i, x̃ j) =

s2
a exp

(
− 1

2(x̃i− x̃ j)
TΛ−1

a (x̃i− x̃ j)
)
.

Note the notation of ‘p( f )’ is often used to represent a GP prior distribution.
However, in this thesis we use ‘p( f ) = p( f |D)’ interchangeably as the posterior
distribution over dynamics functions for succinctness. We have no need to represent
the prior distribution in this thesis.

2.5.3 SYSTEM SIMULATION PHASE

In contrast to executions, PILCO also simulates analytic distributions of state trajecto-
ries (Algorithm 1, line 5) to evaluate a controller. PILCO simulates offline, between
the real online system executions. Simulated control using the dynamics model is
identical to real executed control except each control variable is randomised, due
to the subjective uncertainty of future state transitions. To distinguish random
variables from nonrandom we use capitals: Xt , Yt , Ut , X̃t and Xt+1, all of which we
approximate as jointly Gaussian. These variables interact both in execution and
prediction according to Fig. 2.1. To predict Xt+1 now that X̃t is uncertain PILCO uses
the iterated laws of expectation and variance:

p(Xt+1|X̃t) = N
(
µ

x
t+1,Σ

x
t+1
)
, (2.37)

µ
x
t+1 = EX̃

[
E f
[

f (X̃t)
]]
, (2.38)

Σ
x
t+1 = VX̃

[
E f
[

f (X̃t)
]]
+EX̃

[
V f
[

f (X̃t)
]]
. (2.39)

After a one-step prediction from X0 to X1, PILCO repeats the process from X1 to X2,
and so on up to XT , resulting in a multi-step prediction whose joint we refer to as a
distribution over state-trajectories. An advantage of forwards simulating a single
Gaussian distribution through time, is that system simulation only scales linearly
with horizon. More precise simulation of possible futures a system might have
is generally exponential in the horizon given the different true distributions that
occur across each branch (conditioned on action and outcome) at each time step, a

1 The original PILCO instead uses a zero mean function, and instead predicts relative changes in
state. We change PILCO here for easier comparison with our extensions of PILCO in later chapters.
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Xt Xt+1

Ut Ut+1

π

f

π

Fig. 2.1 PILCO’s modelling of control as a probabilistic graphical model (PGM). At each
timestep, the observed system state Xt is inputted into the controller function π to decide on a control
Ut . Finally, the system evolves to a new state Xt+1 according to the unknown, nonlinear dynamics
function f whose inputs comprise the previous state Xt and control decision Ut . The time series
process then repeats. Both the current state Xt and current control Ut are coloured grey at time t, a
convention to indicate a node’s variable is observed and known to the robot. However, the future state
Xt+1 and future control Ut+1 are yet to be observed and decided respectively, and thus currently
unknown (white) at the present point in time t.

branching which causes an exponential number of distinct future distributions the
state X could be in.

Using identities (B.28) – (B.33) derived in Appendix B.3, both the mean and
variance can be computed. The scalar expectation of the ath element of predictive
output vector Xt+1 w.r.t. random input vector X̃t ∼N

(
µ x̃

t ,Σ
x̃
t
)

is:

µ
x,a
t+1 = s2

aβ
T
a qa +φ

T
a µ

x̃
t , (2.40)

βa
.
= (Ka +Σ

ε
a)
−1(ya−φ

T
a X), (2.41)

qa
i

.
= q(Xi,µ

x̃
t ,Λa,Σ

x̃
t ). (2.42)

The scalar covariance of the ath and bth elements of predictive output Xt+1 is (derived
Appendix B.3):

Σ
x,ab
t+1 = s2

as2
b
[
β

T
a (Q

ab−qaqbT)βbδab
(
s−2

a − tr((Ka +Σ
ε
a)
−1Qaa)

)]
+

+CaT
x̃x′Σ

x̃
t φb +φ

T
a Σ

x̃
t C

b
x̃x′+φ

T
a Σ

x̃
t φb, (2.43)

Qab
i j

.
= Q

(
Xi,X j,Λa,Λb,0,µ x̃

t ,Σ
x̃
t
)
, (2.44)

Ca
x̃x′ = s2

a(Λa +Σ
x̃
t )
−1(X−µ

x̃
t )β

T
a qa. (2.45)

For data efficient learning, a simulator needs to be as faithful to reality as possible.
Because the system executes closed loop control, the simulator should simulate
closed loop control. Methods, such as MPC, are mostly inconsistent here, simulat-
ing open loop control (by anticipating a sequence of state-control sequence over
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several time steps, optimising the control at each time step, whilst ignoring dynam-
ics uncertainty from one step to the next, thus simulating an open-loop control),
whilst executing closed loop control. Data inefficiencies arise in such cases due to a
controller being optimised for a different setup than what is used.

2.5.4 CONTROLLER EVALUATION

To evaluate the controller π (more specifically the controller parameters ψ) (see
Algorithm 1, line 6), PILCO computes the loss as a function of the simulated set of
state distributions X0:T and policy parameters ψ :

J(X0:T ,ψ) =
T

∑
t=0

γ
t c̄t , c̄t = EX [cost(Xt)|ψ] . (2.46)

As PILCO’s loss function is only a function of expected cumulative costs, (2.46) is
simplified as the accumulation of each timestep’s expected cost c̄t . The choice of
cost function is arbitrary, but often chosen by PILCO’s original authors to be a
saturating function, bounded in range [0,1]. Since optimal controllers are invariant
to affine transformations of the cost function (scaling and translation), the choice of
bounds 0 and 1 is without loss of generality to other bounded intervals. Advantages
of saturating functions are 1) indirectly promoting exploration, and 2) avoiding
‘unnecessarily large’ costs (Deisenroth et al., 2015). Large unbounded costs that LQ
control methods use can be counterproductive to learning good controllers since
the optimisation procedure constantly avoids (and may never explore) controller
parameterisations predicted to incur arbitrarily high cost. Rarely does it make sense
that a system could perform ‘arbitrarily bad’ without bound. For many control
tasks, a system either performs satisfactory, or poorly, but not ‘poorly without
bound’. Such unbounded costs can needlessly become the sole focus of the controller
optimisation, instead of simply discovering a satisfactory controller in a large space
mostly unsatisfactory controllers.

2.5.5 CONTROLLER IMPROVEMENT

Given controller evaluation J(X0:T ,ψ), which depends on controller parameters
ψ , PILCO optimises the controller parameters using the analytic gradients of the
loss function (Algorithm 1, line 7). A BFGS optimisation method searches over
the continuous space of controller parameters ψ ∈ Ψ that minimise the total cost
J(X0:T ,ψ) using gradient dJ/dψ . Computing dJ/dψ requires derivatives dc̄t/dψ at
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each time t to chain together (Deisenroth and Rasmussen, 2011):

dJ(X0:T ,ψ)

dψ
=

T

∑
t=0

γ
t dc̄t

dψ
, c̄t = EX [cost(Xt)|ψ] (2.47)

=
T

∑
t=0

γ
t
(

∂ c̄t

∂ µx
t

dµx
t

dψ
+

∂ c̄t

∂Σx
t

dΣx
t

dψ

)
, where (2.48)

dµx
t

dψ
=

∂ µx
t

∂ µx
t−1

dµx
t−1

dψ
+

∂ µx
t

∂Σx
t−1

dΣx
t−1

dψ
+

∂ µx
t

∂ µu
t−1

∂ µu
t−1

∂ψ
+

∂ µx
t

∂Σu
t−1

∂Σu
t−1

∂ψ
,(2.49)

dΣx
t

dψ
=

∂Σx
t

∂ µx
t−1

dµx
t−1

dψ
+

∂Σx
t

∂Σx
t−1

dΣx
t−1

dψ
+

∂Σx
t

∂ µu
t−1

∂ µu
t−1

∂ψ
+

∂Σx
t

∂Σu
t−1

∂Σu
t−1

∂ψ
,(2.50)

and where p(Xt)∼N (µx
t ,Σ

x
t ).

By optimising the controller w.r.t. trajectory distribution p(X0:T ) generated by a
distribution of possible dynamics p( f ), the controller’s performance next episode
is locally optimal w.r.t. all the dynamics information which is summarised by the
trained dynamics model p( f ). Opposed to much of the literature on robust control
(§ 2.3.2) PILCO, does not sacrifice data efficiency, and can quantify its uncertainty
in performance if we take the variance of the cumulative cost (discussed Chap-
ter 4). Unlike much adaptive control techniques (§ 2.3.2), PILCO is able to anticipate
whether a new controller might destabilise a system due to its probabilistic model.

2.5.6 RELATED ALGORITHMS

The PILCO algorithm builds on, and has inspired, multiple other similar algorithms.
Work by Pan and Theodorou (2014) on Probabilistic Differential Dynamic Program-
ming (PDDP) is based on PILCO, and deals with unknown dynamics using a GP
model. PDDP makes iterative linearisations of the dynamics model outputs at each
time point, specifically linearisation of the output-mean and output-variance w.r.t.
the input-mean and input-variance. Using such linearisations, PDDP makes a second
order Taylor expansion of the loss function, combined with a quadratic cost function,
to approximately compute a locally optimal sequence of controls for the system.
Such iterative-linear approximation of the state-distribution together quadratic cost
function, PDDP resembles iLQG without observation noise. PDDP slightly under-
performs PILCO in data efficiency by 15%-25% on tasks such as the double-cart pole
(Pan and Theodorou, 2014). Yet PDDP boasts much greater computational efficiency
than PILCO, with a 20+ fold speedup in offline computation between episodes, even
though PDDP still requires computationally expensive gradient information (briefly
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discussed § 2.5.5). Presumably this is because of the LQ formulation, in which the
optimiser makes fewer optimisation steps than PILCO before convergence. Disad-
vantages of such an approach is 1) an unbounded cost (discussed § 2.5.4) which
restricts exploration, and 2) restriction to iterative-linear functional forms of the
controller which are partially open-loop controllers as explained in § 2.2.5.

Further work by Pan et al. (2015) is not fully black-box, and requires an expert
to supply some dynamics information. Although Pan et al. (2015) do not learn a
controller that runs in real time, Pan et al. (2015) find the control signal at each
0.02s timestep requiring re-optimising the GP, and forward-backward sweeps until
convergence. This certainly improves data efficiency by updating the model more
often (during episodes in addition to between episodes), at the expense of not
being able to execute the system in real time. PILCO by contrast handles arbitrary
differentiable cost functions (importantly saturating costs functions) unlike many
control papers which rely on quadratic cost functions to simplify the optimisation
procedure (even becoming convex under linear dynamics).

2.6 DISCUSSION

In this chapter, we discussed control methods relevant to understanding novel
contributions made in subsequent chapters. We used a common notation to help
compare ideas originating from different academic fields, particular control and rein-
forcement learning. Before concluding this chapter we revisit the general equations
of control, and the restricted form used for the remainder of this thesis. In § 2.1 we
discussed the process of control, and a general set of control equations covering most
of the literature (2.1)–(2.6), copied below for the reader’s convenience (2.51)–(2.56):

General equations of discrete-time control:

x0 = ε
x0 ∈ RX, (2.51)

xt+1 = f (xt ,ut , t,εx
t ) ∈ RX, (2.52)

yt = g(xt ,ut , t,ε
y
t ) ∈ RY, (2.53)

ut = π(y0:t ,u0:t−1, t,εu
t ) ∈ RU, (2.54)

ct = cost(xt ,ut ,xt+1, t,εc
t ) ∈ R, (2.55)

Jt = ∑
T
τ=tγ

τ−tE [cτ ] ∈ R. (2.56)
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In the following chapters, we make additional assumptions on the system to
be controlled. Like PILCO we only consider continuous-state, continuous-control,
discrete-time, finite-time-horizon control tasks. We additionally consider continuous-
observations y. We also use a belief state b in (2.60), as found in the POMDP literature,
a sufficient statistic of the probability of the system being in some state x (from the
robot’s or an observers point of view) given all previous observations and control
outputs. Beliefs thus exist in the space of Gaussian probability distributions over X
dimensional spaces: NX. The belief’s compact representation is only possible given
the Markov property of the state x. Thus we use this sufficient statistic as input to a
controller. However, we simplify by only inputting the expected value of the belief
distribution, an approximation which we discuss next chapter.

Compared to the general set of control equations above, we only consider a
restricted set of equations to describe our system and controller:

Restricted equations of control we consider in Chapters 3–5:

x0 = ε
x0 ∈ RX , ε

x0 iid∼ N (µx
0 ,Σ

x
0) , (2.57)

xt+1 = f (xt ,ut)+ ε
x
t ∈ RX , ε

x
t

iid∼ N (0,Σε
x) , (2.58)

yt = xt + ε
y
t ∈ RX , ε

y
t

iid∼ N
(
0,Σε

y
)
, (2.59)

bt|t = p(xt |y0:t ,u0:t−1) ∈ NX , (2.60)

ut = π(Ebt|t

[
bt|t
]
) ∈ RU , (2.61)

ct = cost(xt) ∈ [0,1] , (2.62)

Jt = ∑
T
τ=tγ

τ−tE [cτ ] ∈ [0,T − t +1] . (2.63)

We shall now discuss the assumptions behind the restricted set of control equa-
tions (2.57)–(2.63), compared to the general control equations (2.51)–(2.56). We list
the assumption in order by decreasing severity below.

1. Our most severe and limiting assumption is perhaps our observation function,
reflected in restrictive form of our observation function in (2.59), simply a func-
tion of the latent state x with additive Gaussian observation noise ε

y
t , compared

to (2.53). The only unknown is the observation noise variance Σε
y , which must

be learned from data. By assuming this simple and known structure in the
observation function, the burden is placed on the user to 1) define the state
variables within vector x the robot needs to track, 2) preprocess sensory data to
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measure each state variable. Also, observation noise ε
y
t being independent of

state x and control u is not always the case. For example, a camera’s precision
in measuring an object’s position could be largely dependent on the object’s
velocity, due to blurring effects.

2. A medium-level limitation is the controller being a function of the belief-mean
only, (2.61). It could condition on the belief variance also, or other statistics
of the belief distribution. Adapting a controller to condition on variance
is not difficult, but not trivial either. It involves additional chain terms in
the controller optimisation process. The consequences of how detrimental
such a restriction is unclear to the authors, however, as seen later in § 3.3.6, the
optimal control of an inverted pendulum does depend on how certain the robot
is about the state. Lower state uncertainty allows the robot to be aggressive,
applying high controller gains to stabilise the system quickly, whilst higher
state uncertainty warrant more cautious controllers slower to react.

3. A weaker-level assumption concerns our dynamics model in (2.58). We focus
on the fairly general setting of unknown and nonlinear dynamics f w.r.t. to
both input x and u as does (2.52), except with additive process noise εx

t . As
discussed, nonlinear dynamics makes controller design more difficult, and
we make no prior assumptions on our modelling of the latent dynamics f
except for function smoothness (on some unknown scale) and time-invariance.
Additional Gaussian process noise εx

t being independent of the state and
control, whilst not general, will satisfy any weakly-stochastic systems and will
arguably approximate well most stochastic systems.

4. We also make some weak assumptions for sake of simplicity, which are not
difficult to avoid. For example, our time-invariant controller (2.61) is easily
changed into a time-variant controller (2.54) since ‘time is known in advance’.
Such a controller would be implemented with a set of time-dependent con-
troller parameters to optimise, which only requires a slightly more complex
chain rule expression than (2.50)–(2.50).

5. Another weak assumptions, for example, the cost function we consider (2.62)
is only a function of the state x, but it is trivial to generalise to (2.55) being a
function of the control u and time t and new state xt+1 also. Note, as previously
discussed, optimal control is invariant to affine transformations to the cost
function, so a bounded cost function [0,1] is still very general.



CHAPTER 3

LEARNING CONTROL WITH A FILTER

PILCO is an RL algorithm (discussed § 2.5) which uses GPs to learn a model of the
system dynamics of continuous states. The method has shown to be highly data-
efficient in the sense that it can learn with only very few interactions with the real
system. However, a serious limitation of PILCO is that it assumes that the observation
noise level is small. There are two main reasons, which make this assumption
necessary. Firstly, the dynamics are learnt from the noisy observations (i.e. incorrectly
modelling a non-Markov process f : yt ×ut → yt+1 as if it were Markov). Learning
the dynamics model in this way does not correctly account for the noise in the
observations (the true dynamics is f : xt×ut → xt+1). Only if the observation noise
ε

y
t is small, then observations yt = xt + ε

y
t ≈ xt would be good approximations for

input to the real dynamics function. Secondly, PILCO uses the noisy observation
directly to calculate the control, ut = π(yt) = π(xt + ε

y
t ), which is problematic if the

observation noise ε
y
t is substantial. Imagine a controller π controlling an unstable

system, where high gain feed-back is necessary for good performance. Observation
noise is amplified when the noisy input is fed directly to the high gain controller,
which in turn injects noise back into the state, creating cycles of increasing variance
and instability.

In this chapter we extend PILCO to address these two shortcomings, enabling
PILCO to be used in situations with substantial observation noise. The first issue
is addressed using the so-called direct method for training the dynamics model,
explained § 3.3.2. The second problem can be tackled by filtering the observations.
One way to look at this is that PILCO does planning in observation space, rather than
in belief space. In this chapter we extend PILCO to allow filtering of the observations,
by combining the previous belief-state distribution with the dynamics model and
the observation using Bayes rule to plan in belief space. Note, that this is easily done



44 Learning Control with a Filter

when the controller is being applied, but to gain the full benefit of a filter, we have
to also take the filter into account when simulating and evaluating the controller.

PILCO trains its controller through minimising the predicted loss when simulating
the system and controller. Since the dynamics are not known exactly, the simula-
tion in PILCO had to simulate distributions of possible trajectories of the physical
state of the system. This was achieved using an analytical approximation based
on moment-matching and Gaussian state distributions. In this chapter we thus
augment the simulation over physical states to also include the state of the filter, an
information state or belief state. This is complicated by the fact that our belief state
itself is a probability distribution, we will now have to simulate distributions over
distributions. This will allow the algorithm both to apply filtering during control
but also to anticipate the effect of filtering during training, thereby learning a better
controller.

We will first explore the undesirable effects of noisy observations in § 3.1 before
discussing how filtering helps mitigate such effects in § 3.2. In § 3.3 we discuss both
how we extend the PILCO framework to apply to a restricted form of POMDPs to
instead plan in belief space to include filtering. We show experimental results that
the proposed algorithm handles observation noise better than competing algorithms.
An assumption is we observe noisy versions of the state variables. We do not handle
more general cases where other unobserved states are also learnt nor learn any
other mapping from the state space to observations other than additive Gaussian
noise. We also introduce the Direct method § 3.3.2 to train a dynamics model from
noisy observations. Thereafter we discuss a more generalised version of learning in
the presence of observation noise in § 3.4, closing with some additional topics and
conclusions.

3.1 CONSEQUENCES OF UNFILTERED OBSERVATIONS

Previously, we saw PILCO model a noiseless control process using a Probabilistic
Graphical Model (PGM), Fig. 2.1 on page 37. A PGM depicts conditional-dependency
relationships between random control variables (distinguished as capitals), useful
for simulating the systems forwards in time during controller evaluation, since the
value of future control variables is currently uncertain (due to system stochasticities
and subjective uncertainty about the dynamics). A PGM also makes clear which
variables are observed by the robot (highlighted grey) and which variables are
unobserved (termed hidden or latent) by the robot (highlighted white).
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Xt Xt+1

Yt Yt+1

Ut Ut+1

g

π

f

g

π

Fig. 3.1 Unfiltered control, the PILCO framework as a probabilistic graphical model extended to
model sensor noise. At each timestep, the latent system Xt is observed noisily as Yt which is inputted
directly into controller function π to decide control Ut . Finally, the latent system will evolve to Xt+1,
according to the unknown, nonlinear dynamics function f of the previous state Xt and control Ut .

Here, we adapt PILCO’s PGM from Fig. 2.1 to explicitly account for noisy ob-
servations shown Fig. 3.1. Doing so, we can analyse and predict the effects that
sensor noise has on the control process. The key difference between both PGMs is
the system states Xt were fully observed (highlighted grey) in Fig. 2.1, whereas now
the system states are latent (highlighted white) in Fig. 3.1. Since the robot in Fig. 3.1
now cannot access Xt directly (which would be preferable, being the uncorrupted
state information), the unfiltered control process instead uses the observation Yt (a
corrupted version of Xt) as input into controller π to decide control Ut . The system
dynamics f is unchanged from Fig. 2.1. The new state Xt+1 is still a function of the
previous state Xt (now unknown to the robot, white) and control Ut (still known to
the robot, grey).

Modelling unknown (white) variables in PGMs can be a source of confusion.
For example, is it legitimate for the simulator to ‘know’ latent variables X0:T for the
purposes of simulating a system forwards given that the robot cannot know X0:T

in reality? In addition, is it legitimate that the simulator passes such ‘unknowable
information’ of X0:T to the cost function for the purpose of controller evaluation
(Algorithm 1, line 6)? The answer to both questions is ‘yes’ – provided that the
simulated robot does not base decisions on information that the real robot cannot
know. Simulation of Fig. 3.1 takes the place of reality, generating sequential latent
variables X0:T , each of which generates an observation Yt according to the sensor
model g. Note in Fig. 3.1, the controller’s input is grey (i.e. knowable by the real
robot). Fig. 3.1 is thus consistent with reality, and legitimate for simulation. Such
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consistency is important for accurate controller evaluation, J(X0:T ,ψ). The same
restriction does not apply to the dynamics function f , which can have inputs that
are latent (X) or not (U). In simulation, we are concerned with how the robot would
react to what it can know.

Imperfect noisy sensors impairs learning of control in two important ways. First,
training a dynamics model is made more complex with noise on the inputs and
outputs of the training data, discussed in § 3.1.1. Second, McHutchon (2014, section
4.5,4.8) noticed that any observation noise is injecting directly into a controller, and
can quickly destabilise a system, discussed § 3.1.2.

3.1.1 EFFECT OF SENSOR NOISE ON MODELLING DYNAMICS

The original PILCO algorithm ignored sensor noise when training each GP by as-
suming each observation yt to be the latent state xt . However, this approximation
breaks down under significant noise. With only output noise, the GP training is
straightforward, and hyperparameter likelihood maximisation will discover the
correct noise variance with enough data. However, input noise in training data is a
problem less studied. Although several recent works by Frigola (2015); McHutchon
(2014); McHutchon and Rasmussen (2011) investigate the problem of noisy input
data when training GP models in depth.

3.1.2 EFFECT OF SENSOR NOISE ON THE CONTROLLER

Using noisy observations directly to calculate control outputs is problematic if the
observation noise is substantial. Imagine a controller controlling an unstable system,
where high gain feed-back is necessary for good performance. Observation noise
is amplified when the noisy input is fed directly to the high gain controller, which
in turn injects noise back into the state, creating a cycle of increasing variance and
instability.

Let’s be more precise. Consider the task of maintaining the balance of a currently
inverted pendulum using the system in Fig. 3.1. Assume Xt ∼N (0,Σx

t ). Recall the

observation noise is modelled as ε
y
t

iid∼ N
(
0,Σε

y
)

so the observations themselves are
Yt = Xt + ε

y
t ∼N

(
0,Σx

t +Σε
y
)
. We can locally analyse our system using linearisations.

A locally approximate gain matrix Π is computed by linearising the controller about
the mean input giving a Jacobian matrix Π = dπ(y)

dy |y=0 ∈ RU×X. The variance injected
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into dynamics f would now be

VXt

[
X̃t
] .
= VXt

[
Xt

Ut

]
=

[
Σx

t Σx
t ΠT

ΠΣx
t Π(Σx

t +Σε
y)Π

T

]
. (3.1)

Next, we linearise the dynamics about this mean input, with gradient matrices
[A,B] = d f (x̃)

dx̃ |x̃=0 ∈ RX×(X+U), forming a local linearisation of the unfiltered system
Fig. 3.1:

xt+1 ≈ Axt +But + ε
x
t , ε

x
t

iid∼ N (0,Σε
x) , (3.2)

yt = xt + ε
y
t , ε

y
t

iid∼ N
(
0,Σε

y
)
. (3.3)

Finally, the subsequent latent state variance is

VXt [Xt+1] = [A,B]VXt

[
X̃t
]
[A,B]T +Σ

ε
x

= [A,B]

[
Σx

t Σx
t ΠT

ΠΣx
t Π(Σx

t +Σε
y)Π

T

][
AT

BT

]
+Σ

ε
x

= (A+BΠ)Σx
t (A+BΠ)T︸ ︷︷ ︸

system response

+ (BΠ)Σε
y(BΠ)T︸ ︷︷ ︸

amplified obs. noise

+ Σ
ε
x︸︷︷︸

process noise

. (3.4)

Any eigenvalues in (3.4) greater than eigenvalues of Σx
t indicate a growth in state-

variance. Note (3.4) is a sum of PSD matrices, so all eigenvalues are non-negative.
How does PILCO’s controller optimisation stabilise the pendulum upright in

light of (3.4)? PILCO finds a balance for the local gain matrix Π, such that Π is ‘small
enough in magnitude’ to avoid injecting too much noise into the system (second
term in (3.4)), yet ‘negative enough’ to respond sufficiently quickly to deviations of
the pendulum’s upright position (first term in (3.4)). An optimal balance is found by
completing the square (which PILCO does not explicitly do, since PILCO optimises
cost, not stability), re-expressing (3.4) as:

VXt [Xt+1] = [BΠ+AΣ
x
t (Σ

x
t +Σ

ε
y)
−1](Σx

t +Σ
ε
y)[BΠ+AΣ

x
t (Σ

x
t +Σ

ε
y)
−1]

T

+AΣ
x
t (Σ

x
t +Σ

ε
y)
−1

Σ
ε
yAT +Σ

ε
x , (3.5)

with minimum at BΠ =−AΣx
t (Σ

x
t +Σε

y)
−1 if the system is fully actuated (rank(Π)≥X).

Several intuitions towards stabilising an unfiltered system can be gleaned from
minimising (3.5):

• Larger observation noises Σε
y warrant smaller gains Π to avoid injecting noise.
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• The more ‘sensitive’ a system is (larger B), the less gain Π is required.

• The more rapid a system naturally moves (larger A), the more gain Π is war-
ranted to control the system.

• The controller gains – transformed through the system response – BΠ should
act against any natural runaway motion of the system A, being proportional to
the negative of A.

• There exist minimum limits to which the state variance can be maintained at.
If, in this unfiltered setting (3.5), AΣx

t (Σ
x
t +Σε

y)
−1Σε

yAT +Σε
x ⪯̸ Σx

t , then the state
variance will grow, regardless of what control gains Π are applied. Because we
are using this linearisation, there is no bifurcation point in the above equation
where we can increase the parameters Σε

y such that the above equation is
unsatisfied for any Σx

t (indicating an uncontrollable system). Although in
the reality of nonlinear control, Σx

t might grow large enough that our linear
approximation is inaccurate, the system may well become uncontrollable,
which our analysis cannot detect. We also note an increasing noise variance
Σε

y increases the state variance Σx
t . So unfiltered control is suitable under low

observation noise. Another method is to increase the observation sampling
rate. Since we used discrete timesteps, the effect of the observation sampling
rate is not immediately clear. An increased sampling rate effectively reduces
the process noise Σε

x between (shortened) timesteps. E.g. a zero-order-hold
controller updates at 10Hz, yet we may wish to sample at 1000Hz if possible,
taking an average of the iid random observations. However, in our experiments
we assume 30Hz, being the typical maximum frame rate of a cheap camera at
maximum resolution.

We shall revisit our analysis of system stability after introducing filtering in the
following section, to understand how filtering can help improve system stability.

3.2 FILTERING OBSERVATIONS

As an alternative to directly inputting noisy observations into a controller, the
observations can be filtered (at execution time) before being inputted to the controller.
To filter a sequence of observations is to infer a belief posterior distribution over the
latent system state conditioned on the complete history of previous control outputs
and observations received so far. To put filtering into context, some examples
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t-3 t-2 t-1 t t+1 t+2 t+3

Smoothing

Filtering

Prediction

timestep

Fig. 3.2 Prediction, filtering, and smoothing: three types of probabilistic inference in time series
models about latent state xt . The bar symbolises the amount of measured data up until (and

including) a particular timestep.

of different inference procedures are shown Fig. 3.2. To infer the latent state Xt

given data up until: (a) a time less than t is prediction, e.g. bt|t−1 = p(xt |y0:t−1); (b)
time t is filtering, e.g. bt|t = p(xt |y0:t); (c) a time greater than t is smoothing, e.g.
bt|t+2 = p(xt |y0:t+2). The dual subscript, using example (c), means belief of state x at
time t given all observations up until time t +2 inclusive.

Implementing a filter is straightforward when the system dynamics are known
and linear and the noise is Gaussian, referred to as Kalman filtering (Kalman, 1960).
For nonlinear systems, the extended Kalman filter (EKF) is often adequate (Berg et al.,
2012), as long as the dynamics are locally linear, meaning approximately linear within
the region covered by the belief distribution. Otherwise, as we later show, the EKF’s
first order Taylor expansion approximation breaks down. Greater nonlinearities
usually warrant the unscented Kalman filter (UKF, Julier et al. (1995)) or particle
filtering (PF, Isard and Blake (1998)) (Ko and Fox, 2009; Ross et al., 2008). The UKF
uses a deterministic sampling technique to estimate moments. However, if moments
can be computed analytically and exactly, moment-matching methods are preferred.
Moment-matching using distributions from the exponential family (e.g. Gaussians) is
equivalent to optimising the Kullback-Leibler divergence KL(p||q) between the true
distribution p and an approximate distribution q. In such cases, moment-matching
is less susceptible to model bias than the EKF due to its conservative predictions
(Bishop, 2006, section 10.7).

Our goal is to learn control of nonlinear systems under significant observation
noise, which requires filtering with unknown and locally nonlinear dynamics.

Such regimes undermine traditional trajectory-based approaches to control,
which assume model-correctness when filtering, including iLQGs. However, before
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studying the problem of filtering with unknown dynamics, we shall review the
Kalman filter.

3.2.1 KALMAN FILTERING

Around 1960, at the same time that optimal control was being defined (Bellman
and Kalaba, 1965), Rudolf Kálmán introduced filtering allowing to optimise the
expected sum of costs for known stochastic systems of linear dynamics, now known
as Kalman filtering (Kalman, 1960). Consider the following linear system, the same
as LQG setting we saw previously,

xt+1 = f (xt ,ut ,ε
x
t ) = Axt +But + ε

x
t , ε

x
t

iid∼ N (0,Σε
x) , (3.6)

yt = g(xt ,ut ,ε
y
t ) = Cxt +Dut + ε

y
t , ε

y
t

iid∼ N
(
0,Σε

y
)
. (3.7)

Our robot begins with a prior belief distribution about the latent state:

bt|t−1(Xt) = N
(
Xt ;mt|t−1,Vt|t−1

)
. (3.8)

Kalman filtering generally alternates between two steps: an update step and a
prediction step. During the update step, the robot ‘updates’ its prior belief with
observation yt to yield a posterior belief using Bayes rule. During the prediction step
(and before the next observation yt+1 arrives), the robot projects its belief posterior
of Xt through the known dynamics model to predict the next state Xt+1, just as (2.19)
did. Often both steps alternate, but this is not strictly necessary. Multiple predict
steps can occur in succession if observations are infrequent. Multiple updates steps
can also occur if multiple observations are made at the same time. However, a
predict step should always proceed an update step if multiple observations have
different timestamps. We now describe each step in more detail.

UPDATE STEP

The update step concerns how our prior belief bt|t−1 is updated given the obser-
vation function g (3.7). Start with robot’s subjective prior probability bt|t−1(xt) =

p(xt |y1:t−1,u1:t−1) =N
(
xt ;mt|t−1,Vt|t−1

)
. Get an observation with likelihood p(yt |xt) =

N
(
yt ;Cxt +Dut ,Σ

ε
y
)
. Using Bayes rule to combine prior with likelihood:
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bt|t ∼ N
(
mt|t ,Vt|t

)
(3.9)

.
= p(Xt |y1:t ,u1:t−1) (3.10)

=
p(yt |Xt) · p(Xt |y1:t−1,u1:t−1)

p(yt)
(3.11)

∝ N
(
yt ; µ

y
t ,Σ

ε
y
)
·N
(
Xt ;mt+1|t ,Vt+1|t

)
, (3.12)

where µ
y
t = CXt +Dut . Both mt|t and Vt|t of (3.9) are the product of two Gaussians

(3.12), computed using (A.16) – (A.20). However, for intuition, let us derive mt|t and
Vt|t here. Given a joint:[

Xt

Yt

]
∼ N

([
E [Xt ]

E [Yt ]

]
,

[
C [Xt , Xt ] C [Xt , Yt ]

C [Yt , Xt ] C [Yt , Yt ]

])
, (3.13)

the conditional Gaussian distribution is:

E [Xt |Yt ] = E [Xt ]+C [Xt , Yt ]C [Yt , Yt ]
−1 (Yt−E [Yt ]), (3.14)

V [Xt |Yt ] = C [Xt , Xt ]−C [Xt , Yt ]C [Yt , Yt ]
−1C [Yt , Xt ] , (3.15)

which the reader may recognise as the familiar posterior mean and variance functions
of a GP. By simply swapping in our symbols we’ve been using we have:

mt|t = mt|t−1 +Kgain(yt−µ
y
t ), (3.16)

Vt|t = Vt|t−1−KgainCVt|t−1, (3.17)

Kgain .
= Vt|t−1CT︸ ︷︷ ︸

C[Xt , Yt ]

·(Σε
y +CVt|t−1CT)−1︸ ︷︷ ︸

C[Yt , Yt ]
−1

, (3.18)

where Kgain is the Kalman gain term. The Kalman gain represents the relative
weight (or ‘trust’) we apply to observation yt compared to prior belief mt|t . The
posterior belief-mean mt|t in (3.16) is equal to the prior belief-mean mt|t−1 with an
adjustment. The adjustment is the observation’s yt deviation from its expected
value, µ

y
t = Cmt|t−1 +Dut , weighted by the Kalman gain Kgain. High gains place

more emphasis on observations, creating more responsive but also noisy signals mt|t
over time since any noise in the observation is amplified by factor Kgain. Low gains
trust the prior prediction of the state mt|t−1 more than observation yt , creating a filter
slow to respond but also smoothly changing signal mt|t . Zero gain corresponds to
open-loop control and dead-reckoning.
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Notice that such belief monitoring is tractable since the output distribution is
still Gaussian, with constant time complexity w.r.t. time t. For instance, the posterior
bt|t in (3.9) which by definition equals p(Xt |y1:t ,u1:t−1) can in fact be written as a
linear combination of the current observation and the prior in (3.12), where the
prior is a sufficient statistic of all previous observations y1:t−1. The benefit is Kalman
filtering need not store a continually-expanding history of y1:t and u1:t , remaining
computationally cheap.

PREDICTION STEP

The prediction step maintains the belief function b given an understanding of the
dynamics f in (3.6). Using Appendix A.1.2 we have:

bt+1|t ∼ p(Xt+1|y1:t ,u1:t) = N
(
mt+1|t ,Vt+1|t

)
, (3.19)

mt+1|t = Amt|t +But , (3.20)

Vt+1|t = AVt|tA
T +Σ

ε
x . (3.21)

Note V is not a function of observations y. Thus, all future values V conditioned
on time are deterministic, and can be precomputed ahead of time. Also note m
is a function of previous m but not V , a property known as certainty equivalence
(Bar-Shalom and Tse, 1974). Similarly, V a function of previous V but not m. The
certainty equivalence principle only applies to linear dynamical systems.

*OPTIMAL ESTIMATION

Kalman filtering is also known for ‘optimal state estimation’, with ‘optimal’ meaning
outputting point-estimates of the state that minimise the ‘least squares estimate’
(expected quadratic error). Here we revisit the Kalman filtering update step, showing
the same Kgain can alternatively be derived as the gain that yields the least squares
state estimate.

The point-estimate in this case is Mt|t , which minimises E
[
(xt−Mt|t)

T(xt−Mt|t)
]
,

assuming our prior is an unbiased estimators of xt , i.e. if Mt|t−1 ∼N
(
xt ,Vt|t−1

)
(capi-

talised to signify randomised variables), and additionally that Mt|t−1 is uncorrelated
with Yt ∼N

(
Cxt +Dut ,Σ

ε
y
)
. First note Mt|t is an unbiased estimator for any gain K:

E
[
xt−Mt|t

]
= E

[
xt−Mt|t−1 +K(Yt−CMt|t−1−Dut

]
= E [xt− xt +K(Cxt +Dut−Cxt−Dut)]

= 0. (3.22)
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Since Mt|t is an unbiased estimator of xt , we proceed in deriving the gain which
minimises the quadratic error of our state estimate, Koptimal:

Koptimal .
= argmin

K
E
[
(xt−Mt|t)

T(xt−Mt|t)
]

= argmin
K

V
[
Mt|t
]

= argmin
K

V
[
(I−KC)Mt|t−1 +K(Yt−Dut)

]
= argmin

K
(I−KC)Vt|t−1(I−KC)T +KΣ

ε
yKT

= argmin
K

K(Σε
y +CVt|t−1CT)KT−KCVt|t−1−Vt|t−1CTKT

= argmin
K

(K−Vt|t−1CT(Σε
y +CVt|t−1CT)−1)(K−Vt|t−1CT(Σε

y +CVt|t−1CT)−1)
T

= Vt|t−1CT(Σε
y +CVt|t−1CT)−1

= Kgain. (3.23)

However, we argue there is no reason why optimising the state’s quadratic error is
especially meaningful. Instead, the importance of the Kalman gain’s definition in
(3.18) is being the gain corresponding to correct Bayesian inference of the state xt

given a robot’s prior belief bt|t−1 and observational likelihood in yt .

EXTENDED KALMAN FILTER

The Kalman filter was applicable to linear systems only. When either the dynamics
function f or sensor function g are nonlinear, the Kalman update and prediction
steps can instead be approximated using linearisation of both functions. Assuming f
and g are differentiable, then a first order Taylor expansion of f and g is taken about
some working point (e.g. the input mean). Such approximate filtering is known
as Extended Kalman Filtering (EKF, Gelb (1974)). The EKF is a standard filtering
technique in nonlinear control.

EKF’s linearisations are similar to the iLQG in (2.24), with each matrix in (3.6) –
(3.7) indexed by time:

At =
∂ f
∂x

∣∣∣
mt|t ,ut

, Bt =
∂ f
∂u

∣∣∣
mt|t ,ut

, (3.24)

Ct =
∂g
∂x

∣∣∣
mt|t ,ut

, Dt =
∂g
∂u

∣∣∣
mt|t ,ut

, (3.25)
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which are used to linearise the dynamics function and observation function at each
timestep:

xt+1 ≈ Atxt +Btut + ε
x
t , (3.26)

yt ≈ Ctxt +Dtut + ε
y
t . (3.27)

Work by Berg et al. (2012); van den Berg et al. (2012) for example find locally-
optimal controllers in continuous-state POMDPs using an analytic framework of
filtering distributions over Gaussian-beliefs using an EKF and assuming known dy-
namics. Their analytic framework must reason about uncertain future observations
(due to process and observation noises in (3.24) – (3.25)), which induces uncertainty
in beliefs and control outputs, similar to PILCO. Using restrictions including a
linear-in-the-vectorised-belief controller, and loss function J that must be quadratic
in belief-mean and linear in vectorised belief-variance, a locally-optimal controller is
found. The approximation assumes locally valid around deviations from a nominal
belief-trajectory created from a noise-free deterministic simulation.

The EKF, although common, does not come with strong guarantees. Due to
EKF’s linear approximations of nonlinear functions, an EKF is not guaranteed to be
stable, nor an optimal estimator (Gelb, 1974). If the initial state estimate is wrong, or
models of f and g contain small errors, the state estimate mt|t−1 can rapidly diverge.

3.2.2 UNSCENTED KALMAN FILTER

Unscented Kalman filtering (UKF, Julier et al. (1995)) is an alternative choice to
EKF for nonlinear filtering, better suited to more nonlinear functions. The UKF’s
prediction step represents the input distribution bt|t ∼N

(
mt|t ,Vt|t

)
by a set of 2X+1
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weighted deterministic samples:

X0 = mt|t , (3.28)

Xi = mt|t +
(√

(X+λ )Vt|t

)
i
, i = 1, ...,X, (3.29)

Xi = mt|t −
(√

(X+λ )Vt|t

)
i−X

, i = X+1, ...,2X, (3.30)

W s
0 =

λ

X+λ
, (3.31)

W c
0 =

λ

X+λ
+1−α

2 +β , (3.32)

W s
i = W c

i =
λ

2(X+λ )
, (3.33)

where (A)i mean the i’th column of a matrix A. Each sample is projected through the
nonlinear function. The output distribution’s moments, bt+1|t ∼N

(
mt+1|t ,Vt+1|t

)
are

then estimated using the empirical moments of the projected weighted samples:

mt+1|t ≈
2X

∑
i=0

W s
i Xi, (3.34)

Vt+1|t ≈
2X

∑
i=0

W c
i [Xi−mt+1|t ][Xi−mt+1|t ]

T. (3.35)

For further details on the (similar) update step and typical values of values α , β , and
λ see Julier et al. (1995). Three advantages of the UKF over the EKF are 1) greater
robustness to highly nonlinear functions, 2) avoids computing the (sometimes ex-
pensive) Jacobian, and 3) applicability to non-differentiable functions.

3.2.3 ASSUMED DENSITY FILTERING

Assumed Density Filtering (ADF, Maybeck (1982)) is yet another alternative to EKF
and UKF for nonlinear filtering. The term ADF is refers to the prediction step only,
but this thesis also uses ‘ADF’ to refer to a full filtering process, with identical
update step as the EKF, and a different prediction step. PILCO used ADF-prediction
to forwards predict Gaussian state distributions. An advantage of ADF with GPs, is
that the moments of GP predictions given uncertain Gaussian inputs and a squared
exponential covariance function are exactly computable analytically (Candela et al.,
2003). This makes GP dynamics models especially useful, allowing PILCO to use
ADF tractably in simulation.
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(a) Extended Kalman Filter (EKF)

(b) Assumed Density Filter (ADF)

Fig. 3.3 Comparison of Filters’ Prediction Step. The EKF, Fig. 3.3a, uses linearisations about a
working point to approximate the nonlinear function (black). We show three Gaussian input
distributions along the horizontal axis (red, green, and blue), each with slightly different mean
locations. Usually the working point is chosen as the input mean, shown by dashed lines. Note the
EKF has very different predictive distributions (colour-filled Gaussian distributions on the vertical
axis), each very sensitive to their working point locations. An outline of each true output distribution
is also shown. In contrast, the ADF Fig. 3.3b yields three similar output distributions, not overly
sensitive to the input mean locations, since ADF uses both input mean and input variance
information. Note the three ADF output distributions even capture the upwards trend of the
nonlinear function (black), as the red-green-blue input order is preserved along the output axis.
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In Fig. 3.3 we compare the EKF prediction step Fig. 3.3a with the ADF Fig. 3.3b.
Previously we caveated the EKF’s suitability only if the dynamics model (black line,
assumed certain for our simple example) is locally linear, meaning approximately
linear within the belief distribution’s span. The EKF is ill suited for models that are
not locally linear, where slight changes in selecting a working point from within
the input distribution produce widely-varying linearisations and thus outputs, seen
Fig. 3.3a. In Fig. 3.3a we use the input mean as a working point at which the Jacobian
is computed. By shifting the input distribution between the red-green-blue inputs,
notice the outputs change dramatically, being overly-sensitive to working point
location. By contrast, ADF does not suffer from such sensitivity, seen Fig. 3.3b, and
remains suitable for locally nonlinear models.

The ADF’s moment matching is often compared to the Kullback–Leibler (KL)
divergence. Integration of a distribution from family q through a non-linear function
generally produces distributions p of different families than q (Bishop, 2006, section
10.7). The ADF projects the output distribution p back into a common tractable
form q using moment matching. In Fig. 3.3b the output (vertical axis) contrasts
the moment-matched outputs (filled-colour Gaussians, denoted q), with the true,
intractable distribution (coloured-outlines, non-filled plots, denoted p). Moment
matching where q is any exponential distribution (e.g. Gaussian) is equivalent to
minimising the KL divergence: argminq KL(p||q) (Barber et al., 2011, section 1.5.2),

where KL(p||q) .
=
∫

∞

−∞
p(x) log p(x)

q(x)dx. By minimising KL(p||q), the approximating
distribution q has the interpretation in machine learning of ‘spreading out’ more than
p, attempting to ‘allocate comparable probability mass wherever p has probability
mass’. The converse is not true, q may allocate probability mass where p has none. In
other areas of machine learning such as variational methods, the reciprocal similarly
measure is more familiar, argminq KL(q||p), in which q might fit to only one mode of
p. In Fig. 3.3b we can notice three modes in p. By minimising KL(p||q), ADF acts
conservatively, with q spread out more than p to cover each of p’s three modes.

An alternative to ADF is numerical quadrature, which can approximate the long
term distribution more accurately that ADF (Vinogradska et al., 2016). An open ques-
tion is whether multi-modality is important to capture, since it is often a precursor
to losing control of a system. Later in Chapter 5 we found unimodal modelling was
required to successful learn control, even though we used MC sampling distributions
for the flexibility of multi-model modelling. A comparison of numerical quadrature
and ADF for learning to control remains an interesting avenue for future research.
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3.3 FILTERED CONTROL WITH BELIEF-MDPS

The original PILCO algorithm by Deisenroth and Rasmussen (2011) assumes full
state observability and can fail under moderate observation noise. One solution
is to filter observations during controller execution (Deisenroth and Peters, 2012).
However, without also simulating system trajectories w.r.t. the filtering process, the
above method merely optimises controllers for unfiltered control, not for filtered
control. The mismatch between unfiltered-simulation and filtered-execution restricts
PILCO’s ability to take full advantage of filtering. Dallaire et al. (2009) instead
optimise a controller using a more realistic filtered-simulation (discussed more later).
However, the method neglects model uncertainty by only using the MAP model.
Unlike Deisenroth and Peters (2012), who give a full probabilistic treatment of the
dynamics predictions, work by Dallaire et al. (2009) remains highly susceptible to
model errors, hampering data efficiency.

Instead, we propose a method that simulates system trajectories using closed
loop filtered control precisely because we execute closed loop filtered control, an
important consistency stressed by McHutchon (2014, section 4.5). Our resulting
controllers are thus optimised for the specific case in which they are used. Doing
so, our method is applicable to tasks with high observation noise whilst retaining
the same data efficiency properties of PILCO. To evaluate our method, we use the
benchmark cartpole swing-up task as PILCO did, except now with noisy sensors,
§ 3.3.5. We show in § 3.3.6 that such realistic and probabilistic simulation helps our
method outperform the aforementioned methods.

Our method uses the same high-level algorithm as PILCO seen Algorithm 1
on page 34, with the details of each step changing. We modify1 two subroutines
to extend PILCO from MDPs to a special-case of POMDPs (specifically where the
partial observability has the form of additive Gaussian noise on the latent state).
First, we filter observations during system execution (Algorithm 1, line 8), detailed
§ 3.3.1. Second, we simulate an analytic distribution of belief -trajectories (instead of
state-trajectories) through the filter using PILCO’s dynamics model (Algorithm 1,
line 5), discussed § 3.3.3.

Our implementation continues PILCO’s distinction between executing the system
(resulting in a single real state-trajectory) and simulating system responses (resulting
in an analytic distribution of predictive state-trajectories). In our case, execution
yields a belief -trajectory, and simulation yields an analytic distribution of predictive

1PILCO’s source code is available at http://mlg.eng.cam.ac.uk/pilco/.

http://mlg.eng.cam.ac.uk/pilco/
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Bt|t−1 Bt|t Bt+1|t

Yt Ut Yt+1

g π

f

g

Fig. 3.4 Filtered control for belief-MDPs, an extension of PILCO to Bayesian filtering. Our prior
belief Bt|t−1 (over latent system Xt), generates observation Yt . The prior belief Bt|t−1 then combines
with observation Yt resulting in posterior belief Bt|t (the update step). Then, the mean posterior belief
E
[
Bt|t
]

is inputted into controller function π to decide control Ut . Finally, the next timestep’s prior
belief Bt+1|t is predicted using dynamics model f (the prediction step).

belief -trajectories, seen in Fig. 3.4. For instance, during the execution phase, the
system reads specific observations yt and decides specific control ut , which when
filtered, results in a single belief state b ∼ N (m,V ). The belief b can be treated as
a random variable with a distribution, parameterised by belief-mean m and belief-
certainty V , summarising the robot’s subjective belief about latent state xt . Note both
m and V are functions of previous observations y1:t . Consider, during the probabilis-
tic system simulation phase, future observations are uncertain (since they are not
yet observed), distinguished as Y . Since the belief parameters m and V are functions
of the (now-randomised) observations, then m and V are randomised also, distin-
guished as M and V ′. Given the belief (a random variable) is distributed according
to parameters, which are themselves also random, the belief can be thought of as
hierarchically-random, denoted B∼N (M,V ′). Our framework allows us to consider
multiple future belief-states analytically during controller evaluation. Intuitively, this
framework is the analytical analogue of POMDP controller evaluation using parti-
cle methods. In particle methods, each particle is associated with a distinct belief,
due to each conditioning on different samples of future observations. A particle
distribution thus defines a distribution over beliefs. Our method is the analytical
analogue of such a particle distribution. By additionally restricting the robot’s beliefs
as (parametric) Gaussian, we can tractably encode a distribution over beliefs by a
distribution over belief-parameters.
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3.3.1 SYSTEM EXECUTION PHASE

When an actual filter is applied, it starts with three pieces of information: mt|t−1,
Vt|t−1 and a noisy observation of the system yt .

FILTERING UPDATE STEP

A filtering update combines prior belief bt|t−1 ∼N
(
mt|t−1,Vt|t−1

) .
= p(xt |y1:t−1,u1:t−1)

with observational likelihood. Given we assumed our observation function was
yt = xt + ε

y
t , the observational likelihood is p(Yt |xt) =N

(
xt ,Σ

ε
y
)
. Both the prior and

likelihood are combined using Bayes rule to yield the posterior belief bt|t :

bt|t ∼ N
(
mt|t ,Vt|t

)
= p(xt |y1:t ,u1:t−1), (3.36)

mt|t = Wmmt|t−1 +Wyyt , (3.37)

Vt|t = WmVt|t−1, (3.38)

Wm = Σ
ε
y(Vt|t−1 +Σ

ε
y)
−1, (3.39)

Wy = Vt|t−1(Vt|t−1 +Σ
ε
y)
−1, (3.40)

with weight matrices Wm and Wy derived using the product of two Gaussians identi-
ties (A.10)–(A.12). For the filtering update equations (3.36)–(3.40) we use absolute
weight matrices Wm and Wy, ‘absolute’ meaning Wm +Wy = I. The posterior mean mt|t
in (3.37) is simply a weighted average between the prior mean mt|t−1 and observation
yt . Note, the above absolute weights are unlike the relative weights commonly used in
Kalman filtering (§ 3.2.1), i.e. the Kalman gain Kgain, which specifies the relative pro-
portion of how much more the observational-likelihood should be trusted over the
prior belief. The difference is mostly presentation or mathematical convenience, and
(3.37) is expressible using relative weights if desired: mt|t = mt|t−1 +Kgain(yt−mt|t−1),
where Kgain =Wy.

Our filtered system inputs the updated belief-mean mt|t into the controller π

instead of the observation (seen Fig. 3.1) to decide the control ut = π(mt|t ,ψ). mt|t is a
smoother signal than yt over time, injecting less noise into the controller. Also, mt|t is
better informed than yt , being conditioned on, not just the most recent observation,
but all previous observations and controls, seen Fig. 3.4, helping to make better
control decisions. Giving the controller access to the uncertainty information Vt|t too
would likely be even more advantageous, but this is left for future work.
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The control ut is not random during execution, rather a specific set of numbers,
e.g. voltages applied to actuators. Nevertheless, a joint distribution over the updated
(uncertain) belief and the (certain) control is conveniently expressed:

b̃t|t
.
=

[
bt|t
ut

]
∼ N

(
m̃t|t

.
=

[
mt|t
ut

]
, Ṽt|t

.
=

[
Vt|t 0
0 0

])
. (3.41)

FILTERING PREDICTION STEP

Next, the filtering ‘prediction step’ computes the predictive-distribution of bt+1|t ∼
p(xt+1|y1:t ,u1:t) from the output of dynamics model f given uncertain input b̃t|t from
(3.41). The distribution of f (b̃t|t) is intractable and non-Gaussian yet has analytically
computable moments (Candela et al., 2003). For tractability, bt+1|t is approximated as
Gaussian-distributed by matching the moments of Gaussian bt+1|t with the moment
of f (b̃t|t):

bt+1|t ∼ N
(
mt+1|t ,Vt+1|t

)
. (3.42)

To compute the mean output mt+1|t we use the law of iterated expectations, since
both the input and function itself are uncertain (given both uncertainties the law
of iterated expectations states the output mean equals the mean projection of the
uncertain input distribution through the mean of the uncertain function) computed
using Appendix B.3.1:

ma
t+1|t = Eb̃t|t

[
fa(b̃t|t)

]
= s2

aβ
T
a qa +φ

T
a m̃t|t , (3.43)

βa
.
= (Ka +Σ

ε
a)
−1(ya−φ

T
a X), (3.44)

qi
a

.
= q(Xi, m̃t|t ,Λa,Ṽt|t). (3.45)

The output variance is computed using the law of iterated variances Appendix B.3.3:

V ab
t+1|t = Cb̃t|t

[
fa(b̃t|t), fb(b̃t|t)

]
= s2

as2
b
[
β

T
a (Qab−qaqT

b)βb +

δab
(
s−2

a − tr((Ka +Σ
ε
a)
−1Qaa)

)]
+CT

aṼt|tφb +φ
T
a Ṽt|tCb +φ

T
a Ṽt|tφb, (3.46)

Qi j
ab

.
= Q

(
Xi,X j,Λa,Λb,0, m̃t|t ,Ṽt|t

)
, (3.47)

Ca
.
= s2

a(Λa +Ṽt|t)
−1(X− m̃t|t)β

T
a qa, (3.48)
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where a and b refer to the a th and b th dynamics output, q and Q Gaussian functions
are defined in Appendix B.1, s2

a is the signal variance of the a th GP outputs, Λa is a
diagonal matrix of squared length scales for GP number a, X the GP inputs, ya the
a’th GP outputs, βa

.
= (Ka +Σε

a)
−1(ya−φ T

a X), Ka ∈ RN×N is a Gram matrix, and Σε
a is

an identity matrix multiplied by the (a,a) element of observation variance matrix Σε
y .

The time series process then repeats using the predictive belief (3.42) as the prior
belief in the following timestep. This completes the specification of a filtered system
in execution.

3.3.2 LEARNING DYNAMICS FROM NOISY OBSERVATIONS

The original PILCO algorithm ignored sensor noise when training each GP by as-
suming each observation yt to be the latent state xt . However, this approximation
breaks down under significant noise. More complex training schemes are required to
correctly treat each training datum xt as latent, yet noisily-observed as yt . We resort
to GP state space model methods, specifically the Direct method (McHutchon, 2014,
section 3.5). Given a single episode of data, the Direct method infers the marginal
likelihood p(y1:T ) approximately using moment-matching and a single forward-pass.
Doing so, it specifically exploits the time series structure (see Fig. 3.1) that generated
observations y1:T . We use the direct method to set the GP’s training data and obser-
vation noise variance Σε

y to the inducing point parameters and noise parameters that
optimise the marginal likelihood. In this chapter, we use the superior Direct method
to train GPs, both in this extended version of PILCO and in our implementation of
the original PILCO algorithm for fair comparison in the experiments.

3.3.3 SYSTEM SIMULATION PHASE

In system simulation, we probabilistically predict the filtered system’s behaviour as
an analytic distribution over beliefs. A distribution over beliefs b is in principle a
distribution over its parameters m and V . To distinguish m, V and b as now being
random and hierarchically-random respectively, we capitalise them: M, V ′ and B. As an
approximation we do not consider the full distribution of V ′, instead only its mean
value V̄ .

= E [V ′] (a matrix, fixed for a given timestep, derived later). We assume M is
Gaussian distributed. Whilst V ′ could be Wishart distributed, we leave this to future
work, and only use the mean of V ′. Their relationship is shown in graphical model
Fig. 3.5.

.
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µm
Σm

M V̄

B

Fig. 3.5 Hierarchical Gaussian distribution we use. The belief function B is Gaussian
distribution with mean parameter M and variance V̄ . The mean parameter M itself is also Gaussian
distributed with mean µm and vairance Σm.

FILTERING UPDATE STEP

In the simulation phase there is no real world to generate an observation xt nor do we
have explicit modelling of latent system Xt like we did in the original PILCO model
(Fig. 3.1). Instead, as per the belief-MDP interpretation of POMDPs (Kaelbling et al.,
1998), we anticipate the plausible set of future observations from our beliefs and
known observation noise. From the robot’s point of view, the probability distribution
p(X) is inextricably tied to its beliefs p(B) of the system state. So we have:

Yt = Bt|t−1 + ε
y
t ∼ N

(
µ

y
t ,Σ

y
t
)
, (3.49)

µ
y
t = µ

m
t|t−1, (3.50)

Σ
y
t = Σ

m
t|t−1 +V̄t|t−1 +Σ

ε
y , (3.51)

where (3.51) is computed by marginalising out Mt|t−1 or ‘flattening’ the hierarchical
structure of Bt|t−1. Restricting M to being Gaussian-distributed, we have the joint:[

Mt|t−1

Yt

]
∼N

([
µm

t|t−1

µm
t|t−1

]
,

[
Σm

t|t−1 Σm
t|t−1

Σm
t|t−1 Σ

y
t

])
. (3.52)

Now we apply the filtering update rules for the belief parameters (3.37)–(3.38) except
now the belief-mean parameters are now uncertain: Mt|t =WmMt|t−1 +WyYt . Taking
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this into account, the hierarchically-uncertain updated belief posterior is:

Bt|t ∼ N
(
Mt|t ,V̄t|t

)
, where Mt|t ∼ N

(
µ

m
t|t ,Σ

m
t|t

)
, (3.53)

µ
m
t|t = Wmµ

m
t|t−1 +Wyµ

m
t|t−1 = µ

m
t|t−1, (3.54)

Σ
m
t|t = WmΣ

m
t|t−1W T

m +WmΣ
m
t|t−1W T

y +WyΣ
m
t|t−1W T

m +WyΣ
y
t W

T
y , (3.55)

V̄t|t = WmV̄t|t−1. (3.56)

Both M and V̄ should be initialised according to initial state mean and variance (if
known), whereas Σm should be initialised as a zero matrix.

CONTROL DECISION

Because the controller’s input is randomised, Mt|t , so too is the control output (even
though our controller π is a deterministic function):

Ut = π(Mt|t ,ψ), (3.57)

which is implemented by overloading the controller function:

(µu
t ,Σ

u
t ,Cmt|tu) = π(µm

t|t ,Σ
m
t|t ,ψ), (3.58)

where µu
t is the output mean, Σu

t the output variance, and Cmt|tu is the input-output
covariance with premultiplied inverse input variance Cmt|tu

.
= (Σm

t|t)
−1CMt|t

[
Mt|t , Ut

]
.

Making a joint Gaussian approximation using moment matching, we have

M̃t|t
.
=

[
Mt|t
Ut

]
∼ N

(
µ

m̃
t|t

.
=

[
µm

t|t
µu

t

]
, Σ

m̃
t|t

.
=

[
Σm

t|t Σm
t|tCmt|tu

CT
mt|tuΣm

t|t Σu
t

])
. (3.59)

FILTERING PREDICTION STEP

Finally we discuss the prediction step:

Bt+1|t ∼ N
(
Mt+1|t ,V̄t+1|t

)
, where Mt+1|t ∼ N

(
µ

m
t+1|t ,Σ

m
t+1|t

)
, (3.60)
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where the belief mean-distribution and expected belief variance are computed using
Appendix B.4. Starting with the mean of the belief-mean prediction (Appendix B.4.1):

µ
m,a
t+1|t = EM̃t|t

[
Ma

t+1|t

]
= s2

aβ
T
a q̂a +φ

T
a µ

m̃
t|t , (3.61)

q̂i
a

.
= q

(
Xi,µ

m̃
t|t ,Λa,Σ

m̃
t|t +Ṽt|t

)
. (3.62)

The variance of the belief-mean (Appendix B.4.3) is:

Σ
m,ab
t+1|t = CM̃t|t

[
Ma

t+1|t , Mb
t+1|t

]
= s2

as2
bβ

T
a (Q̂ab− q̂aq̂T

b)βb +CaT
m̃m′Σ

m̃
t|tφb +φ

T
a Σ

m̃
t|tC

b
m̃m′+φ

T
a Σ

m̃
t|tφb, (3.63)

Q̂i j
ab

.
= Q(Xi,X j,Λa,Λb,Ṽt|t ,µ

m̃
t|t ,Σ

m̃
t|t), (3.64)

Ca
m̃m′

.
= s2

a(Λa +Σ
m̃
t|t +Ṽt|t)

−1(X−µ
m̃
t|t)β

T
a q̂a. (3.65)

The mean of the belief-variance (Appendix B.4.5) is:

V̄ ab
t+1|t = EM̃t|t

[
V ab

t+1|t

]
= s2

as2
b
[
β

T
a (Q̃ab− Q̂ab)βb +δab

(
s−2

a − tr((Ka +Σ
ε
a)
−1Q̃aa)

)]
+CaT

m̃m′Ṽt|tφb +φ
T
a Ṽt|tC

b
m̃m′+φ

T
a Ṽt|tφb, (3.66)

Q̃i j
ab

.
= Q(Xi,X j,Λa,Λb,0,µ m̃

t|t ,Σ
m̃
t|t +Ṽt|t). (3.67)

We have now discussed the one-step prediction of the filtered system, from Bt|t−1

to Bt+1|t . Using this process repeatedly, we can simulate from an initial belief B0|0 to
B1|1, then to B2|2 etc., up to BT |T .

3.3.4 CONTROLLER EVALUATION AND IMPROVEMENT

To evaluate a controller we again apply the loss function J (Algorithm 1, line 6) to the
multi-step prediction (§ 3.3.3). The controller is again optimised using the analytic
gradients of loss J. Since J now is a function of beliefs, we additionally consider the
gradients of Bt|t−1 w.r.t. ψ . As the belief is distributed by Bt|t−1 ∼N

(
Mt|t−1,V̄t|t−1

)
,

where Mt|t−1 ∼N
(

µm
t|t−1,Σ

m
t|t−1

)
, we use partial derivatives of µm

t|t−1, Σm
t|t−1 and V̄t|t−1

w.r.t. each other and ψ .
Let vec(·) be a ‘vectorise operator’ that reshapes matrices columnwise into vec-

tors. We define St = [MT
t|t−1, vec(V̄t|t−1)

T]T as the Markov filtered-system from the
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belief’s parameters. To predict the system evolution, the state distribution is defined:

p(St) = N

(
µ

s
t =

[
µm

t|t−1

vec(V̄t+1|t)

]
, Σ

s
t =

[
Σm

t|t−1 0

0 0

])
, (3.68)

and the expected cost at each timestep is c̄t = EXt [cost(Xt)], where
Xt ∼N

(
µm

t|t−1,Σ
m
t|t−1 +V̄t|t−1

)
. Now to compute the loss gradient dJ/dψ where J =

∑
T
t=0 c̄t , we require dc̄t/dψ at each timestep:

dc̄t

dψ
=

dc̄t

dp(St)

dp(St)

dψ

=
∂ c̄t

∂ µs
t

dµs
t

dψ
+

∂ c̄t

∂Σs
t

dΣs
t

dψ
, and (3.69)

dp(St+1)

dψ
=

∂ p(St+1)

∂ p(St)

dp(St)

dψ
+

∂ p(St+1)

∂ψ
. (3.70)

Application of the chain rule backwards from the state distribution at the horizon
ST , to S0 is analogous to that detailed in PILCO (Deisenroth and Rasmussen, 2011),
where we use St , µs

t and Σs
t in the place of xt , µt and Σt respectively.

3.3.5 EXPERIMENTAL SETUP

We test our algorithm on the cartpole swing-up problem (Fig. 3.6, parameters values
Table D.1), a benchmark for comparing controllers of nonlinear dynamical systems.
Although the cart-pole setup is a control-affine system, the system is nevertheless
underactuated, has control-constraints and dynamics uncertainty, thus precluding a
feedback linearisation control solution. We experiment using a physics-simulator of
the cart-pole which solves the differential equations (unknown to the robot) of the
system. Note the physics-simulator is used to generate the latent ground truth of
the system during experiments, our robot has no direct access the physics-simulator
itself, nor its ODEs, nor its outputs.

Our task begins with a downwards hanging pendulum and a goal of swinging
up and stabilising the pendulum. The cart mass is mc = 0.5kg. A zero-order hold
controller applies horizontal forces to the cart within control constants of [−10,10]N.
The controller function is a mixture of 100 RBF centroids, chosen from previous
experience of the required expressibility of the controller’s function. The centroids
are initialised by randomly sampling a Gaussian distribution whose mean is the
initial state, and an identity variance. Friction resists the cart’s motion with damping
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coefficient b = 0.1Ns/m. Connected to the cart is a pole of length l = 0.2m and
mass mp = 0.5kg located at its endpoint, which swings due to gravity’s acceleration
g = 9.82m/s2. An inexpensive camera observes the system. Frame rates of $10
webcams are typically 30Hz at maximum resolution, thus the time discretisation is
∆t = 1/30s. The state x comprises the cart position, pendulum angle, and their time
derivatives x = [xc,θ , ẋc, θ̇ ]

T. The cartpole’s motion is described with the differential
equation:

ẋT =


ẋc

θ̇

−2mplθ̇ 2s+3mpgsc+4u−4bẋc
4(mc+mp)−3mpc2

−3mplθ̇ 2sc+6(mc+mp)gs+6(u−bẋc)c
4l(mc+mp)−3mplc2

 , (3.71)

using shorthand s = sinθ and c = cosθ . We both randomly-initialise the system and
set the initial belief of the system according to B0|0 ∼ N

(
M0|0,V0|0

)
where M0|0 ∼

δ ([0,π,0,0]T) and V 1/2
0|0 = diag([0.2m,0.2rad,0.2m/s,0.2rad/s]). Each episode lasts

two seconds (a 60 timestep horizon).
The camera’s noise standard deviation is: (Σε

y)
1/2=diag([0.03m,0.03rad, 0.03

∆t m/s,
0.03
∆t rad/s]), noting 0.03rad≈ 1.7◦. Since the camera cannot observe velocities, only

estimate velocities using finite differences of positions, their estimated standard
deviation errors are related to their associated positional errors divided by ∆t. For
our experiment we chose (Σε

y)
1/2 to be large enough that algorithms cannot simply

make zero-noise assumptions without deterioration in performance, and to be small
enough that control of the system was still possible.

The cost function we impose is 1−exp
(
−1

2d2/λ 2
c
)

where λc = 0.25m and d2 is the
squared Euclidean distance between the pendulum’s end point (xp,yp) and its goal
(0, l). The squared distance d2 = x2

p +(l− yp)
2 = (xc− l sinθ)2 +(l− l cosθ)2.

We compare four algorithms:

1. PILCO by Deisenroth and Rasmussen (2011) as a baseline (unfiltered execution,
and unfiltered full-prediction);

2. Dallaire et al. (2009) (filtered execution, and filtered MAP-prediction);

3. Deisenroth and Peters (2012) (filtered execution, and unfiltered full-prediction);
and lastly

4. our method (filtered execution, and filtered full-prediction).
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Fig. 3.6 The cartpole swing-up task. A pendulum of length l is attached to a cart by a frictionless
pivot. The cart has mass mc and position xc. The pendulum’s endpoint has mass mp and position
(xp,yp), with angle θ from vertical. The cart begins at position xc = 0 and pendulum hanging down:
θ = π . The goal is to accelerate the cart by applying horizontal force ut at each timestep t to invert
then stabilise the pendulum’s endpoint at the goal (black cross), i.e. to maintain xc = 0 and θ = 0.

For clear comparison we first opted for a tightly controlled experiment. We
control for data and dynamics models: each algorithm has access to the exact
same data and exact same dynamics model. The reason is to eliminate variance in
performance caused by different algorithms choosing different control decisions.
We generate a single dataset by running the baseline PILCO algorithm for E = 10
episodes (totalling 22 seconds of system interaction). Each method is an off-policy
RL algorithm, meaning there is no direct importance concerning how the data was
generated, only what the data is. The independent variables of our experiment are
1) the method of system prediction and 2) the method of system execution. We
then optimise each controller using their respective prediction methods. Finally, we
measure and compare their performances in both prediction and execution.

3.3.6 RESULTS WITH A COMMON DATASET

We compare algorithm performance, both predictive (from simulation using the dy-
namics model) seen Fig. 3.7, and empirical (from execution on the physics-simulator)
seen Fig. 3.8.

PREDICTIVE PERFORMANCE

First, we analyse predictive costs per timestep (Fig. 3.7). Since predictions are proba-
bilistic, the costs have distributions, with the exception of Dallaire et al. (2009) which
predicts MAP trajectories and therefore has deterministic cost. Even though we
plot distributed costs, controllers are optimised w.r.t. expected total cost only. Using
the same dynamics, the different prediction methods optimise different controllers
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Fig. 3.7 Predictive costs per timestep. The error bars show±1 standard deviation. Each algorithm
has access to the same data set (generated by Deisenroth 2011) and dynamics model. Algorithms
differ in their simulation methods (except Deisenroth’s algorithms whose predictions overlap).
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Fig. 3.8 Empirical costs per timestep. We generate empirical cost distributions from 100
executions per algorithm. Error bars show ±1 standard deviation. The plot colours and shapes
correspond to the legend in Fig. 3.7.
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(with the exception of Deisenroth and Rasmussen (2011) and Deisenroth and Peters
(2012), whose prediction methods are identical). During the first 10 timesteps, we
note identical performance with maximum cost due to the non-zero time required
physically swing the pendulum up near the goal. Performances thereafter diverge.
Since we predict w.r.t. a filtering process, less noise is predicted to be injected into
the controller, and the optimiser can thus afford higher gain parameters w.r.t. the
pole at balance point. If we linearise our controller around the goal point (black
cross, Fig. 3.6), our controller has a gain of -81.7N/rad w.r.t. pendulum angle, a
larger-magnitude than both Deisenroth method gains of -39.1N/rad (negative values
refer to left forces in Fig. 3.6). Being afforded higher gains our controller is more
reactive and more likely to catch a falling pendulum. Finally, we note Dallaire et al.
(2009) predict very high performance. Without balancing the costs across multiple
possible trajectories, the method instead optimises a sequence of deterministic states
to near perfection.

EMPIRICAL PERFORMANCE

To compare the predictive results against the empirical, we execute each algorithm
100 times (Fig. 3.8). Note, we do not use 100 different generated datasets, but
evaluate using 100 executions from 1 generated dataset. First, we notice a stark
difference between predictive and executed performances from Dallaire et al. (2009),
due to neglecting model uncertainty, suffering from model bias. In contrast, the other
methods consider uncertainty and have relatively unbiased predictions, judging by
the similarity between predictive-vs-empirical performances. Deisenroth’s methods,
which differ only in execution, illustrate that filtering during execution-only can be
better than no filtering at all. However, the major benefit comes when the controller
is evaluated from multi-step predictions of a filtered system. Opposed to Deisenroth
and Peters (2012), our method’s simulation reflects reality closer because we both
simulate and execute system trajectories using closed loop filtering control.

To test statistical significance of empirical cost differences given 100 executions,
we use a Wilcoxon rank-sum test at each timestep (Wilcoxon et al., 1970). The
Wilcoxon test uses paired samples to see if samples are drawn from populations with
different means. Excluding timesteps ranging t = [0,29] (whose costs are similar),
the minimum Wilcoxon z-score over timesteps t = [30,60] that our method has supe-
rior average-cost than each other methods follows: Deisenroth 2011 min(z) = 4.99,
Dallaire 2009’s min(z) = 8.08, Deisenroth 2012’s min(z) = 3.51. Since the minimum
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min(z) = 3.51, we have p > 99.9% certainty our method’s average empirical cost is
superior than each other method over timesteps t = [30,60].

3.3.7 RESULTS OF FULL REINFORCEMENT LEARNING TASK

In the previous experiment (§ 3.3.6) we used a common dataset to compare each
algorithm, to isolate and focus on how well each algorithm makes use of data, rather
than also considering the different ways each algorithm collects different data. Here,
we remove the constraint of a common dataset, and test the full reinforcement
learning task by letting each algorithm collect its own data over repeated trails of the
cart-pole task. Each algorithm is allowed 15 trails (episodes), repeated 10 times with
different random seeds. For a particular re-run experiment and episode number,
an algorithm’s predicted loss is unchanged when repeatedly computed, yet the
empirical loss differs due to random initial states, observation noise, and process
noise. We therefore average the empirical results over 100 random executions of the
controller at each episode and seed.

The predictive loss (cumulative cost) distributions of each algorithm are shown
Fig. 3.9. Perhaps the most striking difference between the full reinforcement learning
predictions and those made with a controlled dataset (Fig. 3.7) is that Dallaire does
not predict it will perform well. The quality of the data collected by Dallaire within
the first 15 episodes is not sufficient to predict good performance. Our method,
‘Filter PILCO’, predicts it will outperform the competing algorithms, which we verify
against empirical results.

Empirical results of each algorithm are shown Fig. 3.10. Of interest is how each
algorithm each perform equally poorly in the first 4 episodes, but a big gain is
made by Filtered PILCO by the end of the 7th trial. Such a learning rate was similar
to the original PILCO on the cart-pole problem. We can see that Dallaire again
overestimated its performance and performed more poorly than expected. As before,
both Deisenroth methods predict their empirical performance accurately. Filtered
PILCO method performs approximated as it predicted it would and outperformed
the competing algorithms. Since each algorithm’s performance plateaus after 10
episodes, we are reasonable confident each algorithm (except possibly Dallaire) is
now limited by its simulator’s accuracy, opposed to data.
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Fig. 3.9 Predictive loss per episode. Error bars show ±1 standard error of the mean predicted loss
given 10 repeats of each algorithm.
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Fig. 3.10 Empirical loss per episode. Error bars show ±1 standard error of the mean empirical
loss given 10 repeats of each algorithm. In each repeat we computed the mean empirical loss using
100 independent executions of the controller.
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3.3.8 RESULTS WITH VARIOUS OBSERVATION NOISES

We also experimented with different observation noise levels, comparing PILCO

(Fig. 3.11) with Filtered PILCO (Fig. 3.12). Both figures show a noise factors n, such
that the observation noise is: (Σε

y)
1/2=n×diag([0.01m,0.01rad, 0.01

∆t m/s, 0.01
∆t rad/s]).

For reference, our previous experiments (§ 3.3.6 and § 3.3.7) used a noise factor of
n = 3. Notice at low noise factor n = 1, both algorithms perform similarly-well, since
any zero-noise assumptions are approximately correct, and the observations are
precise enough to control a system without a filter. However, as observations noise
increases, the performance of unfiltered PILCO soon drops. Eventually the Filtered
PILCO system breaks down too (Fig. 3.12), although not until n = 16.

3.3.9 FURTHER ANALYSIS

COMPUTATIONAL COMPLEXITY

We demonstrated how our algorithm outperforms others, but we should ask at
what computational cost. Training the GP dynamics model involved N = 660 data,
M = 50 inducing points under a sparse GP FITC, R = 100 controller function RBF
centroids, X = 4 state dimensions, U = 1 control dimensions, and T = 60 timestep
horizon. Dynamics model training scales O(XNM2). Whilst sparse methods are
perhaps not entirely necessary when the total data is under 1000 points, we found
typically 50−100 points are usually sufficient, and sparse methods become more
necessary for more complex robots (such as the cart double-pole used next chapter).
Policy optimisation (with 300 steps, each of which require trajectory prediction with
gradients) is the most intense part: our method and both Deisenroth’s methods
scale O(M2X2(X+U)2T +R2X2U2T ), whilst Dallaire’s only scales O(MX(X+U)T +

RXUT ). Worst case we require M =O(exp(X+U)) inducing points to totally cover
the state space to capture the dynamics, the average case is unknown. Total training
time was four hours to train the original PILCO method with an additional one hour
to re-optimise the controller. Thus, our method’s do not scale as well as Dallaire, but
under significant observation noise, where Dallaire’s method empirically fails, we
may have no other choice. Both Deisenroth methods are more robust to observation
noise than Dallaire, but considering Deisenroth’s methods scale similarly with our
method, we recommend our method under significant observation noise.
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Fig. 3.11 Empirical loss of Deisenroth 2011 for various noise levels. The error bars show ±1
empirical loss distribution given 100 executions per noise level.
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Fig. 3.12 Empirical loss of Filtered PILCO for various noise levels. The error bars show ±1
empirical loss distribution given 100 executions per noise level.
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STABILITY ANALYSIS CONTINUED

Earlier in § 3.1.2 we analysed stability of unfiltered system by analysing the growth
of the state-variance over time. Here, we continue that analysis, instead now in the
context of filtered observations to better understand the effects of filtering. Consider
a filtered system where Bt|t−1 ∼N

(
Mt|t−1,V̄t|t−1

)
, where Mt|t−1 ∼N

(
0,Σm

t|t−1

)
, and

using Σm
t|t−1 + V̄t|t−1 = Σx

t we get V [Yt ] = Σx
t +Σε

y similar to the unfiltered analysis
§ 3.1.2. Then according to (3.52), the joint distribution of Mt|t−1 and Yt is[

Mt|t−1

Yt

]
∼ N

([
0
0

]
,

[
Σm

t|t−1 Σm
t|t−1

Σm
t|t−1 Σm

t|t−1 +V̄t|t−1 +Σε
y

])
. (3.72)

Because mt|t =Wmmt +Wyyt , we have

V
[
Mt|t
]

= [Wm,Wy]

[
Σm

t|t−1 Σm
t|t−1

Σm
t|t−1 Σm

t|t−1 +V̄t|t−1 +Σε
y

]
[Wm,Wy]

T

= Σ
m
t|t−1 +Wy(V̄t|t−1 +Σ

ε
y)W

T
y

= Σ
x
t −V̄t|t , (3.73)

V̄t|t = V̄t|t−1(V̄t|t−1 +Σ
ε
y)
−1

Σ
ε
y

= WyΣ
ε
y , (3.74)

using the fact that Wm+Wy = I, Σm
t|t−1+V̄t|t−1 = Σx

t , and Wy = V̄t|t−1(V̄t|t−1+Σε
y)
−1 from

(3.40). Note the total variance after the update step V
[
Mt|t
]
+V̄t|t = Σx

t , i.e. equal to
the total state variance V [Xt ] before the update. Now we move onto computing
V
[
M̃t|t
]
. By linearising the controller function, as was done § 3.1.2, so π(mt|t)≈Πmt|t

locally (note the Jacobian matrix B here is not to be confused with the belief Bt|t−1),
we get

V
[
M̃t|t
] .

= V

[
Mt|t
Ut

]
=

[
I
Π

]
V
[
Mt|t
][ I

Π

]T

. (3.75)

Similarly linearising the dynamics such that f (mt|t ,ut)≈ Amt|t +But + εx
t locally, we

get

V
[
Mt+1|t

]
= [A,B]V

[
M̃t|t
]
[A,B]T +Σ

ε
x

= (A+BΠ)(Σx
t −V̄t|t)(A+BΠ)T +Σ

ε
x , (3.76)

V̄t+1|t = AV̄t|tA
T. (3.77)
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Now by summing the variance of the belief-mean V
[
Mt+1|t

]
with the mean of the

belief-variance V̄t+1|t using the total law of variance, we can recover the total variance
on the state after the prediction step:

V
[
Xfiltered

t+1

]
= V

[
Mt+1|t

]
+V̄t+1|t

= (A+BΠ)(Σx
t −V̄t|t)(A+BΠ)T︸ ︷︷ ︸

down-weighted system response

+ AWyΣ
ε
yAT︸ ︷︷ ︸

amplified obs. noise

+ Σ
ε
x︸︷︷︸

process noise

.(3.78)

The above shows the total state variance after one timestep of a filtered system. An
unfiltered system’s state variance (copied for reader’s convenience from (3.4) on
page 47) for comparison was:

V
[
Xunfiltered

t+1

]
= (A+BΠ)Σx

t (A+BΠ)T︸ ︷︷ ︸
system response

+ (BΠ)Σε
y(BΠ)T︸ ︷︷ ︸

amplified obs. noise

+ Σ
ε
x︸︷︷︸

process noise

. (3.79)

We can now see that filtering reduces the rate of state-variance change over time
compared with unfiltered control. To simplify the comparison, we break (3.78) –
(3.79) into three terms, and again assume full-actuation (invertible B and Π). First,
the base ‘system response’ variance (independent of observation noise) of unfiltered
systems (3.79) has weighting Σx

t . Filtered systems instead have reduced weightings:
Σx

t − V̄t|t ⪯ Σx
t , seen (3.78). Second, the ‘amplified observation noise’ in (3.79) is

approximately down-weighted by Wy ⪯ I in (3.78) (compared to (3.79)), considering
that the least-variance solution of Π in (3.78) is A = −BΠ. Thus, the amplified
observation noise is (3.78) becomes (BΠ)WyΣε

y(BΠ)T, i.e. down-weighted from (3.79).
Third is the unavoidable process noise, unchanged.

Another interesting difference is the controller gain that minimises the state-
variance. From § 3.1.2, the optimal gain from unfiltered controllers was Π∗unfiltered =

−B−1AΣx
t (Σ

x
t +Σε

y)
−1, whilst the filtered is Π∗filtered = −B−1A. In terms of variance

growth, assuming optimal gain Π∗, from § 3.1.2 an unfiltered state variance grow if
AΣx

t (Σ
x
t +Σε

y)
−1Σε

yAT +Σε
x ⪯̸ Σx

t , whilst the filtered system has: AV̄t|tAT +Σε
x ⪯̸ Σx

t . We
re-express these terms in Table 3.1 for easy comparison.

Table 3.1 Comparison of stability between unfiltered and filtered controllers

Observations Optimal gain Unsustainable variance if

Unfiltered Π∗ =−B−1A(I +Σε
y/Σx

t )
−1 A((Σε

y)
−1 +(Σx

t )−1)−1AT +Σε
x ⪯̸ Σx

t
Filtered Π∗ =−B−1A A((Σε

y)
−1 +(V̄t|t−1)

−1)−1AT +Σε
x ⪯̸ Σx

t



3.4 Filtered Control with Latent-Variable Belief-MDPs 77

From Table 3.1 we first note the optimal gain Π∗ of unfiltered systems is a
function of the relative amount of observation noise (relative to state variance)
Σε

y/Σx
t . Under significant noise, the gain is forced to be small, to avoid injection of

noise into a controller. By contrast, the filtered system’s gain is independent of the
amount of observation noise. The filtering process naturally counters high-variance
observations with small weighting Wy before controller input. This effect explains
our experimental observations in § 3.3.6, with larger-magnitude pendulum angle
gains of -81.7N/rad for filtered control, compared to unfiltered -39.1N/rad.

As for variance growth, both unfiltered and filtered are equivalent except for
a single term Σx

t and V̄t|t−1. Note that V̄t|t−1 ⪯ V̄t|t−1 +Σm
t = Σx

t , meaning the filtered
expression is always less than the unfiltered expression. If the unfiltered expression
is satisfied, then the filtered expression can always tolerate more observation noise,
at least up to the amount: Σ̂ε

y = ((Σε
y)
−1+(Σx

t )
−1−V̄−1

t|t−1)
−1, or a factor (I−Σε

y(V̄
−1

t|t−1−
(Σx

t )
−1))−1 greater than the original noise level Σε

y .

3.4 FILTERED CONTROL WITH LATENT-VARIABLE BELIEF-
MDPS

So far we have discussed two possible models of a controlled system, unfiltered
control (Fig. 3.1 on page 45) and filtered control (Fig. 3.4 on page 59). A key difference
between models is the planning space, either planning w.r.t. future observations
(unfiltered systems), or future beliefs (filtered systems). An obvious difference
between both figures is the lack of latent variables X in Fig. 3.4. Indeed the robot’s
belief B over latent system X is sufficient to avoid modelling X in the directed
graph, as per the belief-MDP interpretation of POMDPs (Kaelbling et al., 1998).
Nevertheless, Fig. 3.4 can be confusing due to the absence of the latent system
variables X we care about.

Alternatively, one can model both latent states X and beliefs B, seen Fig. 3.13.
Arguably a more intuitive model of filtered control, Fig. 3.13 ‘correctly’ shows
the latent state X generating observation Y , not the robot’s belief as in Fig. 3.4.
Additionally it is easier to see how the system and the robot’s beliefs of the system
interact. Fig. 3.13 demonstrates how the physical state X affects the robot’s belief via
observations, and how the belief can affect the system via control decisions.

Before using model Fig. 3.13, we should investigate two important questions:

1. how does Fig. 3.13 relate to Fig. 3.4?
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Fig. 3.13 Filtered control for latent-variable belief-MDPs, a more-general extension of PILCO
to Bayesian filtering than Fig. 3.4. The latent system (top row) interacts with the robot’s belief
(bottom row) via a series of observations and control decisions (middle row). At each timestep the
latent system Xt is observed noisily as Yt . The prior belief Bt|t−1 (whose dual subscript means belief of
the latent physical state at time t given all observations up until time t−1 inclusive) is combined
with observation Yt resulting in posterior belief Bt|t (the update step). Then, the mean posterior belief
E
[
Bt|t
]

is inputted into controller function π to decide control Ut . Finally, the next timestep’s prior
belief Bt+1|t is predicted using dynamics model fb (the predict step).

2. what additional functionality does Fig. 3.13 provide over Fig. 3.4 to warrant
the additional complexity?

Answering the first question: Fig. 3.13 is a generalisation of the Fig. 3.4 framework for
filtered control, and thus generalises POMDPs. A proof is provided in Appendix E.6.
Answering our second question: the generality of Fig. 3.13 enable the framework to
answer two questions that POMDPs cannot:

• What are the consequence of ‘incorrect’ prior beliefs? For instance, what will
happen if the robot’s initial prior beliefs p(Bt|t−1) are not identically distributed
with the initial state of the system p(Xt)?

• What are the consequences of using a different dynamics model fb for online
execution, and fx for simulation?

Arguably, considering incorrect prior beliefs is not very interesting, since from
the robot’s point of view, a belief is all it has. The robot has no direct way to validate
its beliefs against the latent ground truth X . Thus we concentrate on the second
additional functionality of our framework, different dynamics models.

Consider the situation where system execution must happen online. A dynamics
model used for filtering ( fb) during the system execution phase must implemented
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for real-time use, i.e. must compute predictions within ∆t seconds, before the next
observation arrives. Given time constraint ∆t, we may be forced to trade off pre-
diction accuracy for speed. For example, GPs predict faster with fewer inducing
points, but are less accurate. However, between online system executions, the system
simulation phase of Algorithm 1 is often offline. Without a time constraint of ∆t on
making predictions, we can afford a slow but accurate dynamics model fx (e.g. a
full, not sparse, GP). During simulation, it would be unfaithful to anticipate that our
filter has access to such an accurate dynamics model as fx, since we know the filter
only has access to inaccurate fb. Nevertheless, we can accurately simulate how a
system uses an inaccurate-model to filter observations.

To do so, we need to build such a simulator. Note the system execution phase
for filtering control with latent variables is identical to that of § 3.3.1. The only
difference is using dynamics model fb instead of a shared model f . The simulation
phase is where this generalised framework for filtered control will differs from § 3.3.
To simulate Fig. 3.13, with multiple one-step predictions, the belief B is no longer
a Markov state state to simulate the system, so we cannot simulate by iteratively
predicting from Bt|t−1 to Bt+1|t , for t = [0,T ], since belief now affect the latent state,
and the latent state affects the belief. To simulate our generalised system, a Markov
state would be to iteratively simulate the joint Markov state {Xt ,Bt|t−1} forwards to
{Xt+1,Bt+1|t} for t = [0,T ]

3.4.1 SYSTEM SIMULATION PHASE

In simulation we need to compute the behaviour of the filter and system over the
state distribution. A state distribution is in principle a distribution over the variables
x, m and V . To distinguish these variables as now being random, we capitalise them:
X , M and V ′. Ideally, we would randomise the variance using a Wishart distribution.
However, as an approximation we are going to assume that the distribution on the
variance is just a delta function (a fixed value): V̄ = E [V ′]

FILTERING UPDATE STEP

Since simulating forwards from one timestep to the next now requires prediction
of both Xt+1 and Bt+1|t , each of which depends on both Xt and Bt|t−1. Thus to make
predictions, we require a Markov state which summarises all information in Xt and
Bt|t−1. We begin with the assumption that the system state and belief-mean inputted
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are jointly Gaussian and denoted as a ‘hybrid’ state H:

Ht
.
=

[
Xt

Mt|t−1

]
∼N

(
µ

h
t =

[
µx

t

µm
t|t−1

]
,Σh

t =

[
Σx

t Σxm
t|t−1

Σmx
t|t−1 Σm

t|t−1

])
, (3.80)

then [
Yt

Mt|t−1

]
∼N

(
µh, Σh +

[
Σε

y 0
0 0

])
. (3.81)

Application of the filtering update rules for the belief parameters (3.37) – (3.38)
results in the physical state and posterior belief-mean being jointly Gaussian:[

Xt

Mt|t

]
∼ N

([
µx

t

µm
t|t

]
,

[
Σx

t Σxm
t|t

Σmx
t|t Σm

t|t

])
, (3.82)

µ
m
t|t = W µ

h
t|t−1, (3.83)

Σ
mx
t|t = WyΣ

x
t +WmΣ

mx
t|t−1, (3.84)

Σ
m
t|t = WΣ

h
t|t−1W T +WyΣ

ε
yW T

y , (3.85)

W .
= [Wy,Wm]. (3.86)

Thus the hierarchically-uncertain updated belief posterior is Bt|t ∼ N
(
Mt|t ,V̄t|t

)
,

where Mt|t ∼N
(

µm
t|t ,Σ

m
t|t

)
and V̄t|t =WmV̄t|t−1.

CONTROL DECISION

Simulated control decisions are a function of the (uncertain) belief-mean, as before
in § 3.3.3,

(µu
t ,Σ

u
t ,Cmt|tu) = π(µm

t|t ,Σ
m
t|t ,ψ), (3.87)

with µu
t the output mean, Σu

t the output variance and Cmt|tu
.
= (Σm

t|t)
−1CMt|t

[
Mt|t , Ut

]
.

Thus, making a joint Gaussian approximation using moment matching, we have
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CT
mt|tuΣmx

t|t CT
mt|tuΣm

t|t Σu


 . (3.88)

FILTERING PREDICTION STEP

Finally, the simulator must probabilistically predict:

1. the physical state p(Xt+1),
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2. the belief-mean p(Mt+1|t),

3. the covariance between the two C
[
Xt+1, Mt+1|t

]
,

4. the expected belief-variance V̄t+1|t ,

Both p(Mt+1|t) and V̄t+1|t are computed as before using (3.61) – (3.67). The only new
derivations required are to compute p(Xt+1) the way PILCO did, (2.40) – (2.45). We
now discuss two ways of computing C

[
Xt+1, Mt+1|t

]
(required to estimate future

values of Σxm as used in (3.88) required for future prediction steps).

APPROXIMATE (BUT FAST) COMPUTATION OF C
[
Xt+1, Mt+1|t

]
: First, we define a

set of linear transformations which preserves the input-output covariances between
variables connected via generic (linear or nonlinear) functions using Appendix A.2.6:

Chx
.
= Σ

−1
h CHt [Ht , Xt ] = [I,0]T, (3.89)

Chmt|t
.
= Σ

−1
h CHt

[
Ht , Mt|t

]
= W T, (3.90)

Chu
.
= Σ

−1
h CHt [Ht , Ut ] = Chmt|tCmt|tu, (3.91)

Chx̃
.
= Σ

−1
h CHt

[
Ht , X̃t

]
= [Chx, Chu], (3.92)

Chm̃
.
= Σ

−1
h CHt

[
Ht , M̃t|t

]
= [Chmt|t , Chu], (3.93)

Chx′
.
= Chx̃Cx̃x′ ≈ Σ

−1
h CHt [Ht , Xt+1] , (3.94)

Chm′
.
= Chm̃Cm̃m′ ≈ Σ

−1
h CHt

[
Ht , Mt+1|t

]
, (3.95)

Chh′
.
= [Chx′, Chm′] ≈ Σ

−1
h CHt [Ht , Ht+1] , (3.96)

where some terms were previously defined: Cmt|tu in (3.87), Cx̃x′ in (2.45), and Cm̃m′ in
(3.65). Using the identity in Appendix A.2.6, we approximately compute our desired
covariance between the new latent state and the new belief mean:

CHt

[
Xt+1, Mt+1|t

]
≈ CHt [Xt+1, Ht ] (Σ

h
t )
−1CHt

[
Ht , Mt+1|t

]
= CT

hx′Σ
h
t Chm′. (3.97)

*EXACT (BUT SLOW) COMPUTATION OF C
[
Xt+1, Mt+1|t

]
: Alternatively, to compute

C
[
Xt+1, Mt+1|t

]
exactly2 we combine both GP dynamics models fx and fb into one

‘super’ GP model. This is slightly complicated by the fact that Xt+1 and Mt+1|t
use partially-overlapping subsets of {Xt ,Bt|t ,Ut} as input. The derivation is quite
tedious, so this section is marked optional for the reader. To simplify to problem, we

2Assuming the joint Gaussian assumption on {Xt ,Mt|t ,Ut} is valid.
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make use of the existing identities on Gaussian process predictions of hierarchical
inputs (Appendix B.4) by defining 1) a single hierarchically-uncertain input vector
Z .
= {Xt ,Bt|t ,Ut}, and 2) a single hierarchically-uncertain output vector {Xt+1,Bt+1|t}.

The hierarchical-distribution of input Z is known to be:

 Xt

Bt|t
Ut


︸ ︷︷ ︸

Z

∼ N


N


µx

t

µm
t|t

µu
t


︸ ︷︷ ︸

µz

,


Σx

t Σxm
t|t Σxu

t

Σmx
t|t Σm

t|t Σmu
t|t

Σux
t Σum

t|t Σu
t


︸ ︷︷ ︸

Σz


︸ ︷︷ ︸

Mz

,

0 0 0
0 V̄t|t 0
0 0 0


︸ ︷︷ ︸

V z


. (3.98)

To preserve the individual predictions of both Xt+1 = fx(X̃t) and Bt+1|t = fb(B̃t|t) we
expand each GP’s lengthscale matrix Λx

k to match the size of Σz (3.98) whilst encoding
the fact that Xt+1 is conditionally independent of Bt|t given Xt and Ut . We do this by
creating a new (diagonal) lengthscale matrix where the elements corresponding to
Bt|t are rendered ineffectual by setting them to infinity. The associated linear model
parameters and data points for each GP on dynamics models fx and fb are likewise
rendered ineffectual by setting to zero. For the k th output of fx, and l th output of fb

we have:

Λ
x
k = diag(λ x

kx,λ
x
ku) → Λ̂

x
k = diag(λ x

kx,∞D,λ
x
ku), (3.99)

Λ
b
l = diag(λ b

lb,λ
b
lu) → Λ̂

b
l = diag(∞D,λ

b
lb,λ

b
lu), (3.100)

φ
x
k = [φ x

kx;φ
x
ku] → φ̂

x
k = [φ x

kx;0D;φ
x
ku], (3.101)

φ
b
l = [φ b

lb;φ
b
lu] → φ̂

b
l = [0D;φ

b
lb;φ

b
lu], (3.102)

Xx = [Xx
x ,X

x
u ] → X̂x = [Xx

x ,0D,Xx
u ], (3.103)

Xb = [Xb
b ,X

b
u ] → X̂b = [0D,Xb

b ,X
b
u ], (3.104)

where each ∞D and 0D symbol above represents a D-length column vector of infinite
and zero values respectively, and [·; ·] is a column-wise concatenation matrix operator.
Now to compute the covariance of fx k th output and fb l th output given the common
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uncertain input Z (3.98) of both GPs, we use Appendix B.4.3:

Σ
xm
t+1|t = CZ

[
Xt+1, Mt+1|t

]
,

CZ

[
Xk

t+1, Ml
t+1|t

]
= CMz

[
EX̃t

[
E f

[
f k
x (X̃t)

]]
, EB̃t|t

[
E f

[
f l
b(B̃t|t)

]]]
(3.105)

= sx2
k sb2

l
[
β

xT
k ( ˆ̂Qkl−qx

kqbT
l )β b

l
]
+ĈxT

k Σ
z
φ̂

b
l + φ̂

xT
k Σ

zĈb
l + φ̂

xT
k Σ

z
φ̂

b
l ,

where Ĉ is computed using (B.40) and

qx
ki = q(X̂x

i ,µ
z, Λ̂x

k,Σ
z +V z), = q(Xx

i ,µ
x
t ,Λ

x
k,Σ

x̃
t ), (3.106)

qb
li = q(X̂b

i ,µ
z, Λ̂b

l ,Σ
z +V z), = q(Xb

i ,µ
m
t|t ,Λ

b
l ,Σ

m̃
t|t +Ṽt|t), (3.107)

ˆ̂Qkli j = Q
(
X̂x

i , X̂
b
j , Λ̂

x
k, Λ̂

b
l ,V

z,µz,Σz). (3.108)

3.4.2 *CONTROLLER EVALUATION AND IMPROVEMENT

Thus far, we have discussed a one step prediction from St
.
= [XT

t , MT
t|t−1, vec(V̄t|t−1)

T]T

to St+1
.
= [XT

t+1, MT
t+1|t , vec(V̄t+1|t)

T]T, where

p(St) = N

µs =

 µx

µm

vec(V̄t+1|t)

 ,Σs =

 Σx Σxm 0
Σmx Σm 0

0 0 0


 . (3.109)

We use the same process to simulate forwards from St+1 to St+2 etc. up to ST . Con-
troller evaluation and improvement is analogous to § 3.3.4. A controller is then
evaluated using by applying the cost function at each timestep: J(ψ) = ∑

T
t=0 γ t c̄t

where c̄t = EXt [cost(Xt)|ψ]. The controller is then improved using analytic gradients
of the loss J(ψ) w.r.t. controller parameters ψ , dJ/dψ . To compute dJ/dψ we require
derivatives dc̄t/dψ and thus dp(St)/dψ , at each time t.

3.4.3 DEMONSTRATION

Here we demonstrate how various accurate-but-slow dynamical models fx can
evaluate systems using various inaccurate-but-fast dynamical models fb, shown
Fig. 3.14. We used a common controller, the controller optimised for our ‘Filtered
PILCO’ in § 3.3.6, and several dynamics models for both fx and fb. The set of
dynamics models comprised the model f used in § 3.3.6, and additionally seven more
models with various numbers of inducing points: M = {20,50,75,100,200,300,500}.
Let F define the set of all eight dynamics models. We trained the models starting
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(a) Predictive costs per timestep, according to each method itself.
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(b) Predictive costs per timestep, according to ‘Our Method’.
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(c) Empirical costs per timestep, from 100 executions per algorithm.

Fig. 3.14 Controller evaluation using latent-variable belief-MDPs. Each subfigure compares
costs (predictive or empirical) of a common controller but different filtering-dynamics models fb,
applied to the cart-pole system with observation noise. For a common controller, we use the controller
optimised by ‘Filtered PILCO’ from § 3.3.6. For different models fb, we compared ‘Filtered PILCO’
(black) and several other GP dynamics models (coloured) with different numbers of inducing points
M. All error bars show ±1 standard deviations, either of propbabilistic predictions or empirical
spread. Each subfigure shares the same legend in Fig. 3.14a.
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with 500 randomly selected datapoints from the dataset collected in our previous
experiment in § 3.3.6. Then we optimised the inducing point locations, resulting
in our M = 500 model. Afterwards, we randomly moved some inducing points,
leaving 300 remaining, re-optimised inducing point location, resulting in our M =

300 model, and so on. As a reminder, the more inducing inputs, the more accurate
the model, and the slower the predictions are to compute. Finally we simulated
various combinations of models for fx and fb, using the ‘exact but slow’ computation
of C

[
Xt+1, Mt+1|t

]
discussed page 81.

The results of our simulations are shown Fig. 3.14. Three subfigures are included.
First, Fig. 3.14a shows probabilistically predicted costs using the old belief-MDP
framework, where fx = fb = f , with displayed costs ∀ f ∈F . Second, Fig. 3.14b shows
probabilistically predicted costs using the new latent-variable belief-MDP frame-
work, where fx = Filtered PILCO, with displayed costs ∀ fb ∈ F . Third, Fig. 3.14c
shows empirical distribution of costs, where fx is not used (since empirical, not
simulated) and with displayed costs ∀ fb ∈ F .

The results offer some interesting insights. First, when each model is used for
both simulation and filtering, most models were overly pessimistic about their per-
formance, seen Fig. 3.14a. Every model except Filtered PILCO and a 500 inducing
point model falsely predicted the common controller was unable to control the
noisily-observed cart-pole system. Second, by using a more accurate model for
simulation in Fig. 3.14b, fx = Filtered PILCO, we see that predictions improved dra-
matically, and all models with at least 200 inducing points were correctly predicted
to control the cart-pole well. Even filters using 75 or 100 inducing points were
recognised to be much more useful than less accurate models of 20 or 50 inducing
points. Third, we see the ground truth in Fig. 3.14c that in fact all models in F are
adequate for filtered control, although generally the more inducing points the better
the performance.

Given all models F evidently stabilise the cart-pole (although, some better than
others) seen Fig. 3.14c, it is interesting fx only predicted the more accurate models
in Fig. 3.14b could control the system. The chosen model fx is not perfect, yet there
appears some interplay, or accumilation of inaccuracies between fx and the less-
accurate fb models where M≤ 200 causing the prediction of failure for all fb models
with M ≤ 200. Currently we are unsure why this is exactly, and is left for future
work.

Also of note is that model from Filtered PILCO used for fx itself only uses M = 50
inducing points, yet outperforms most other models here. We were currently unsure
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Fig. 3.15 Sensor time delay: the PILCO framework with sensory time lag. At each timestep, the
system state Xt is observed as Yt . The observation Yt records the state at time t, however, requires a
non-zero amount of time (τlag) to be processed and transmistted to controller π . Consequently, the
controller only receives observation Yt at time t + τlag, outputting a new control signal Ut+τlag . The
control Ut+τlag influences part of the state transition from Xt → Xt+1, as per the original PILCO. The
difference now, is our zero-order-hold controller continues to apply Ut+τlag until a new observation
Yt+1 is recieved. Since Yt+1 is not recieved until time t +1+ τlag, then Ut+τlag additionally affects the
following state transition Xt+1→ Xt+2. Thus, control Ut+τlag affects two state transitions: Xt → Xt+1
and Xt+1→ Xt+2. From the perspective of the single transition Xt+1→ Xt+2, control Ut+τlag was
applied the first τlag fraction of the timestep, then Ut+1+τlag for the remaining 1− τlag fraction.

why this is, but may be to do with the fact that fx we re-optimised over 11 episodes in
§ 3.3.6, potentially finding better local optima for inducing point locations compared
to each fb tested here was only optimised once.

3.5 *ADDITIONAL TOPICS

Additional topics were experimented with briefly. In particular our code was written
to handle flexible state representations, especially N-Markov representations, which
included previous control outputs useful for sensory time delay.

3.5.1 SENSOR TIME DELAY

During some brief work with Martin Kukla using a video camera to capture motions
of a real cart-pole robot, we noticed a time delay when observing the robot. Each
frame recorded by the camera was first transmitted via cable to a local computer,
which then processing the image using OpenCV from pixels to an estimated state
vector yt . The time between acting on yt and when the frame was recorded was
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approximately 30ms. A 30ms lag is significant. From our experiment in § 3.3.5, 30ms
almost corresponds to one whole timestep.

Sensory time delay breaks the Markov state assumption: that predicting Xt+1

given data up until time t was conditionally independent of all other variables given
X̃t = [XT

t ,U
T
t ]

T. Now, because of time lag, older controls affect Xt+1 too. Fig. 3.15
shows how a model of unfiltered control can account for time delay.

As long as the time lag is within a timestep, τlag ≤ ∆t, then our solution to regain
the state’s Markov property is to include the previous control output, defining a
X+U dimensional state. In § 3.3.5 for example we actually used the following state
representation: xt = [ut−1,xc

t ,θt , ẋc
t , θ̇t ]

T. For further reading, an excellent analysis of
optimal control with random time delays is given by Nilsson (1998).

3.5.2 ALTERNATE STATE REPRESENTATIONS

Previously, in the cart-pole system we used a state representation x consisting four
state variables, two position variables, and two time-derivative variables: xt =

[xc
t ,θt , ẋc

t , θ̇t ]
T. When using a camera’s sensor, any speed-based or time-derivative

variables are not directly observable. Only a sequence of frames encoding position
variables is directly observable. One solution is to use finite differences between
frames to estimate speeds. Another solution is a 2-Markov state representation. We
briefly looked at the 2-Markov representations, e.g. : xt = [xc

t−1,θt−1,xc
t ,θt ]

T.
We also discussed filtering in this chapter, as an alternative to inputting a noisy

observation yt = [xc
t ,θt , ẋc

t , θ̇t ]
T directly into a controller. We did so using a nontrivial

method of simulating a filtering process. A conceptually-easier alternative solution
is to use a more general N-Markov state representation. Since filtering is about sum-
marising the complete history of observations and control {y0:t ,u0:t−1}, N-Markov
state representations can act as a substitute for filtering since they condition on the
N most recent observations, the N most important for observations for estimation of
latent Xt . E.g. we could simply train an unfiltered controller with modified inputs
of: yt = [ut−N ,xc

t−N+1,θt−N+1, ...,ut−1,xc
t ,θt ]

T. The advantage is easy implementation.
The disadvantage is the state-dimensionality X increases, which considering PILCO

scales O(X), is slower computation and reduced data efficiency. By increasing the
dynamics model input dimensionality by N-fold, we require exponentially-in-N
more data to capture the dynamics before obtaining good controllers.
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3.6 DISCUSSION AND FUTURE WORK

In this chapter, we extended the original PILCO framework (Deisenroth and Ras-
mussen, 2011) to learn locally-optimal controllers with filtered observations as in-
put. Our extended framework enabled learning in partially-observed environments
(POMDPs, also known as belief-MDPs) without sacrificing PILCO’s high data effi-
ciency. Our algorithm – Filtered PILCO – achieved high data efficiency by evaluating
controllers using simulation faithful to reality. As a reminder, system simulation
involves multi-step probabilistic prediction from time t = 0 to t = T required for con-
troller evaluation and subsequent improvement. Just as PILCO faithfully simulates
closed-loop control because it executed closed-loop control, we similarly simulated
closed-loop filtered control precisely because we execute closed-loop filtered control.
By contrast, methods such a MPC conducted simulation not faithful to reality, by
executing closed-loop control and inconsistency simulating open-loop.

We began this chapter exploring the theoretical consequences of observation
noise in § 3.1. Observation noise affects both modelling of the dynamics and also
injects noise into the controller’s input. In § 3.1.2 we analysed the stability of systems,
in the context of controllers with unfiltered observations as input, to determine some
necessary conditions of system stability. We revisited our stability analysis later
in § 3.3.9, for the context of filtered control. A comparison of the two showed the
theoretical benefit that filtering brings to the conditions of system stability, and
how much more observation noise a filtered controller can accept before the system
destabilises. For a more comprehensive analysis of stability of PILCO we refer the
reader to Umlauft (2014, chapter 5).

We demonstrated experimentally the benefits of simulating the filtering process
by applying our filtered-PILCO algorithm to a benchmark control problem: the
noisily-observed cartpole swing-up in § 3.3. For comparison, we also applied other
algorithms which either did not filter, including PILCO, or only filtered during
system execution. We showed experimentally in § 3.3.5 that faithful and probabilistic
simulation gives greater performance gains than otherwise. This is because the
controller optimisation process – when aware of the filtering process – optimises a
controller for the specific circumstance in which it is used, namely: filtered closed-
loop control. We retained PILCO’s data efficiency property, and learned a controller
more effectively than the original PILCO algorithm, under significant observation
noise in just 22 seconds of system interaction.
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For clear comparison of each algorithm, our first variational of the experiment
(§ 3.3.6) constrained each algorithm to use the same dynamics dataset rather than
each algorithm interacting with the system to generate their own. By isolating the
dataset, we showed superior data-usage (to ensure any superior results were not
caused by superior data-collection abilities of any method). By controlling the dataset,
we also avoided the extra variance in empirical performance caused by selection of
different data. Next we relaxed the experimental constraint of a common dataset
in § 3.3.7 and clearly saw the our Filtered PILCO learned with more data efficient
under the noisy conditions than the competing algorithms. Afterwards, in § 3.3.8
we examined some of the range of noise levels that both PILCO and Filtered PILCO

handle.
Later, in § 3.4 we further generalised our framework from § 3.3 of control in ‘belief

MDPs’ to ‘latent variable belief MDPs’, where both belief states and latent system
states are modelled. The generalisation’s main benefit is the use of two different
dynamics models, one for the belief-state filtering, and another for the latent state
forwards prediction. In belief-MDPs, both these dynamics models are identical, in
many cases, such as ours, real-time constraints can incentivise two dynamics models.
Since the belief-state filtering occurs in both the system execution and simulation
phase, the belief filtering computations must be fast to occur in real-time during
system execution. For fast computation, we may need to sacrifice model accuracy,
using an inaccurate-yet-fast dynamics model fb. By contrast, forwards simulation of
the latent state only occurs during the offline system phase of the PILCO Algorithm 1.
Thus, predictions concerning latent state x can afford to use an accurate-yet-slow
dynamics model fx, which is perhaps so slow it cannot be used in real-time. The
advantage is the accurate model fx can be used to simulate how the inaccurate
dynamics model fb will react to accurately-predicted future state distributions Xt+1.
Such a situation is clearly more favourable than simulating how an inaccurate
model reacts to an also-inaccurate predicted state. A secondary benefit is an ability to
understand the consequences of the robot’s bad prior assumptions, where the robot’s
prior of states at time t = 0 is different from the initial state distribution. Latent
variable belief MDPs are a generalisation of the belief-MDP, and thus a generalisation
of POMDPs, proved Appendix E.6.

After introducing three variants of PILCO, each modelling the probabilistic pro-
cess of control differently, we briefly compare each, seen side-by-side in Fig. 3.16.
The original PILCO (Fig. 3.16a) models noiseless control, introduced in the previous
chapter. In the current chapter, we first analysed unfiltered control (Fig. 3.16b) to
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(d) Filtered Control for Latent-Variable
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Fig. 3.16 Comparison of Models. Four variants of the PILCO algorithm, each modelling the
process of control differently, reflected in the different PGMs each use. In each figure, eight possible
variables are either modelled (solid circles) or not modelling (dashed circles). Solid circles which are
white are not observed (either not yet, or never), with grey signifying an observed variable relative to
current time t (also t|t).
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understand the affects of injecting observation noise into a controller. Then, we
exchanged the controller’s input from observations to beliefs, framing control with
belief-MDPs (Fig. 3.16c). In belief MDPs, the belief B is a sufficient statistic of the
latent state X . Since modelling X is thus redundant, we can simulate future observa-
tions as if they were generated from the belief B. Finally, we reintroduce the latent
state X for the specific case where the belief B ceases to be a sufficient statistic of
latent state X , a new Markov process of control we called ‘latent variable belief-
MDPS’ (Fig. 3.16d). The belief ceases to be a sufficient statistic either when we have
differing dynamics models, fb ̸= fx, or when the total variance of prior belief B0|0
differs from the initial state variance: Σm

0|0 +V0|0 ̸= Σx
0. In either case, the observation

Y must revert to being generated from the latent state X , not what the robot believes
the state to be B. The process in Fig. 3.16d is an explanation of the causal relationship
between variables. It is the latent variable X , which causes an observation Y , not the
belief as in Fig. 3.16c. However, PGMs are not representations of causal relationships,
and should not be interpreted as such. PGMs only show conditional dependency
structure between variables.

Several additional challenges remain for future work. Firstly, when randomis-
ing the belief from b ∼ N (m,V ) to B ∼ N (M,V̄ ), we did so by randomising the
belief-mean m, not the belief-variance V . We instead used a delta distribution for
V̄ ∼ N (E [V ] ,0). Instead, a better approach would be to relax our assumption of
zero variance of the belief-variance parameters. A relaxation allows distributed
trajectories to more accurately consider distributions over belief states that have
various degrees of certainty (belief-variance) at a given future timestep. Because
of our restriction, filtered-PILCO can only consider one possible belief-variance at
future timesteps. This restriction causes a worryingly unknown amount ‘unfaithful-
ness’ in our simulation, going against PILCO’s principle of being faithful to reality.
In our simulation, at a particular timestep, the belief-variance is predicted to be
consistent no matter which belief-state we sample from our analytic distribution
over belief-states. However, in reality, the belief-state variance depends heavily
on whether the state trajectory passes through data-dense, or data-sparse regions
of state-space. During execution through data-sparse regions, a filter relies more
on observational information, resulting in a larger observation weight matrix Wy

and larger belief-variance. Conversely, data-dense regions result in smaller Wy and
smaller belief-variance. By approximating the belief-variance to be a delta distribu-
tion, our simulation can only consider a single weight Wy per future timestep, across
various system trajectories, even though the some of those trajectories require small
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Wy, other large Wy. Thus, because of our approximation, our controller optimisation
must find an unnecessary balance of Wy, unlikely suited for any one sampled trajec-
tory in particular. A better solution may be to consider distributions over positive
semi-definite variance V using the Wishart distribution. An open question is if the
Wishart distribution could be combined with our analytical filtering framework in a
tractable way.

A second promising avenue for future work, and perhaps the lowest hanging
fruit adapting the controller to be a function of the full belief distribution (mean
and variance). Currently, out methods only uses the belief-mean. Such additional
flexibility could enable the controller to react more ‘cautiously’ when uncertain about
the state (large V ). Conversely a controller could then react more ‘boldly’ when very
certain about the state (small V ). Unlike integrating Wishart distributions into our
filtering framework, expanding the controller’s input to also include belief-variance
would likely require less work and may notably improve controller performance.

Finally, the use of numerical quadrature (as done by Vinogradska et al. (2016))
may provide more accurate simulations of long term state distributions than our
moment matched ADF approach, and should be tested in future work.



CHAPTER 4

DIRECTED EXPLORATION FOR

IMPROVED DATA EFFICIENCY

Learning control of unfamiliar systems requires optimising a controller w.r.t. the cur-
rent state of system knowledge whilst the system knowledge changes as a function
of the controller’s output, a problem known as dual control (Wittenmark, 1995). ‘Dual
control’ refers to the situation of seemingly having two goals: 1) system identification
and 2) controller optimisation. In RL, the situation is framed as a dilemma between
choosing controls u at a particular state x that either explore more (to improve system
knowledge, improving future episode losses indirectly) or exploit more (directly
reducing the current episode’s loss based on current system knowledge). Both
types of behaviour are important since both contribute to minimising the total loss
summed over all episodes. Many control methods depend heavily on the quality
and the extent to which the system has been identified, before an effective controller
can be designed, or a good filter implemented. The difficulty is ascertaining how
much system ID is required: too little and we may not understand how to control
the system well, too much and waste precious system interaction learning about
the system but not controlling it (our ultimate concern). In this chapter, we extend
PILCO to the dual control setting. We note that PILCO is already an active machine
learning algorithm, meaning PILCO’s outputs influence the data it collects in the
future, but it is nevertheless a greedily active learner. Until now, PILCO has only
exploited, greedily minimising the current episode’s loss only, without any regard
to the benefit of exploratory type behaviour which could drastically improve the
losses in future episodes.

Data-efficient learning of control involves both 1) modelling aspects of the system
(e.g. the dynamics f or sensor g), and 2) balancing exploration and exploitation.
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Already we have discussed the first point, concerning dynamics modelling. This
chapter investigates the second point. Simple ways to implement exploratory be-
haviour in a controller is by occasionally outputting random controls. The idea is the
robot will hopefully test most state-control combinations eventually, not just those
which appear to be optimal based on limited knowledge. However, such undirected
random exploration (e.g. ε-greedy or Boltzmann exploration) can be data-intensive,
opposed to directing exploration towards known unknowns, for deliberate and system-
atic reduction of subjective system uncertainties. We extend PILCO to using directed
exploration, which generates non-repetitive datasets relevant to rapidly identifying
optimal controllers.

This chapter proceeds as follows. First we introduce undirected exploration in
§ 4.1. We then discuss how uncertainty information can help direct exploration in
§ 4.2, a more date, exploration can be aimed to reduce uncertainty in our dynamics
model p( f ). Better exploration strategies instead reduce uncertainty in our objective
directly, in our case: cumulative-cost. Our main contribution this chapter is directing
PILCO’s exploration using the full cumulative-cost distribution (§ 4.4) using Bayesian
optimisation (BO). We discuss four different BO methods, including our own ap-
proximation of the Gittin’s index in § 4.3. Experiments to compare against PILCO

using PILCO’s original cart double-pole swing-up task are also given. Afterwards,
we discuss how improvements can be made by distinguishing between different
sources of uncertainty behind the cumulative-cost variance in § 4.5.

4.1 UNDIRECTED EXPLORATION

The exploitation-exploration trade-off characterises a perceived dilemma between
controlling a system to minimise expected costs immediately (exploitation); against
informative control decisions to later improve the controller, minimising future costs
(exploration). A balance between exploitation and exploration generally performs
better than a pure exploitation or pure exploration approach. Below we discuss two
prominent examples of undirected exploration popular in the early days of RL. Both
use are stochastic controllers, denoted π(u|x), whose outputs are partly random.

Our first example of exploration is the classic ε-greedy heuristic which randomly
alternates between two distinct controller behaviours:

• Exploration: select a control uniformly at random.

• Exploitation: select control of least loss.
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The overall controller then outputs exploratory controls 100ε% of timesteps, and
exploitatory controls 100(1− ε)% of timesteps:

πε-greedy(u|x) = ε · Uu︸︷︷︸
explore

+ (1− ε) ·δ (u−π
∗(x))︸ ︷︷ ︸

exploit

, (4.1)

where we use Uu as the uniform distribution over a bounded space of possible
controls u, and δ is the delta distribution. Typical ε values range [0.01, 1.0], either
remaining constant or reducing over time Mnih et al. (2015). By decaying ε over
time t, most exploration occurs early on, a desired behaviour since more time steps
remains to capitalise on information learned. With time running out, the robot then
focuses on exploiting its knowledge.

An alternative to the ε-greedy exploration is using the Boltzmann distribution.
The Boltzmann distribution does not neatly swap between two modes, ‘exploration’
and ‘exploitation’, but blurs the lines between both behaviours by simply increasing
the probability of choosing controls which have less loss:

πBoltzmann(u|x) =
exp
(
kJ∗t (x,u)

)
∑u′ exp

(
kJ∗t (x,u′)

) , (4.2)

where Boltzmann’s constant k regulates the balance between exploration and ex-
ploitation, and J∗t (x,u) was defined (2.8). For example, k = 0 corresponds to a
uniform distribution as ε = 1 does (pure exploration), whilst k→ ∞ corresponds to
pure exploitation, always choosing the control of least predicted loss, as did ε = 0.

Boltzmann exploration is often preferable to ε-greedy since it considers all control-
conditional loss-estimates J∗t (x,u), i.e. across multiple possible controls u (Sutton and
Barto, 1998, Section 2.3). By contrast ε-greedy only considered one loss-estimate
during exploitation: u = π∗(x) = argminu′ J

∗(x,u′). Thus Boltzmann exploration can
distinguish between the ‘second best control’ and the ‘third best’ (whereas ε-greedy
cannot) for more informed exploration. Nevertheless, both algorithms perform
poorly in settings with a large number of states, due to a negligence of known uncer-
tainties about the system. Each may ‘explore’ aspects of the system already known
to the dynamics model, resulting in wasted opportunities to gather information.
Without uncertainty information for direction, such strategies are termed undirected
exploration. The only attraction of both strategies is they are simple to implement,
and thus still used in current RL research (Mnih et al., 2015).
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4.2 DIRECTED EXPLORATION

Undirected random exploration (e.g. ε-greedy exploration) or exploration that is
only a function of the loss function (e.g. Boltzmann exploration) are not fully in-
formed of the robot’s state of knowledge. A reasonable representation of the robot’s
subjective uncertainties about the dynamics or the cumulative cost can be used to
direct exploration for faster learning. In finite state spaces for example, directed
exploration learns optimal controllers with an amount of data polynomial in the
number of states, opposed to undirected exploration, which is instead exponential in
the number of states (Thrun, 1992). We are thus more interested in extending PILCO

with directed exploration.
Before we can proceed, we should clarify what our overall objective is. So far, we

have only discussed exploration and exploitation in vague terms for intuition. In
our episodic problems, the controller we choose at the e’th episode must balance: 1)
optimising loss for the current episode Je

0 (exploitation), and 2) gathering information
that help to optimise future losses Je+1:E

0 (exploration). In § 2.4 we defined a single
objective of data-efficient algorithms, which combines both desiderata above, from
seemingly two objectives into one, copied below for reader convenience:

J .
=

E

∑
e=1

Je
0 =

E

∑
e=1

T

∑
t=0

γ
tce

t . (4.3)

Thus, balancing exploration and exploitation can simply be framed as a single
objective: minimisation of the total loss J, the loss summed over all episodes. This
is equivalent to the cumulative regret objective from the bandit literature. Other
objectives are possible, such as simple regret from the bandits literature where only
the final loss matters J = JE

0 . However, we will only concentrate on cumulative regret
of (4.3). Notice also that (4.3) has the benefit of being parameter-free. There is no
ε constant or Boltzmann parameters k to tune a balance between exploration and
exploitation (noting E and T are defined by the task, not parameters the robot tunes).
This is because (4.3) evaluates exploration – the value of information – in the same
units as exploitation1 (being the units of the objective function).

Given our objective for data-efficient control, to minimise J, which implicitly bal-
anced exploration and exploitation (resolving RL’s perceived dilemma), we move on
to discussing how to minimise J given our limited knowledge and thus uncertainties
of the dynamics p( f ).

1 Or more colloquially: we compare apples with apples, not apples with oranges.
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4.2.1 BAYESIAN REINFORCEMENT LEARNING

The total loss in (4.3) comprises E-many episodes, in between which we have the
opportunity to update the controller’s parameterisation according to data collected
from the episode before. We wish to optimise J w.r.t. to our subjective belief p( f ),
noting that p( f ) changes given new data. To capture how to optimise J given chang-
ing p( f ), an RL solution proposed by Duff (2002) is to define partially-observed
hyperstates h which concatenate the original state x with partially-observed tran-
sition model parameters. Doing so, the reinforcement learning problem in x-space
is framed as a POMDP (see § 2.2.2) planning problem in h-space. The resultant
‘Bayes-optimal’ controller, which optimises (4.3) w.r.t. both the present model p( f )
and importantly: knowledge of how the model updates given new data. Given
knowledge of how the model updates, the POMDP solution can estimate the ex-
pected value of information of any type of exploratory behaviour, naturally trading
off exploration and exploitation in the original x state space. The Bayes-optimal
solution is ‘optimal’ in the sense of optimising the average total loss, averaged over
many experiments re-sampling the dynamics parameters from the belief prior p( f )
at e = 0. Unfortunately, since POMDPs are generally intractable to solve exactly
(Mundhenk et al., 1997; Papadimitriou and Tsitsiklis, 1987), so too are Bayes-optimal
controllers. This is especially true in continuous state-action-observation spaces, and
in PILCO’s case using a nonparametric dynamics model, but approximations exist
which we now discuss.

Bayesian Reinforcement Learning (BRL) algorithms model the dynamics and/or
the rewards, or value function, to approximate the (intractable) Bayes-optimal con-
troller. Many approximate approaches exist, including myopic belief lookahead
(which considers how the belief updates over at most one episode into the future)
and deeper lookahead. Myopic lookahead methods apply a heuristic function (or
‘exploration bonus’) to the robot’s current uncertainties, or predicted uncertainties by
next episode, an improvement on simpler methods such as Boltzmann-exploration
(Meuleau and Bourgine, 1999) including sums of cost standard deviations (Deisen-
roth, 2009), Shannon entropy (Deisenroth et al., 2008), and a variants on the expected-
improvement heuristic (Dearden et al., 1998; Delage and Mannor, 2007). For sim-
plicity, myopic exploration often ignores loss correlations between different control
decisions (or in our case between choosing controllers for the next episode) which
are in fact correlated via the Bellman equation (2.8). Another method is modelling
loss distributions using GPs (Engel et al., 2003, 2005) and exploring according to
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upper confidence bounds, suitable for small state spaces, and smooth loss functions,
unfortunately inapplicable to PILCO.

Deeper (non-myopic) sparse-tree lookahead trees are also possible (Kearns et al.,
2002; Ross et al., 2008; Walsh et al., 2010; Wang et al., 2005). Alternatives to sampling
can include discretisation of the belief space (Wang et al., 2012). However, this is only
feasible up to 3–4 dimensions. Discretisation must be carefully tuned: if too large
the robot will not learn anything, and if too small the learning will be slow. If the
dynamics model is easily sampled, then following an optimal controller of a sample
from the model for several timesteps, called Thompson sampling (Thompson, 1933),
is an effective solution still popular in RL (Asmuth et al., 2009; Gal and Ghahramani,
2015; Osband et al., 2016; Stadie et al., 2015; Strens, 2000). Thompson sampling
generally outperforms ε-greedy and Boltzmann exploration since the sampling the
uncertain model posterior corresponds to uncertainty-directed exploration.

We can think of PILCO (§ 2.5) as another BRL algorithm, which assumes fully
observable states x and a partially observable transition model p( f ). PILCO approxi-
mates Bayes-optimal control by assuming no observation function associated with
the transition model (i.e. assuming its current uncertainty over transition models
is fixed) and is a pure exploitation RL algorithm. However, even though PILCO

does not intentionally explore the probabilistic trajectories, the saturating cost func-
tion has the indirect effect of favouring more uncertain polices when the expected
cumulative-cost is poor (Deisenroth et al., 2015). This above effect together with sys-
tem randomness (observation noise ε

y
t and process noise εx

t ) usually ensure PILCO

visits enough of the state space ‘accidentally’ to learn enough dynamics to opti-
mise a reasonable controller. Nevertheless, PILCO achieved unprecedented data
efficiency in the cart double-pole swing-up problem. As mentioned before, the key
to PILCO’s success is the use of its probabilistic nonparametric dynamics model.
The probabilistic nonparametric model enables probabilistic predictions from model
uncertainty (distinct from state uncertainty) from arbitrarily complex models, help-
ful for uncertainty-directed exploration. Earlier work by Deisenroth (2009, section
3.7.1) optimises the sum of the individual cost means and (weighted) cost standard
deviations, as an approximate myopic BRL extension of PILCO. However, as they
state, the sum of individual cost standard deviations is an approximation to using
the full cumulative cost variance, which should include many cross terms, discussed
§ 4.4.

We build on this BRL extension of PILCO, to take PILCO from a pure exploitation
algorithm to one that balances exploration and exploitation to achieve even greater
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data efficiency than before. PILCO greedily optimises an expected cumulative-
cost of the states using a probabilistic dynamics model to predict distributions
of future states. Since Gaussian process models can be approximately sampled, a
Thompson sampling approach could be employed for stochastic directed exploration.
However, given PILCO’s probabilistic dynamics model can compute full cumulative-
cost distributions (approximated as Gaussian) of controllers analytically, deterministic
directed exploration is possible. Deterministic exploration is preferred for data
efficient learning in single agent tasks since the specific actions which optimise the
expected value of information gained are not random! Unlike Deisenroth (2009)
who compute the marginal cost distributions per time step, we compute the full
joint covariance of all timestep’s costs in an episode, required for computing the
loss-variance (cumulative-cost variance). The cross terms in the joint cost covariance
matrix typically contributes between 40% to 85% of the cumulative-cost variance,
and thus must be included to avoid significantly underestimating the cumulative-
cost variance. We use the additional cumulative-cost variance information for
uncertainty-directed exploration. We evaluate the value of information by evaluating
the uncertainty in the cumulative-cost function, as other myopic BRL algorithms do,
to direct exploration, opposed to PILCO. As a second BRL extension of PILCO later
in § 4.5, we discuss a better BRL extension to PILCO, also myopic, which considers
how the dynamics model might change in response to future data we might see,
giving us a more accurate estimate of the value of information.

4.2.2 PROBABLY APPROXIMATELY CORRECT (PAC) LEARNING

An alternate definition of ‘data efficiency’ as minimising cumulative regret (4.3) is
instead minimising the number of episodes that the robot’s expected performance
fails to be within a specified tolerance of the optimal loss. Such algorithms are
called PAC-MDP (Probably Approximately Correct Markov Decisions Process), dis-
covering ‘near-optimal’ controllers with high-probability within time polynomial
to the number of states and controls (Even-Dar et al., 2002). Example PAC-MDP
algorithms include R-max (Brafman and Tennenholtz, 2003), E3 (Kearns and Singh,
2002), and Delayed Q-Learning (Strehl et al., 2006). PAC-MDP methods provide
powerful probabilistic-guarantees on the data-complexity required before asymp-
totic convergence to an optimal controller. However, such strong guarantees come
at the price of over-exploration (Delage and Mannor, 2007; Kolter and Ng, 2009).
PAC-MDP algorithms either systematically explore the complete state-space, or
follow the principle of optimism under uncertainty (e.g. upper confidence bounds).
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To be consistently optimistic under uncertainty is to overvalue exploration, and thus
over-explore the state-space. For example, when priors over different transitions
are artificially biased (‘optimistic’), a controller tends to explore less visited states
even when Bayes-optimal controllers under same prior would deem the cost of
doing so too high. The PAC-MDP formulation disregards costs incurred in the
short term by instead concentrating on discovery of near-optimal controllers in the
long term. In doing so, PAC-MDP methods solve a different formulation of data
efficiency, ensuring long-term controller near-optimality instead of maximising the
expected cumulative costs. Indeed, Bayes-optimal controllers are not PAC-MDP
(Kolter and Ng, 2009). As such, the PAC-MDP formulation is undesirable when
the system always incurs real-world cost to interact with (regardless of whether
the robot is exploring or exploiting). Indeed many methods’ authors are willing
to trade the probabilistic guarantees that PAC-MDP methods provide for practical
performance gains (Jung and Stone, 2010). Similarly, any other methods that direct
exploration by reducing dynamics uncertainty also incur data inefficiencies. The
robot should not waste time modelling aspects of the system that are unlikely to help
it achieve its goal. Since the goal of RL is optimisation of the expected cumulative
costs (or rewards), exploratory actions should seek to reduce uncertainty of the
objective (cumulative-cost) only. By evaluating exploration according to the objective
distribution, we evaluate exploration in the same ‘units’ as we evaluate exploitation,
making the trade-off between the two more straightforward.

4.3 BAYESIAN OPTIMISATION

By simulating our system using our probabilistic dynamics model, is it possible
to compute the cumulative-cost distribution given data up until current episode
e exclusive: Cψ

e ∼ N
(
µC

e ,Σ
C
e
)
. We have not yet discussed how to compute Cψ ’s

distribution, which we leave for § 4.4, but for the moment assume Cψ ’s distribution
is computable. In this section, we discuss how to direct exploration using Cψ ’s full
distribution with Bayesian Optimisation (BO) methods. We change the controller
evaluation step (see Algorithm 1, line 6). No longer do we optimise the mean
cumulative cost µC

e as PILCO did, but instead optimise a function of the mean and
variance: BO(µC

e ,Σ
C
e ).

Bayesian optimisation is the problem of optimising an unknown function, often
expensive to evaluate and without gradient information, through frugal succes-
sive samples of data. Good introductions are Brochu et al. (2010), Shahriari et al.
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(2016) and Snoek et al. (2012). This corresponds to our problem of optimising J by
frugal sampling one set of controller parameters ψ ∈Ψ per episode for execution.
Generally, BO balances exploration-exploitation by selecting a controller πψ with
low cumulative-cost mean µC

e (exploitation) and high cumulative-cost variance ΣC
e

(exploration). High-variance controllers are attractive options to execute, since they
may reveal that controller πψ in fact has much lower average cumulative-cost by
the next episode µC

e+1 than currently believed (under expectation) µC
e . The benefit

is that surprisingly-good controllers can be exploited repeatedly in future episodes,
whereas surprisingly-poor controllers need not be executed again. We experiment
with four BO functions, a simple upper confidence bound (UCB) heuristic with
a single parameter, and three heuristics without free parameters: probability of
improvement (PI), expected improvement (EI), and Gittins index (GI).

As with PILCO, during the execution of a single episode, the controller does
not change, since we assume controller optimisation is slow and episodes must
execute online in real-time. Thus, we consider changes to controllers necessary for
exploration to occur only between episodes (not between timesteps as well).

4.3.1 UPPER CONFIDENCE BOUND (UCB)

As a simple baseline for exploration, we consider perhaps the simplest balance of
exploration and exploitation using the upper confidence bound:

UCB(Cψ
e ) = µ

C
e −βσ

C
e , (4.4)

where we treat β as a free parameter which balances exploitation (µC
e ) with explo-

ration (σC
e ). Notice both terms µC

e and σC
e have the same units, so β is a dimensionless

quantity. For more in depth discussion on how to set β as a function of the number
of episodes remaining see Auer (2003).

4.3.2 PROBABILITY OF IMPROVEMENT (PI)

Consider our robot has already executed several different controllers (i.e. different
controller parameterisations in Ψ) so far. Let the lowest cumulative cost witnessed
so far be C∗ ∼N

(
µC
∗ ,Σ

C
∗
)
. Normally C∗ has no distribution in BO, however, we gen-

eralise to handle cases where C∗ is noisily observed. The Probability of Improvement
(PI) exploration heuristic decides that the next controller to execute πψ should be the
one that maximises the probability of improving its cumulative cost Cψ

e over the ref-
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erence C∗. Thus, we search over parameterisations ψ ∈Ψ, evaluating each controller
using our simulator to predict their uncertain cumulative costs: Cψ

e ∼ N
(
µC

e ,Σ
C
e
)
,

noting ΣC
e is scalar. We can compute the probability that executing controller πψ

improves C∗:

PI(Cψ
e )

.
= −p

(
Cψ

e < C∗
)

= Φ

(
µC

e −µC
∗√

ΣC
e +ΣC

∗

)
−1, (4.5)

where φ(·) is the standard normal distribution function, and Φ(·) be its cumulative
distribution function. Since we minimise loss functions, for consistency sake, we will
also write each BO objective as functions to be minimised. Thus, we write our PI
objective in (4.5) as the negative probability of improvement, an objective we intend
to minimise. For a more detailed working of (4.5), see Appendix C.1. So, instead of
a greedy algorithm, which minimises the expected cumulative cost as PILCO does,
we can change Algorithm 1, line 6, to instead evaluate controllers using the metric
PI(Cψ), which we optimise greedily. Doing so, at each episode we maximise the
probability of finding a superior controller compared to the best controller we have
thus seen so far. This tends to avoid the trap of re-selecting the same controller at
every episode when in a mean-cost optima in Ψ-space, as can happen with PILCO.

4.3.3 EXPECTED IMPROVEMENT (EI)

Above we discussed how the PI exploration heuristic maxmimises the probability of
improving a controller, however, PI does not consider by how much a controller may
be improved by. A pathological case for PI is choosing between controller πψ which
has a 99% chance of insignificant improvement, and controller πψ ′ with 98% chance of
significant improvement. PI would choose the former, since 99% > 98%, even though
the latter intuitively offers better exploratory outcomes under expectation. The
Expected Improvement (EI) heuristic instead weights the probability of improvement
by the magnitude of the improvement:

EI(Cψ
e )

.
= ECψ

e
[min(Cψ

e −C∗, 0)]

= Φ

(
− µC

e −µC
∗√

ΣC
e +ΣC

∗

)
(µC

e −µ
C
∗ ) − φ

(
µC

e −µC
∗√

ΣC
e +ΣC

∗

)√
ΣC

e +ΣC
∗ , (4.6)

with derivation in Appendix C.2.
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4.3.4 GITTINS INDEX (GI)

Gittins index (GI) by Gittins et al. (1989) is a Bayes-optimal solution to the cumulative-
regret, infinite-horizon, independent bandits problem (Berry and Fristedt, 1985).
‘Bandits’ colloquially refer to ‘slot machines’ in casinos, due to their tendency to
leave people without money. In a typical bandits problem, an agent is presented
with multiple bandits, and at each timestep they choose one bandit to play. Each
bandit returns a random cost, usually independent samples from a Bernoulli or
Gaussian distribution whose parameters are unknown, but have some prior distri-
bution. Each bandit’s prior distribution is usually i.i.d. The goal is to sequentially
select bandits in a way that minimises the cumulative costs. The trade off between
exploration and exploitation exists here, as the agent chooses between bandits not
tested before (exploration) against bandits previously played which tend to return
low cost (exploitation). Good solutions maintain posterior distributions over each
bandit’s uncertain parameters to direct exploration. The Gittins index of a bandit
is a real-number used to compare different bandits before one bandit is selected, a
single number score which balances exploration and exploitation optimally w.r.t.
the posterior belief associated with each bandit. The Bayes-optimal decision is
to simply select the bandit of greatest Gittins index at each episode. Executing a
bandit generates a stochastic cost, used to update the bandit’s Gittins index, and
so the procedure repeats. A critical result is a Gittins index of independent bandit
i is a function of belief of bandit i only, independent of other bandits. Decoupling
bandit evaluation to decide which bandit to select next is termed an ‘index policy’
and renders Bayes-optimal solutions exponentially more tractable than brute force
tree search, whose number of branches is proportional to the number of bandits to
choose from. Even so, bandits with Gaussian uncertainty over their latent loss are
still difficult to compute exactly, since the branching factor is still proportional to the
number of cost outcomes, infinite for Gaussian bandits and only two for Bernoulli
bandits. PILCO requires index policies since the space of controller parameters Ψ

to select is uncountably infinite. An approximation to GI is Interval Estimation (IE)
by Kaelbling (1993), a ‘frequentist version’ of the Bayesian GI loosely speaking. IE
selects bandit of least lower confidence bound, computed from the average cost and
counts or previously selection each bandit has. Meuleau and Bourgine (1999) show
the striking similarity between IE and GI’s loss reduction (compared to a baseline
of random bandit selection), although IE has fatter tails (∝ n−1/2

i ) compared to GI
(∝ n−1

i , where ni is the number of times bandit i has been selected so far) so IE tends
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to over-explore. IE is easily computed, yet relies on discrete states to count their
visits, thus inapplicable for PILCO’s continuous state-action tasks.

Both PI and EI are well-known exploration heuristics in the BO community.
However, GI is perhaps not as widely known in the BO community. We choose to
also use GI from the bandits literature since GI is the exact Bayes-optimal solution to
the Bayesian Optimisation problem under assumption of uncorrelated costs between
actions, opposed to other, more popular myopic heuristic acquisition functions: PI,
EI, UCB, and entropy methods. In addition, because of GI’s principled nature (GI
is not a heuristic) theoretical results are readily available to quantify how much
GI-exploration is expected to improve the loss in advance of executing a controller.
Both PI and EI are myopic heuristics, only considering the effects of a controller one
episode into the future. However, GI being a Bayes-optimal controller, is non-myopic,
conducting a deep yet efficient lookahead over the multiple episodes remaining.

We must approximate our problem in three ways to allow for computationally-
cheap yet exact Bayes-optimal solutions using Gittins index:

1. Since our horizon is finite we convert our undiscounted finite-horizon problem
to being discounted and infinite-horizon (Gittins index is only valid for infinite
horizons). We do so using an ‘effective discounting’2 of γ = 1− 1/Ê, where
Ê = E − e+ 1 is the number of episodes remaining (not yet executed), e is
the current episode number, and E is the finite horizon of total episodes to
execute (past and future). Doing so, we are applying an exact solution to a
similar problem (infinite horizon) to our own problem (finite horizon). This
first approximation is potentially mild, although tends to overestimate the
amount of loss reduction, seen later in § 4.4.3, leading to mild over-exploration.

2. We ignore correlations between controller evaluations, assuming C
[
Cψ

e , Cψ ′
e

]
=

0 if ψ ̸= ψ ′, for tractability reasons. This second assumption is almost always
violated for PILCO’s tasks in continuous state spaces. The ensuring suboptimal-
ity of the GI performance is dependent on the amount of correlation (Ryzhov
et al., 2012), but given the infinite number of policies (and therefore infinite
number of bandits), it is difficult to determine how suboptimal our approach
is.

2 I.e. receiving fixed cost λ over a finite horizon without discounting returns a total of Êλ . An
infinite horizon with discounting γ returns λ/(1− γ). Thus, for equal returns Êλ = λ/(1− γ), then
γ = 1−1/Ê.
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3. We assume there exists only one more opportunity to learn about Cψ
e . We

assume after one execution of πψ , we will gain an observation ye related to
the true latent value of Cψ

true in which to learn a posterior on Cψ

e+1, at which
point learning ceases. We assume we do not learn anything thereafter about
Cψ

true, either by executing πψ a second time or another controller. Depending on
whether we underestimate or overestimate how much the posterior variance in
Cψ

e+1 reduces, we might under-explore or over-explore. This third assumption
is our most severe assumption, being unclear how much it causes the robot to
under (or over) explore.

Under the above three assumptions (or approximations), we treat each prior
Cψ

e ∼N
(
µC

e ,Σ
C
e
)

for ψ ∈Ψ as a Gaussian bandit, and to each bandit Cψ
e we compare

with a deterministic bandit Cλ , which offers constant cost λ per timestep. Gittins
index is the value of λ that makes us ambivalent between choosing to execute the
uncertain bandit Cψ

e (which has exploratory benefits) or receiving a deterministic
cost λ (Gittins et al., 1989) (pure exploitation). For shorthand sake during this section,
let σ2

e
.
= (σC

e )
2 .
= ΣC

e .
Now let us analyse the exploratory benefits of choosing uncertain bandit Cψ

e . We
begin by studying the effect that a cost observation ye would have on the robot’s
posterior Cψ . On receiving a noisy observation related to the latent Cψ

true,

ye
iid∼ N

(
Cψ

true,σ
2
y
)
, (4.7)

both our prior p(Cψ
e ) = N

(
µC

e ,σ
2
e
)

and the observational likelihood from ye at
episode e would combine to form our posterior for the following episode e+1:

Cψ

e+1 ∼ N
(

µ
C
e+1,σ

2
e+1

)
, where (4.8)

σ
2
e+1 = (σ−2

e +σ
−2
y )−1, (4.9)

µ
C
e+1 = σ

2
e+1(σ

−2
e µ

C
e +σ

−2
y ye). (4.10)

Consider we make the pessimistic assumption that the observation ye will be the last
chance the robot has to learn about the latent Cψ

true. Such a pessimistic assumption
is akin to expecting bandit ψ will only payout an immediate cost sample from Cψ

e

and then payout according to the next-episode expected cost µC
e+1 for each episode

thereafter. As we consider bandit ψ (before executing it), the observation ye is not yet
observed, and is thus a random variable, denoted Ye. Using our prior information,
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we can anticipate a plausible set of observations:

Ye ∼ N
(
Cψ

e ,σ2
y
)
= N

(
µ
C
e ,σ

2
e +σ

2
y

)
. (4.11)

Because Ye is random, so too must the future posterior-mean at episode e+1 be:

µ
C
e+1 = σ

2
e+1(σ

−2
e µ

C
e +σ

−2
y Ye)

∼ N
(

σ
2
e+1(σ

−2
e µ

C
e +σ

−2
y µ

C
e ), σ

4
e+1σ

−4
y (σ2

e +σ
2
y )
)

= N
(

µ
C
e ,s

2
)
, where (4.12)

s2 .
=

σ4
e

(σ2
e +σ2

y )
. (4.13)

Now, since the Gittins index is the value of λ , which makes the robot ambivalent
between choosing a fixed cost λ or a stochastic cost from our beliefs, we equate the
expected cumulative cost of both the deterministic bandit Cλ (left) with the stochastic
bandit Cψ (via µC

e+1) (right) using identities from geometric series:

λ

1− γ
= ECψ

e
[Cψ

e ]+
γ

1− γ
·E

µC
e+1

[
min(µC

e+1,λ )
]

= µ
C
e +

γ

1− γ
·
(∫ λ

−∞

µ
C
e+1 ·N

(
µ
C
e+1; µ

C
e ,s

2
)

dµ
C
e+1

+
∫

∞

λ

λ ·N
(

µ
C
e+1; µ

C
e ,s

2
)

dµ
C
e+1

)
= µ

C
e +

γ

1− γ
·
(
−sφ(λ−µe

s )+µ
C
e Φ(λ−µe

s )+λ

(
1−Φ(λ−µe

s )
))

. (4.14)

∴ λ
′ .

=
λ −µC

e
s

= − γ

1− γ
·
(
φ(λ ′)+λ

′
Φ(λ ′)

)
, (4.15)

using Gaussian integral identities from Appendix A.2.8. We can solve for λ ′, which
has an unique solution, by rearranging (4.15) and using Newton’s method:

g(λ ′) .
= γ

(
φ(λ ′)+λ

′
Φ(λ ′)−λ

′)+λ
′ = 0, (4.16)

dg(λ ′)
dλ ′

= γ
(
−λ

′
φ(λ ′)+Φ(λ ′)+λ

′
φ(λ ′)−1

)
+1

= γ
(
Φ(λ ′)−1

)
+1, (4.17)

find λ
′ : g(λ ′) = 0,

λ
′
0 ← 0, (4.18)

λ
′
i+1 ← λ

′
i − g(λ ′i )

(
dg(λ ′i )

dλ ′i

)−1

. (4.19)
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Table 4.1 Example values of the upper-bounded Gittins index of a standard Gaussian
bandit: GIupper(µC

e = 0, σC
e = 1, σy, γ = 1−1/Ê). Each element represents a conservative

estimate of the reduction in average-loss the robot can expect (averaged over the remaining episodes
Ê) if it follows the exploratory behaviour directed by GIupper in (4.20).

σ2
y 0 0.1 1 10 ∞

Ê

1 0 0 0 0 0
2 -0.2760 -0.2632 -0.1952 -0.0832 0
3 -0.4363 -0.4160 -0.3085 -0.1316 0
4 -0.5492 -0.5236 -0.3883 -0.1656 0
5 -0.6360 -0.6064 -0.4497 -0.1918 0
6 -0.7065 -0.6736 -0.4996 -0.2130 0
7 -0.7658 -0.7301 -0.5415 -0.2309 0
8 -0.8168 -0.7788 -0.5776 -0.2463 0
9 -0.8616 -0.8215 -0.6092 -0.2598 0

10 -0.9015 -0.8595 -0.6374 -0.2718 0

Thus, our approximate Gittins index of controller πψ (substituting for s2 (4.13)) is:

GIupper(µC
e ,σ

C
e ,σy,γ) = λ = µ

C
e +λ

′
γ

σ2
e√

σ2
e +σ2

y
, where γ = 1−1/Ê. (4.20)

Notice the converged value of λ ′ from (4.19) (now denoted λ ′γ ) is independent of any
one controller’s parameters ψ (i.e. not a function of µC

e nor σe), only the discounting
factor γ (or finite horizon Ê). Therefore, λ ′γ is a constant during PILCO’s controller
optimisation phase (Algorithm 1, line 7), meaning we do not have to recompute
λ ′γ when comparing different controllers in a different space, of which may be
difficult to compute gradient information given that λ ′γ has no closed form analytical
expression (we resorted to Newton’s method). Thanks to this independence, we can
compute the Gittins index of each controller as a continuous function over controller-
parameter space Ψ. Additionally, given the availability of cumulative-cost gradients
dµC

e /dψ and dσ2
e /dψ , gradient-based optimisation using GI is possible, since the

gradient of the Gittins index λ from (4.20) is simply dλ/dψ = dµC
e /dψ +λ ′γds/dψ ,

where ds/dψ = (σ2
e /2+σ2

y )(σ
2
e +σ2

y )
−3/2dσ2

e /dψ .
Examples values of GIupper are shown Table 4.1. As a reminder, Ê is the number

of episodes remaining (including current episode e), and σ2
y is noise associated with

observing Cψ

true after one episode of executing controller πψ . Two important trends
are immediately observed in Table 4.1, where table elements reflect the expected
reduction in average-loss if they explore in a way directed by this GI bound. First,
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moving top-to-bottom along Table 4.1, the index values reduce for greater number of
episodes remaining Ê. This reflects that for more episodes remaining for a robot to
trial a task, then there exist more future opportunities from which to (re-)capitalise
from information learned in the next episode. I.e. the value of information increases.
Note the first row, where one trial remains Ê = 1, the robot will not be able to
capitalise on any information gained (since this is the last attempt at controlling a
task), and so the value of exploration is (correctly) deemed worthless, with a row of
zeros. Second, moving left-to-right along Table 4.1, note the worsening of the value
of information (increasing loss) as the observation noise-variance σ2

y increases. The
left represent noiseless observations, giving us maximal information, whilst the right
side represents so much noise that exploration is also (correctly) deemed worthless.
Without an expectation to gain information on the right side, the number of episodes
remaining Ê is irrelevant, and the robot anticipates no possibility in reducing loss
via exploration, hence a column of zeros.

We have now discussed an upper bound of the intractable GItrue, an upper bound
(worse cost) because of its pessimistic assumption about an ability to collect infor-
mation (only anticipating one more observation ye to learn from, assuming nothing
can be learned thereafter). Now, we discuss a lower bound of GItrue based on the
opposite: an optimistic assumption on our ability to collect information. An opti-
mistic assumption is to assume the next observation will be noiseless σy = 0 (the left
column of Table 4.1), and thus everything about Cψ will be learned by episode e+1
with certainty. By setting noise σy = 0 in (4.20) we get an lower bound:

GIlower(µC
e ,σ

C
e ,σy,γ) = λ = µ

C
e +λ

′
γσ

C
e , where γ = 1−1/Ê. (4.21)

where our uncertainty by next episode is Cψ

e+1 ∼N
(
µC

e+1,0
)

with µC
e+1 ∼N

(
µC

e ,σ
2
e
)

from our current perspective at episode e. This myopic approximation that will
optimistically ‘learn everything’ about Cψ is similar to the ‘knowledge gradient’
approximate solution introduced by Powell and Ryzhov (2012, section 6.4). However,
the knowledge gradient is a non-index policy (the evaluation of one controller
depends on other controllers) which is only suited to finitely-many bandits. Note
that if σy is equal to zero, then GIlower = GItrue for all values γ . This lower bound is
also well known in dynamic programming, referred to as the QMDP solution, which
approximates the convex value function of a POMDP as instead linear over belief
space (Cassandra and Kaelbling, 1995). The consequence would be underestimation
of the cost-to-go, leading to a non-optimal balance of over-exploration and under-
exploitation.
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Fig. 4.1 Gittins index bounds. Each blue line is the exact GI for infinite horizon for various
discounting factors γ , each upper and lower bounded. Red shows the GI upper bound (4.21) resulting
from pessimistic assumptions. Green shows the GI lower bound (4.20) resulting from optimistic
assumptions. Values of the true GI are from Powell and Ryzhov (2012, table 6.3), and σy = 1.

Both the upper and lower bounds of the true intractable GItrue are compared in
Fig. 4.1, to visualise the quality of these bounds. The pessimistic upper bound (red)
is a good approximation under severe discounting γ = 0.5, though not under light
discounting of γ = 0.995. The reason is, our pessimistic approximation only considers
short term information gain, which under severe discounting is accurate because
only short term costs dominate the loss function. On the other hand, our optimistic
lower bound (green) does the opposite: improving the larger γ is. Although we can
see the green’s accuracy additionally depends on the observation noise σ2

y , especially
accurate when the observation noise σ2

y is comparable with (or less than) the prior
variance on Cψ

e (becoming exact when σ2
y = 0). Being a good approximation under

low observation noise should come as no surprise, since the approximation was to
assume no observation noise. However, the improvement with larger γ (under fixed
σ2

y ) can perhaps be explained by the fact that the uncertainty will indeed collapse
eventually (given enough re-selections of the same bandit), which the loss function
will consider if long term costs are not dominated by short terms costs, which they
are not under light discounting of γ = 0.995.

An advantage of the lower bound instead of the upper bound GI is we do not
need to know the actual value of ye, we simply assumed ye was zero. For this reason
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we choose to use GIlower in our experiments discussed later, and will abbreviate
GIlower as simply GI. Given the conditions under which GIlower is accurate, we only
advocate its usage for tasks with relatively small σ2

y and large Ê (γ close to one),
ensuring GIlower remains a tight bound to GItrue.

4.4 DIRECTING EXPLORATION WITH CUMULATIVE-COST

UNCERTAINTY

PILCO is a pure exploitation RL algorithm by optimising the cumulative-cost mean.
Whilst PILCO does not explicitly conduct exploration, some ‘indirect exploration’
effects occur due to 1) inherent system stochasticity, 2) a tendency for the saturating
cost functions to give lower expected costs for uncertain states when not near the
goal (Deisenroth et al., 2015), and 3) the information from executing ones controller
informs the performance for all controllers. PILCO’s success was largely due a
principled treatment of dynamics uncertainty using a probabilistic dynamics model
to optimise controllers according to their expected cumulative cost, and the indirect
exploration effects from a saturating cost function.

Our contribution in this chapter is to improve upon PILCO’s existing data effi-
ciency by using PILCO’s existing probabilistic model to additionally compute the
cumulative-cost variance to direct exploration towards testing controllers of uncertain
cumulative-cost. We balance exploitation-vs-exploration by executing controllers of
low mean cumulative-cost µC

e (exploitation) and high variance ΣC
e (exploration). As

discussed previously (§ 4.3), we can strike a balance between the two using Bayesian
Optimisation (BO), executing the controller of least heuristic output BO(µC

e ,Σ
C
e ). The

computation of µC
e is straightforward, being the accumulation of mean-costs at each

timestep, detailed in Deisenroth and Rasmussen (2011). However, PILCO did not
compute ΣC

e . By doing so, we show we can achieve even greater data efficiency than
the unprecedented performance of PILCO.
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4.4.1 THE CUMULATIVE-COST DISTRIBUTION

We thus now outline computation of the cumulative-cost distribution:

Cψ
e

.
=

T

∑
t=0

cost(Xt)|ψ ∼ N
(

µ
C
e ,Σ

C
e

)
, where (4.22)

µ
C
e =

T

∑
t=0

EX [cost(Xt)|ψ] , (4.23)

Σ
C
e =

T

∑
t=0

T

∑
t ′=0

CX [cost(Xt), cost(Xt ′)|ψ] . (4.24)

The distribution of Cψ
e is a function of the joint predictive state p(X0, ...,XT ), approx-

imated as Gaussian. The original PILCO computed the marginal cost mean and
variance for each timestep only. But here, each cost-cost correlation is a function of a
corresponding state-state correlation CX [Xt , Xt ′|ψ], which we must now compute.

STATE-STATE JOINT DISTRIBUTION

PILCO already computes the expected states at each timestep, EX [X0] , ...,EX [XT ], and
each marginal variance VX [X0] , ...,VX [XT ] (Deisenroth and Rasmussen, 2011). Com-
puting the full state-state joint distribution (approximated as Gaussian) additionally
requires covariances between arbitrary states, e.g. CX [X4, X9]. Before discussing
covariance between arbitrary states, let’s begin with successive states, Xt and Xt+1.
First we define the linearisations that give rise to the moment-matched distributions
of the control Ut and next state Xt+1 given the current state Xt :

Cxy
t

.
= (Σx

t )
−1C [Xt , Yt ] = I,

Cxu
t

.
= (Σx

t )
−1C [Xt , Ut ] =Cxy

t Cyu
t ,

Cxx̃
t

.
= (Σx

t )
−1C

[
Xt , X̃t

]
= [I, Cxu

t ],

Cxx′
t

.
= Cxx̃

t Cx̃x′
t ≈ (Σx

t )
−1C [Xt , Xt+1] ,

(4.25)

where I is a X× X identity matrix, Yt is a noisy observation of Xt , and Cx̃x′
t

.
=

(Σx̃
t )
−1CX̃

[
X̃t , Xt+1

]
is outputted by PILCO’s input-output covariance from its GP

dynamics model. Note the approximate equality in (4.25) is because between Xt and
Xt+1 there exist multiple nonlinear functions (first a controller function, second a dy-
namics model prediction). Even though PILCO’s moment-matching is exact between
individual nonlinear mappings, the moments are not exact through multiple sequen-
tial nonlinear mappings (see Appendix A.2.6). Continuing to use Appendix A.2.6,
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we can approximately compute the covariance between successive states:

C [Xt , Xt+2] ≈ C [Xt , Xt+1] (Σ
x
t+1)

−1C [Xt+1, Xt+2] = Σ
x
t C

xx′
t Cxx′

t+1. (4.26)

And indeed any state-state covariance as a product (which is exact if using linear
controllers and dynamics functions):

C [Xt , Xt+τ ] ≈ Σ
x
t

τ−1

∏
k=0

Cxx′
t+k = Σ

x
t C

xx′
t ...Cxx′

t+τ−1, ∀τ > t. (4.27)

Using the above expression for state-state covariances we can now compute each
and every cost-cost covariance required by (4.24), detailed next.

COST-COST JOINT DISTRIBUTION

We use the following saturating cost function of system state X , parameterised by
goal state x∗ and length scale matrix Λc, defined:

cost(X ;x∗,Λc)
.
= 1− exp

(
−1

2(X− x∗)T
Λ
−1
c (X− x∗)

)
. (4.28)

Here we define the joint distribution of the output of two costs functions:

p

([
cost(X1;x∗,Λc)

cost(X2;x∗,Λc)

])
= N

([
mc

1

mc
2

]
,

[
V c

1 V c
12

V c
21 V c

2

])
, (4.29)

given the joint distribution of both input systems states:

p

([
X1

X2

])
= N

([
µx

1

µx
2

]
,

[
Σx

1 Σx
12

Σx
21 Σx

2

])
. (4.30)

Previous work by Deisenroth and Rasmussen (2011) provides moments for marginal
cost outputs, i ∈ {1,2}:

mc
i

.
= EXi [cost(Xi;x∗,Λc)]

= 1−det(I +Σ
x
i Λ
−1
c )−

1
2

×exp
(
− 1

2(µ
x
i − x∗)T

Λ
−1
c (I +Σ

x
i Λ
−1
c )−1(µx

i − x∗)
)
, (4.31)

V c
i

.
= VXi [cost(Xi;x∗,Λc)]

= −(mc
i −1)2 +det(I +2Σ

x
i Λ
−1
c )−

1
2

×exp
(
− (µx

i − x∗)T
Λ
−1
c (I +2Σ

x
i Λ
−1
c )−1(µx

i − x∗)
)
. (4.32)
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Thus the only remaining term we must derive is V c
12. Let us begin by defining

ei
.
= −1

2(Xi− x∗)T
Λ
−1
c (Xi− x∗), (4.33)

noting

e1 + e2 = −1
2

[
X1− x∗

X2− x∗

]T[
Λ−1

c 0
0 Λ−1

c

][
X1− x∗

X2− x∗

]
. (4.34)

Now we can compute V c
12:

V c
12

.
= CX [cost(X1;x∗,Λc), cost(X2;x∗,Λc)]

= EX [cost(X1;x∗,Λc) · cost(X2;x∗,Λc)]−mc
1mc

2

= EX
[(

1− exp(e1)
)(

1− exp(e2)
)]
−mc

1mc
2

= EX [exp(e1 + e2)]− (1−mc
1)(1−mc

2)

= (1−mc)− (1−mc
1)(1−mc

2), (4.35)

where V c
21 = (V c

12)
T and mc is simply the expected cost of the concatenated input state

(distributed by (4.30)) and augmented parameters:

mc = EX

[
cost

([
X1

X2

]
;

[
x∗

x∗

]
,

[
Λc 0
0 Λc

])]
, (4.36)

computed as per (4.31). This concludes how to compute the joint distribution of any
cost-cost pair of outputs given the joint distribution of the state-state pair of inputs.

4.4.2 EXPERIMENTS

We compare PILCO against the four aforementioned Bayesian optimisation explo-
ration strategies using the cart double-pole swing-up task (Fig. 4.2). PILCO optimises
the expected cumulative-cost µC

e only, whereas the algorithms using UCB, PI, EI,
and GI use the full distribution µC

e and ΣC
e .

Looking at Fig. 4.2, the state of the system is x = [ẋ1, θ̇2, θ̇3,x1,θ2,θ3], consist-
ing of the horizontal position of the cart x1, the two angles θ2 and θ3 (both mea-
sured anti-clockwise from vertically up) and the time derivatives of these three
variables, ẋ1, θ̇2 and θ̇3. To begin the task, the initial state is both poles hanging
downwards: xt=0 = [0,0,0,0,π,π]. To control the system, we define a controller’s
functional form as a mixture of 200 radial basis functions. The cart can move
horizontally, with an applied external force −20N ≤ u ≤ 20N, and coefficient of
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Fig. 4.2 The cart-double-pole swing-up task. The cart and double pendulum dynamical system
consists of a cart with mass m1 and an attached double pendulum. The double pendulum consists of
two pieces, the first of mass m2 and length ℓ2 and the second has mass m3 and length ℓ3. Both joints
are frictionless and unactuated, the double pendulum can move freely in the vertical plane.

friction b = 0.1Ns/m. The other physical values are m1 = m2 = m3 = 0.5kg and
ℓ2 = ℓ3 = 0.6m. Thus, the moment of inertia around the midpoint of each part
of the pendulum is I2 = I3 = 0.015kg ·m2. The observation noise standard devia-

tion is: diag
(
(Σε

y)
1
2
)
= [1mm/∆t,1◦/10/∆t,1◦/10/∆t,1mm,1◦/10,1◦/10], where time

is discretised as ∆t = 0.05s. Each episode is time horizon of 1.5s (i.e. T = 30 timesteps),
with a total number of E = 20 episodes per experiment. All parameter values are
summarised Table D.3.

The cart double-pole system is a nonlinear dynamical system of six state dimen-
sions, generally difficult to control in closed loop due to its complexity (a chaotic
system), it’s degree of underactuation, and the sensitivity of the stability of the
system w.r.t. θ3 in Fig. 4.2. As a well-known chaotic system, predicting long-term
behaviour of the cart double-pole accurately in open-loop is very difficult. The
system is also underactuated, with only a scalar control output to apply a bounded
force u horizontally to the cart in which to control six state variables.

The task goal is to swing-up and then balance the double pendulum vertically
above x1 = 0, and the discrepancy is the distance d. We use the same saturation
cost function as PILCO: 1− exp(−1

2d2/λ 2
c ) where λc = 1.0m and d2 is the squared

Euclidean distance between the pendulum’s end point and its goal (0, l2 + l3). We
execute 10 experiments per algorithm (with different random seeds). During each
experiment, we evaluate the controller at each episode by averaging over 10 rollouts.
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4.4.3 RESULTS AND ANALYSIS

We initially test each BO heuristic using a system of standard Gaussian bandits,
The main reason is to verify that the first approximation made in the GI heuristic
discussed § 4.3.4, of a finite horizon approximated as infinite, is not too crude. Then,
we move onto the more complicated cart double-pole swing-up task.

GAUSSIAN BANDITS TASK

Consider a countably infinite number independent standard Gaussian bandits the
robot can choose from. The i’th bandit returns a constant cost Ci, where Ci is uncertain
a priori. The robot’s subjective prior on each cost Ci ∀ i ∈ N is independent and

identically distributed: Ci iid∼ N (0,1). Assume the observation noise σy = 0 such that
the uncertainty on Ci will immediately collapse after a single selection. Since our
experimental setup with the cart double-pole will use 1 random rollout (Algorithm 1,
line 2), followed by E = 20 controlled rollouts, totalling Ê = 21 rollouts, we will
use the same setting for our Gaussian bandits task. So, the robot only has Ê = 21
iterations in which to select a new or previously played bandit i before the game is
over. The goal, as usual, is to minimise the cumulative cost across Ê-many bandit
selections.

Results in Table 4.2 show all four algorithms, including PILCO which optimises
the mean cumulative-cost only BO(Cψ

e ) = E
[
Cψ

e
]
= µC

e . Both the probability of im-
provement (PI) and expected improvement (EI) perform better than PILCO which
had no explicit exploration strategy, whilst the approximate Gittins index (GI) ob-
tains the best cumulative-cost averaged over the Ê episodes.

Table 4.2 Performance of each algorithm, a pure exploitation learner and four BO
algorithms on standard Gaussian bandits. The experiment lasts Ê = 21 episodes. Costs are
averaged over the Ê episodes and again averaged over 105 repeats of the experiment from scratch.
Accuracy of the empirical results in the first row is approximately 10−3, which is tends to zero in the
infinite limit of experiments.

BO(Cψ
e ) random PILCO UCB UCB UCB PI EI GI

param. β=0.1 β=0.3 β=1.0

E
[

Jempirical

Ê

]
0.0006 -0.723 -0.775 -0.876 -1.081 -0.905 -0.864 -1.093

E
[

Jpredicted

Ê

]
0 -0.722 -0.773 -0.874 -1.078 -0.564 -1.177
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An advantage of some of these BO algorithms, is an ability to predict in advance
how much each exploration strategy is expected to reduce the loss. For our baseline,
random selection of bandits, we predict zero loss reduction, since each bandits’
latent cumulative-cost is sampled form a standard Gaussian of zero mean. The
UCB heuristics use the mean cumulative cost µC

e and an additive βσC
e terms. We

can predict the performance of PILCO using geometric series. Note, PILCO can
be seen as a UCB heuristic also, with β = 0. To predict the loss, we first sum up
the possible sequence of events, weighted by their probabilities, noting that by
following UCB (optimising µC

e −βσC
e , the method will continually re-execute the

first standard bandit (i.e. controller) whose cost is observed to be less than −β . If
after e many samples of positive costs, a cost below −β is sampled, then that bandit
will be resampled Ê− e many remaining iterations. We first note the probability
of sampling less and greater than −β is respectively Φ(−β ) and Φ(β ). Second, we
note – using truncated Gaussian identities (Appendix A.2.5) – the expected value of
sampling a standard Gaussian, conditioned on the sample being less and greater
than −β , is respectively φ(β )/(Φ(β )−1) and φ(β )/Φ(β ), where φ is the standard
Gaussian density and Φ the cumulative density. So the predicted reduction in loss
using PILCO’s greedy strategy is predicted to be

E
[
Jpred.|UCB

]
=

Ê

∑
e=0

Φ(−β )Φ(β )e
(
(Ê− e)

φ(β )

Φ(β )−1
+ e

φ(β )

Φ(β )

)
+Φ(β )Ê Ê

φ(β )

Φ(β )

= φ(β )

[
− Ê +1

Φ(−β )
+

1−Φ(β )Ê+1

Φ(β )Φ(−β )2 +
ÊΦ(β )ÊΦ(−β )−1

Φ(β )

]
(4.37)

which we use to compute some elements of the bottom row in Table 4.2. We could
further use our analytical solution in (4.37) to optimise β , to avoid setting it as
a free parameter. The optimal β = 0.968, yields an average predicted return of
E
[
Jpredicted/Ê

]
=−1.079.

Since both PI and EI are exploration heuristics, and not derived on a set of
principles on how to optimise the total loss J (indeed neither is a function of the
number of trials remaining Ê) there is not necessarily any obvious way to estimating
how much each heuristic can reduce J. Nevertheless EI outputs values in the same
units of our objective function (opposed to PI, which outputs unitless probabilities)
being the expected amount of improve for a single episode’s loss. By computing
the expected improvement on sampling one standard Gaussian, against a reference
value C∗ itself a standard Gaussian, we get the value −0.564. However, we again
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note our approximate prediction of−0.564 is constant w.r.t. Ê, whereas the empirical
value grows with Ê.

GI is instead a principled Bayes-optimal approach for selecting which bandit
to execute. Using (4.20), our approximate upper bound is GIupper(µe = 0,σC

e =

1,σy = 0,γ = 1−1/Ê) =−1.177, where E = 20. The meaning of value −1.177 is the
average predicted reduction of an episode’s loss Je (averaged over episodes). I.e.
we expect the total loss J to decrease by up to −1.177 · Ê = −24.71 by following
the approximate GI exploration strategy. Notice the predicted value −1.177 is not
equal to the empirical value −1.093 in Table 4.2. As mentioned previously, in § 4.3.4,
our GIupper method corresponds to the true Gittins index under three assumptions:
1) a finite horizon may be approximated as an infinite horizon, using γ = 1−1/Ê,
2) bandit costs are uncorrelated 3) bandit uncertainty is reduced to zero after one
execution. In our bandits experiment, whose results are Table 4.2, we satisfied
assumption 2 and 3 above by using independent bandits and observation noise σy = 0
respectively. However, assumption 1 remains violated, resulting in a discrepancy
between predicted and empirical GI values.

CART DOUBLE-POLE SWING-UP TASK

Each algorithm was then tested on the cart double-pole swing-up task 20 times. The
results of the cumulative-cost per episode for each algorithm is shown Fig. 4.3. The
goal was to minimise the total cumulative-cost, totalled across all E = 20 episodes,
summarised by Table 4.3. The results show some exploration schemes increase
PILCO’s data efficiency. Interestingly PI performs worse than PILCO. However, PI
is known to succumb to highly local search when the posterior belief over nearby
inputs are highly correlated (Brochu et al., 2010). We discussed this pathological case
of PI targeting high probabilities of insignificant improvements previously, § 4.3.2.
Perhaps also for the reason of strong cost-correlation between controllers of similar

Table 4.3 Cart double-pole cumulative-cost performance, averaged over all episodes

BO(Cψ
e ) PILCO UCB UCB UCB PI EI GI

param. β=0.1 β=0.3 β=1.0

Eseeds

[
Jempirical

E

]
18.82 19.48 18.97 19.07 19.11 19.00 18.58

standard error 0.46 0.60 0.42 0.65 0.58 0.63 0.55

Vseeds

[
Jempirical

E

]1/2
2.05 2.69 1.87 2.91 2.61 2.80 2.45
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(a) PILCO compared with UCB baselines.
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(b) PILCO compared with Bayesian optimisation algorithms.

Fig. 4.3 Cart double-pole swing-up performance per training episode. Shown is the mean
cumulative-cost performance ± the standard error (the standard deviation of performance divided by√

# seed). Each algorithm improves per episode from a maximum cumulative-cost of T +1 = 31, and
asymptotes towards the final E = 20 episode.
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parameterisations, our approximate GI strategy did not outperform the EI heuristic
(the true GI is only valid under zero correlations). Both GI and EI outperform the
original PILCO. Interestingly, GI had a much smaller loss variance than EI. Due to
the limited number of trials, 20 repetitions for each type of exploration strategy, we
cannot state with high statistical significance that the EI and GI exploration strategies
outperform PILCO with high confidence. However, Table 4.3 still provides some
indication that EI and GI assist PILCO to explore more initially, and find superior
controllers after the fixed number of trials have ended, shown Fig. 4.3.

A limitation of this current exploration work is poor performance on systems
with either nontrivial process noise εx

t or observation noise ε
y
t . The reason is our

method cannot distinguish between subjective dynamics uncertainty in p( f ) from
inherent sources of uncertainty that persist such as εx

t and ε
y
t . As our system cannot

distinguish between reducible subjective forms of uncertainties and persistent sources,
the ‘exploration’ strategy is easily misled into repeatedly executing some controller
πψ with large cumulative-cost variance whose variance is dominated by persistent
uncertainties. This is not the point of BO at all, the point is to target reducible forms
of uncertainty which give the robot a chance to learn if a controller has potentially
very small losses or not, information that will be gained only once a controller’s
cumulative-cost variance collapses. Thus, our work in the above section is only
suitable when total uncertainty is dominated by subjective model uncertainties. We
experimented above using deterministic dynamics because of this limitation, but in
the next chapter we extend into exploration with stochastic dynamics.

4.5 *DISTINGUISHING BETWEEN ALEATORIC AND EPIS-
TEMIC UNCERTAINTY

In the previous section, we discussed how controllers cumulative-cost have high
variance are attractive to execute from the Bayesian optimisation point of view.
This was because high variance indicated exploratory value: perhaps revealing
that the controller πψ has much lower cumulative-cost µC

e+1 than currently believed
(i.e. might be much lower than our current mean-posterior) µC

e . The benefit is
that surprisingly-good controllers can be exploited repeatedly in future episodes,
whereas surprisingly-poor controllers need not be executed again once revealed
how poor they really are. However, a complication is that a high variance ΣC

e

is not always an indication that more can be learned from executing controller
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πψ . For example, the cumulative-cost variance might be entirely due to inherent
and persistent system stochasticities. In this § 4.5, we investigate how to detect
if the variance ΣC

e is reducible before executing the system, i.e. whether we can
learn something potentially useful from our exploratory efforts. We present a new
exploration strategy to the reader, an improvement over our previous strategy in
§ 4.4. However, this section nevertheless represents unfinished work as we have
not yet conducted experimentation to validate our approach. As such we mark this
section optional to the reader.

We begin by considering two distinct types of uncertainty – considered by other
engineering fields concerned with risk (Der Kiureghian and Ditlevsen, 2009; Ferson
et al., 2004) – each possibly contributing to ΣC

e :

• Aleatoric uncertainties: inherent randomness. For example, process noise εx
t , ob-

servation noise ε
y
t , random state initialisation εx0 . In our time-invariant control

setting, we assume all aleatoric uncertainties are persistent and irreducible.

• Epistemic uncertainties: subjective uncertainty arising from limited knowl-
edge about the true dynamics f . We quantify our subjective uncertainty of
the dynamics with a probabilistic model p( f ). Since the robot improves its
knowledge of the dynamics after each episode, epistemic uncertainties are
reducible.

Since ΣC
e is caused by both irreducible-aleatoric and reducible-epistemic uncertainties,

we can distinguish how much ΣC
e is caused by epistemic uncertainties if we can

simulate how reducible ΣC
e if we were to collect more data. Note the variance

reduction (ΣC
e+1 - ΣC

e ) can only be caused by model uncertainties being updated
with more data. Thus, to develop an improved exploration strategy over those
of Table 4.3 which use the form BO(Cψ

e ), we will swap the random input Cψ
e for

another which only contains reducible variance. To get a handle on if variance is
reducible, we fantasise about possible uncertain future data De+1 = {Xe+1,ye+1}
and re-simulate, to understand if such data reduces variance (under expectation of
uncertain future data). We compute the expected reduction in variance as ∆ΣC .

=

ΣC
e −EDe+1

[
ΣC

e+1
]
. We again note that any variance reduction must be the result of

improving system knowledge, since it cannot be a result of the unalterable system
stochasticity. The uncertain future data for the next episode has a distribution,
computed from the current predictive joint state distribution from § 4.4.1: De+1 ∼
p(X0:T |ψ) = p(X0,X1, ...,XT |ψ), given the dynamics model p( f ) at episode e. By law
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of iterated expectation and variance:

µ
C
e = EDe+1

[
µ
C
e+1

]
, (4.38)

Σ
C
e = EDe+1

[
Σ
C
e+1

]
+VDe+1

[
µ
C
e+1

]
, (4.39)

and so the reducible variance

∆Σ
C .

= Σ
C
e −EDe+1

[
Σ
C
e+1

]
(4.40)

= VDe+1

[
µ
C
e+1

]
, (4.41)

has an alternate interpretation. From (4.41) we see the reducible variance is equiva-
lent to asking how might uncertain future data De+1 affect the future cumulative-
cost-mean? Often in control and RL, we are greedy about optimising the cumulative-
cost-mean, as PILCO did. And when the dynamics f is known with certainty, the
Bayes-optimal control does reduce to ‘greedily’ optimising µC

e = µC
e+1. However,

under epistemic uncertainty, µC
e ̸= µC

e+1 in general, complicating the search for a
Bayes-optimal controller. Yet (4.41) relates our approximate Bayes-optimal solution
to PILCO by similar optimisation of some µC . The only difference is we intend to
optimise an uncertain µC

e+1, opposed to the certain µC
e . As before, we use BO for

exploration. Instead of optimising BO(Cψ
e ) as we did previously § 4.4, this § 4.5

optimises BO(µC
e+1). Also note by considering only the following episode’s potential

data De+1, and not De+2, our BRL exploration algorithm remains myopic. Although,
if we choose GI as our BO method, our algorithm is only partially-myopic: myopic
by only considering learning one more timestep, yet non-myopic by being sensitive
to the number of episodes remaining Ê, unlike PI and EI. Indeed if σy = 0, then our
‘myopic’ algorithm GIlower is equal to the ‘non-myopic’ GItrue.

4.5.1 GAUSSIAN PROCESS VARIANCE REDUCTION

Now that we have decided our new objective function to minimise, BO(µC
e+1) (where

BO could be PI, EI, or GI), we discuss how to compute the approximate distribution
of µC

e+1, fitted as Gaussian. To compute ∆ΣC we must first inspect our current dynam-
ics model p( f ) trained with a current datasetD=D1:e, to understand how our model
might update p( f |De+1) and how predictions might be affected given additional
currently-uncertain future data De+1. This subsection addresses approximate com-
putation of the expected variance reduction of a GP’s prediction, a reduction caused
by conditioning on uncertain future data De+1. The equations (4.42) – (4.54) within
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Fig. 4.4 Schematic of expected variance. Input distribution below. Coloured (RGB) are GP
posteriors conditioned on fantasy data and corresponding output distributions. Marginal output
distribution in a line. This figure was produced by Mark van der Wilk.

this subsection were not derived by myself, but by Mark van der Wilk during a
collaboration.

For intuition into how our dynamics might change, let us consider Monte Carlo
(MC) estimation. Say we sample from uncertain De+1 ∼ p(X0:T ) a single fantasy
datum with input x̂t and output x̂t+1. Given {x̂t , x̂t+1}, we can update our model
p( f |x̂t , x̂t+1) to understand the effects on individual state predictions. In Fig. 4.4 we
show different ways a GP dynamics model posterior can changes in response to
three different MC-sampled new datum {x̂t , x̂t+1}; red, green, and blue. All existing
data is shown with blue star symbols, and the new data shown is possibly either red,
green, or blue star. In general the input and output of the fantasy datum is uncertain,
but as an approximation, we assume the fantasy-input x̂t is certain (located at its
mean prediction). Notice how the posterior of the GP changes in different ways,
with red, green, blue outlines showing how the posterior would change depending
on the fantasy-output value. Depending how the model posterior changes; red,
green, or blue; the GP will predict differently. Our uncertain-input to the GP is
given by the Gaussian on the horizontal axis, and the three possible predictions are
given by the solid coloured Gaussian distributions on the vertical axis. The lone
thin-red outline on the vertical axis represents the marginal variance output (before
conditioning on a fantasy datum). Notice the marginal variance is larger than the
average-variance of the red-green-blue distributions. This means we anticipate the
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GP posterior and predictions will reduce their variance, we just do not yet know in
what way.

MC samples may help to intuitively understand how GP predictions change but
they are too computationally heavy for our purposes (the computational complexity
of PILCO would increase a factor of the amount of MC samples). Instead, we seek a
tractable analytic approximation, integrating out the unknown fantasy observation
x̂t+1. We begin with some new notation:

x̃t : input state, xt+1 : output state,

x̂t : fantasy input, x̂t+1 : fantasy output,

X : current GP inputs, y : current GP observations,

X̄ : X augmented with fantasy input, ȳ : y augmented with fantasy output,

σ2
x̂t+1

: variance of fantasy output, D̂ : {x̂t , x̂t+1} fantasy datum.

The rank-1 update of our GP dynamics model gram matrix KXX given a single new
fantasy datum D̂ = {x̂t , x̂t+1} is:

K̄−1
X̄ X̄ =

[
KXX kX̄ x̂t

kT
X̄ x̂t

kx̂t x̂t

]−1

=

K−1
XX +K−1

XX kXx̂t kT
Xx̂t

K−1
XX σ

−2
x̂t+1|D̂

−K−1
XX kXx̂t σ

−2
x̂t+1|D̂

−kT
Xx̂t

K−1
XX σ

−2
x̂t+1|D̂

σ
−2
x̂t+1|D̂

 , (4.42)

σ
−2
x̂t+1|D̂

.
=

(
kx̂t x̂t +σ

2
x̂t+1
−kT

Xx̂t
K−1

XX kXx̂t

)−1
. (4.43)

The term to estimate (detailed over the next 2 pages) is the expected variance of a
predicted state conditioned on fantasy data:

Σ̄
x
t+1,e+1 ≈ Ex̂t+1

[
Vx̃t , f [xt+1|x̃t , x̂t+1]

]
= Ex̂t+1

Ex̃t

[
V f [xt+1|x̃t , x̂t+1]

]︸ ︷︷ ︸
Constant w.r.t. x̂t+1

+Vx̃t

[
E f [xt+1|x̃t , x̂t+1]

] , (4.44)

using an approximate equality since we assume Σx
t+1,e+1 is only affected by a single

data-point within De+1, even though De+1 will contain T new data-points which
will correlate and each affect every timestep dynamics prediction in general. We
now discuss how to compute the first and second term of (4.44).
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EXPECTATION OF THE VARIANCE

For the first term in (4.44) we can ignore the expectation over x̂t+1:

Ex̂t+1

[
Ex̃t

[
V f [xt+1|x̃t , x̂t+1]

]]
= Ex̃t

[
kx̃t x̃t −kT

X̄ x̃t
K̄−1

X̄ X̄ kX̄ x̃t

]
= Ex̃t

[
kx̃t x̃t −

[
kXx̃t

kx̂t x̃t

]T

K̄−1
X̄ X̄

[
kXx̃t

kx̂t x̃t

]]
= Ex̃t

[
kx̃t x̃t −kT

Xx̃t
K−1

XX kXx̃t

]
−σ

−2
x̂t+1|D̂

Ex̃t

[(
kT

Xx̂t
K−1

XX kXx̃t − kx̂t x̃t

)T(kT
Xx̂t

K−1
XX kXx̃t − kx̂t x̃t

)]
= Σ

x
t+1−σ

−2
x̂t+1|D̂

[kT
Xx̂t

K−1
XX ,−1]Ex̃t

[
kX̄ x̃t

kT
X̄ x̃t

]
[kT

Xx̂t
K−1

XX ,−1]T︸ ︷︷ ︸
≥ 0

, (4.45)

which is the original expected variance (before fantasy data) minus a non-negative
reduction term.

VARIANCE OF THE EXPECTATION

Now we compute the second term in (4.44). Starting with the variance of the
expectation, without the expectation over the fantasy data:

Vx̃t

[
E f [xt+1|x̃t , x̂t+1]

]
= Vx̃t

[
kT

X̄ x̃t
K̄−1

X̄ X̄ ȳ
]
= Tr

(
Vx̃t

[
kX̄ x̃t

]
K̄−1

X̄ X̄ ȳȳTK̄−1
X̄ X̄

)
. (4.46)

Now the expectation over fantasy output x̂t+1 is:

Ex̂t+1

[
Vx̃t

[
E f [xt+1|x̃t , x̂t+1]

]]
= Tr

(
Vx̃t

[
kX̄ x̃t

]
K̄−1

X̄ X̄Ex̂t+1 [ȳȳT] K̄−1
X̄ X̄

)
, (4.47)

where the expectation over the outer product is:

Ex̂t+1 [ȳȳT] =

[
yyT yE [x̂t+1]

yTE [x̂t+1] E
[
x̂2

t+1
]] , (4.48)

E [x̂t+1] = kT
Xx̂t

K−1
XX y, (4.49)

E
[
x̂2

t+1
]

= σ
2
x̂t+1|D̂

+E [x̂t+1]
2 . (4.50)

Ex̂t+1 [ȳȳT] is not rank 1 anymore, but it can be decomposed into a R(N+1)×2 matrix:

Ex̂t+1 [ȳȳT] = ỹỹT, ỹ =

[
y 0

E [x̂t+1] σx̂t+1|D̂

]
. (4.51)
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Now we can rewrite Ex̂t+1

[
Vx̃t

[
E f [xt+1|x̃t , x̂t+1]

]]
as a trace with ỹ on the outside

again, which allows for much easier evaluation:

Ex̂t+1

[
Vx̃t

[
E f [xt+1|x̃t , x̂t+1]

]]
= Tr

(
ỹTK̄−1

X̄ X̄Vx̃t

[
kX̄ x̃t

]
K̄−1

X̄ X̄ ỹ
)
, (4.52)

K̄X̄ X̄ ỹ =

[
K̄−1

X̄ X̄ y 0
0 σ

−1
x̂t+1|D̂

]
, (4.53)

∴ Ex̂t+1

[
Vx̃t

[
E f [xt+1|x̃t , x̂t+1]

]]
= yTK−1

XXVx̃t [kXx̃t ]K
−1
XX y+Vx̃t [kx̃t x̃t ]σ

−2
x̂t+1|D̂

.(4.54)

We are now able to compute Σ̄x
t+1,e+1 from (4.44) as the sum of (4.45) and (4.54),

using identities in Appendix B.1 to compute the final Ex̃t [·] and Vx̃t [·] terms. However,
we have only approximately derived Σ̄x

t+1,e+1 for a 1-rank update, but in general
Σ̄x

t+1,e+1 will update according to all T datum in De+1 requiring a T -rank update.

4.5.2 SYSTEM SIMULATION WITH DUAL UNCERTAINTIES

In § 4.5.1 we outlined how the certainty of a GP’s predictions is expected to change
upon receiving a single additional datum D̂. However, we only discussed how such
predictions change for a single timestep, from t to t +1. Given we need to compute
how the cumulative-cost changes given more data, we must understand the relation
between successive state prediction changes from time t = 0 through to t = T . I.e.
the state variance Σ̄x

t,e+1 is affected by new data De+1 both directly, by affected the
model p( f |De+1) which outputs Σx

t,e+1, and by affecting an input to model Σx
t−1,e+1.

In this subsection we discuss PILCO’s system simulation phase with aleatoric and
epistemic uncertainties, before discussing controller evaluation in § 4.5.3.

Similar to PILCO, we simulate forwards a sequence of uncertain states, from
X0 to XT . The difference now is two types of uncertainty exist, not one. In PILCO

each state distribution was distributed Xt ∼ N (µx
t ,Σ

x
t ), but now we keep distinct

the contributions from aleatoric and epistemic random sources, which combined
have variance Σx

t . As such, we ‘divide up’ Σx
t into two additive components, 1) the

(expected) reduced variance Σ̄x
t,e+1 from (4.44), and 2) the amount of reduction ∆Σx

t =

Σx
t − Σ̄x

t,e+1. If the dynamics f were linear then simulation could proceed as PILCO did
with the trivial change of exchanging Σx

t for Σ̄x
t,e+1 at each timestep t. Unfortunately,

nonlinear dynamics bring two issues, 1) the certainty-equivalence principle no
longer applies, so an exchange of variances would erroneously-alter the expected
state mean trajectory, violating (4.38), and 2) both variance types are not easily
decoupled, since ∆Σx

t affects Σ̄x
t+1,e+1 and Σ̄x

t,e+1 affects ∆Σx
t+1. Nevertheless, in § 3.3

we developed a framework to forwards simulate hierarchical belief distributions.
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Here, hierarchical is not as important as the fact that § 3.3 handles two variance
components, B∼N (M,V ) where M ∼N (µm,Σm), with Σm the ‘variance of the mean’
and V the ‘mean of the variance’. Similarly, we can define the latent state to compose
dual variance types. So instead of Xt ∼N (mx,Σx

t ), we can use:

Xt ∼N
(
Mx, Σ̄x

t,e+1
)
, Mx ∼N (µx

t ,∆Σ
x
t ) , (4.55)

which we are able to simulate using the mathematics of GP predictions given
hierarchically-distributed objects in Appendix B.4, and used previously in Chapter 3.

Now, to summarise what we have derived so far. We discussed: 1) how an
uncertain state Xt can propagate forwards to a hierarchically-uncertain state Xt+1

due to random data De+1 in § 4.5.1, and 2) how a hierarchically-uncertain state
Xt can propagate forwards to another hierarchically-uncertain state Xt+1 without
new data in § 3.3 and Appendix B.4. However, what remains is doing both: how a
hierarchically-uncertain state Xt can propagate forwards to another hierarchically-
uncertain state Xt+1 under uncertain data De+1, which we leave to future work.

4.5.3 CONTROLLER EVALUATION WITH DUAL UNCERTAINTIES

Here we discuss how to evaluate a controller given a simulation of dual uncertain-
ties. Controller evaluation is necessary for controller optimisation as we saw in
Algorithm 1. Because the cost function is nonlinear, we must continue to handle the
hierarchical-nature of the state distributions with two distinct variances which, as
noted in § 4.5.2, are not easily decoupled. Given (4.55) as input, the hierarchical cost
moments can be computed by randomising the definition of the usual cost moments,
cost-mean mc (4.31) and cost-variance V c (4.32) on page 112. The expected cost-mean,
variance of the cost-mean, and expected cost-variance are respectively:
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with derivations in Appendix E.5, function E [cost(·)] is computed with (4.31), and
V [cost(·)] with (4.32).
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Now we have most tools required to distinguish aleatoric from epistemic uncer-
tainty in the cumulative-cost Cψ , our goal from the beginning of § 4.5. One important
tool we still lack is a hierarchical form of the cost-cost covariance, analogous to the
non-hierarchical cost-cost covariance of § 4.4.1. However, if we approximate the
joint cost-cost by ignoring all cross covariance terms (which as stated previously,
contribute between 40-85% of the cumulative-cost variance), and focus on each cost’s
marginal hierarchical-distributions (4.56) – (4.58) then the approximate cumulative-
cost uncertainties are
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where ∆ΣC is the expected change in cumulative-cost uncertainty, discussed pre-
viously (4.40), a reduction which can only result from improving our epistemic
knowledge about the plausible set of dynamics p( f ). Thus our new suggested
exploration strategy, accompanied with our previous strategies are:

1. Original PILCO from § 2.5, minimises µC
e , defined (4.23),

2. Modified PILCO that directs exploration with cumulative-cost uncertainty
(§ 4.4) by minimising BO(Cψ

e ), where Cψ
e ∼N

(
µC

e ,Σ
C
e
)
, defined (4.22) – (4.24),

3. Modified PILCO that directs exploration with epistemic cumulative-cost uncer-
tainty (§ 4.5) by minimising BO(µC

e+1), where µC
e+1 ∼N

(
µC

e ,Σ
C,epistemic
e

)
, from

(4.62).

We were able to show in § 4.4 than the second algorithm used exploration to
yield improved data efficiency on the first algorithm above – the original PILCO. We
think the third algorithm holds even greater promise, although work remains to 1)
complete the system simulation in § 4.5.2, 2) improve the accuracy of the controller
evaluation in § 4.5.3 by considering cost-cost covariance under dual uncertainties,
and 3) experimental validation.
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4.6 DISCUSSION AND FUTURE WORK

In this chapter on exploration we discussed the problem of dual control: how to con-
trol a system well whilst we are simultaneously learning about the system dynamics.
In RL, this problem is often interpreted as a dilemma, between optimising system
performance w.r.t. current system knowledge (exploitation), and testing different
control outputs intended to improve our system knowledge (exploration). In the
context of episodic PILCO, exploitation seeks to minimise the loss of the current
episode, whereas exploratory control outputs might minimise the loss of multiple
future episodes. Often in the RL literature, such exploration is undirected, where
robots decide exploratory control outputs independent of the robot’s uncertainties
(e.g. Boltzmann exploration), or worse: completely independent of system knowl-
edge altogether (e.g. ε-greedy exploration) discussed in § 4.1. By contrast we argued
directed exploration is preferable, exploring according to the robot’s system uncer-
tainties in § 4.2. Exploration is much more data efficient if the robot specifically
targets its known unknowns of the system. Reducing uncertainties in the dynamics is
certainly preferable to undirected exploration, yet only really matters if it results in
a reduction in loss uncertainty – the only objective we care about. By focusing on
reducing dynamics uncertainties only, the robot is susceptible to situations where
much can be learned about a dynamical system – none of which improves the loss
function. Whilst developing a more certain dynamics model is interesting, the value
of that information could be zero. Thus, we would rather focus our dynamics learn-
ing on what helps the robot optimise the loss function and reduce loss uncertainty.
We characterised how to balance minimising expected loss against loss uncertainty
by a reduction in total loss: the cumulative loss across all episodes (4.3).

To compute cumulative-cost uncertainties, we used PILCO’s probabilistic dy-
namics model. First we computed the a Gaussian approximation of the full joint
distribution over states X0, ...,XT in § 4.4.1, from which we computed the full joint
distribution over costs at each points in time (§ 4.4.1), approximated as Gaussian. Do-
ing so gave us the ability to compute both the cumulative-cost-mean (as the original
PILCO did), but additionally the cumulative-cost-variance (part of our extension of
PILCO). Using the uncertainty over the cumulative cost, we devised an exploration
strategy in § 4.4, balancing exploitation (via cumulative-cost-mean) with exploration
(via cumulative-cost-variance) using Bayesian Optimisation (BO).

We investigated four BO algorithms in § 4.3 to balance exploration and exploita-
tion, including a simplified version of upper confidence bounds (UCB), probability
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of improvement (PI), expected improvement (EI), and Gittins index (GI). ‘Bayes opti-
mal’ control would be preferable to using BO, since Bayes optimal control optimises
the total loss (summed over all episodes) w.r.t. the robot’s belief function and number
of episodes remaining. However, Bayes optimal control is intractable in general.
Thus, we investigated the use of myopic and tractable BO methods for exploration
instead. Both PI and EI are common exploration strategies in the BO community. By
contrast, GI originates from the bandits literature and is perhaps less familiar to the
BO community. Nevertheless GI is an important BO algorithm, a principled method
that, under certain conditions, yields Bayes-optimal control. Being a Bayes-optimal
controller, Gittins index considers discounting factors according to a deep lookahead.
By contrast, both PI and EI are myopic heuristics and do not consider discounting
factors (which we approximately transformed into the number of episodes remain-
ing). As such, when experimenting with Gaussian bandits in § 4.4.3, the GI heuristic
outperformed both PI and EI. The GI is only Bayes optimal under the following
assumptions: 1) the horizon is infinite, 2) cumulative costs between controllers are
independent, 3) a controller’s cumulative-cost-variance reduces to zero after the next
episode’s execution, 4) the search space over controller parameterisations is convex.
All the above assumptions are violated in the case of PILCO, yet the consequences of
violating these assumptions are not necessarily drastic. As such our approximate
lower bound of the true GI still performed strongly. For future work, we could satisfy
the first assumption by simply changing our experimental tasks to minimising total
losses over infinite horizons instead of finite. In regards to the fourth assumption,
most control algorithms settle for locally optimal controllers, as does PILCO, since
the optimisation surface for nonlinear control is non-convex in general. Apart from
BO, a wider variety of Bayesian reinforcement Learning (BRL) algorithms were also
discussed. For a recent survey for BRL algorithms see Ghavamzadeh et al. (2016).

Our experimental results on the cart double-pole swing-up task in § 4.4.3 sug-
gested that exploration is an important addition to improving PILCO’s data effi-
ciency. Although, each experiment could take several hours to conduct, so only
20 experiments per seven algorithms were conducted. Future work could redo
such experiments many more times before statistically significant claims can be
made about the benefit of EI or GI exploration over the purely-exploitative PILCO.
However, § 4.4.3 did indicate that both EI and GI are probably a benefit to PILCO’s
data efficiency. Interestingly we saw that the PI strategy performs worse than PILCO.
PI only gauges the probability of improvement a controller has of previously tested
controllers, not how much better the controller might be. Consequently, PI is known
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to suffer very local search (even more local than PILCO): only searching in very close
proximity to what was tested before (i.e. very similar controller parameterisation).
For future work, we would consider a higher-dimensional control task such as the
unicycle used in PILCO with 10 state dimensions. More complex control tasks would
require more episodes to learn control, hopefully separating the performances of
each exploration strategy more, since the value of exploration is greater with more
episodes in which to learn.

Several questions remain for future work. The most important is whether the
method for distinguishing epistemic uncertainty from aleatoric in the cumulative-
cost in § 4.5 is accurate or effective, which would require experimental validation.
Other improvements to § 4.5 could also be made to improve an estimate of the
epistemic uncertainty including:

• Using a full rank-T update of the gram matrix K considering the next dataset
De+1 will contain T many transition data. Currently we only conduct rank-1
updates at each timestep, which neglects how all T new datapoints effects the
prediction of a single state p(Xt).

• Considering how the joint-effects on how new data effects predictions p(Xt)

and p(Xt+1), not each in isolation.

• Complete our derivation on the recursive nature of predictive changes. I.e.
changes to p(Xt) will effect p(Xt+1) directly, since p(Xt) causes p(Xt+1).

• Consider fantasy input uncertainty

• Derive the hierarchical cost-cost joint representation.

Other future work follows. First, much correlation exists between controllers
nearby in controller-parameters space, and executing one controller informs us
about most other controllers. Currently we have no way to evaluate the information
gained about any other controller than the controller we intend to execute. Whilst
our assumption of independence is not ideal, it is only made for tractability. Second,
our BRL extension of PILCO is myopic. By only considering the next episode’s
potential data De+1, and not De+2, we are using a myopic belief lookahead RL
algorithm. We could potentially deepen our lookahead at the expense of additional
computation, although it is unclear how tractable this would be.



CHAPTER 5

DATA EFFICIENT DEEP

REINFORCEMENT LEARNING

All work in Chapter 5 was done in an equal-effort collaboration with Yarin Gal.
This final research-based chapter investigates data efficiency in an emerging subfield
of reinforcement learning: deep reinforcement learning. Deep learning has previously
proven useful in supervised learning tasks, adept at learning rich features to extract
from high dimensional inputs. Recently, interest has increased for applying deep
methods to reinforcement learning tasks too, due to an ability to train controllers
with high dimensional observations, such as pixels. To date, most deep RL methods
are model free: using deep architectures for the action value function (Q function) or
policy.

Unfortunately, model free methods (deep or not) suffer from data inefficiency,
explained in § 2.3.1. As a result, many state-of-the-art deep RL methods (being model
free) require thousands of trials, equivalent to hundreds of thousands of observed
transitions, to learn simple tasks, even when the observation dimensionality is low
(Lillicrap et al., 2015). When real-world trials involve real cost, time and resources,
data efficiency is critical.

Data efficiency is improved if we model the dynamics – termed model based RL
– discussed in § 2.4. Model based methods discover better controllers with fewer
data since dynamics models can better generalise the system dynamics knowledge
gained to unobserved states. Probabilistic modelling especially offered even greater
data efficiency under dynamics uncertainty (typical of low-data regimes, when data-
efficiency is a concern), by considering dynamics uncertainty throughout planning
and prediction. PILCO for instance (§ 2.5) used non-deep probabilistic Gaussian
Process (GP) models to achieve state-of-the-art data efficiency on low dimensional
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control tasks including the cart-pole. PILCO learns the cart-pole swing-up task
in just 6-7 episodes (not thousands) by analytically propagating uncertain state
distributions through a GP dynamics model. This allows the robot to consider the
longterm consequences (loss) of a particular controller parameterisation w.r.t. all
plausible dynamics models. We saw dynamics uncertainty play a crucial role in
PILCO, with MAP estimation shown to fail in Chapter 3.

Recent work on model-based deep RL still rely on large amounts of data for
unsupervised training of auto-encoders (Stadie et al., 2015; Wahlström et al., 2015),
before a controller is learned. Work by Wahlström et al. (2015) in particular used
a method similar to PILCO, but without considering model uncertainty. Instead,
(deterministic) model predictive control (MPC) simulated state trajectories, leaving
the approach susceptible to the problem of model bias.

In this chapter, we instead propose a probabilistic deep model-based RL to achieve
data efficient deep RL. We achieve much greater data efficiency than other state-of-
the-art deep RL methods. Our framework is similar to PILCO, replacing PILCO’s
probabilistic GP model with a Bayesian probabilistic Neural Network (BNN). Whilst
we have not applied our system to tasks with high dimensional observations, we
show Bayesian deep RL is much more data efficient in low dimensions using the
cart-pole swing-up task. Conceivably the same holds true for higher dimensional
observation tasks, which is why we are interested in deep methods to begin with,
but this is left for future work.

5.1 DEEP PILCO

We now describe our method – Deep PILCO – for data efficient deep RL. Our method
is similar to PILCO: both methods follow Algorithm 1. The main difference of Deep
PILCO is its dynamics model. PILCO uses a GP which can model the dynamics’
output uncertainty, does not scale to high dimensional inputs or size of training
data (see Table 2.1). In contrast, Deep PILCO uses a deep neural network, capable
of scaling to with data (only if required by the complexity of the task – noting our
goal is still data efficiency) and potentially capable of scaling to high dimensional
observations spaces. Like PILCO, our policy-search algorithm alternates between
fitting a dynamics model to observed transition data, evaluating the controller using
dynamics model predictions of future states and costs, and then improving the
controller.
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Replacing PILCO’s GP with a deep network is not trivial, since we wish our
dynamics model to maintain its probabilistic nature, capturing output uncertainty
and also input uncertainty.

5.1.1 OUTPUT UNCERTAINTY

First, we require output uncertainty from our dynamics model, critical to PILCO’s
data efficiency. Typically, NNs are trained by optimising deterministic weights to
minimise some loss function. Such non-probabilistic inference methods do not cap-
ture subjective uncertainty in system dynamics to yield output model uncertainty.
Whilst NN models are clearly powerful, such inference method limit their applica-
bility, especially in low data settings. Instead, we use Bayesian (probabilistic) Neural
Networks (BNN). BNNs represent model uncertainty with the use of a posterior
distribution over the weights of the NN (MacKay, 1992).

Unfortunately, the true posterior of a BNN is intractably complex. However, sev-
eral approximations exist. Hamiltonian Monte Carlo is perferred for low-dimensional
NNs, although not effective in high dimensions (Gal, 2016b, chapter 2). Whilst
we only experiment with a low-dimensional system in this chapter, our intention
is to work towards a methods capable of high-dimensional deep RL. Variational
autoencoders provide another approximate solution, but require much data, contra-
vening our data efficiency objective. Variational inference finds a distribution from
a tractable family that minimises the Kullback-Leibler (KL) divergence to the true
posterior. Another variational approximation we instead use is from Gal and Ghahra-
mani (2015). Gal and Ghahramani (2015) show that dropout can be interpreted as
a variational Bayesian approximation, where the approximating distribution is a
mixture of two Gaussians with small variances and the mean of one of the Gaussians
fixed at zero. The uncertainty in the weights induces prediction uncertainty by
marginalising over the approximate posterior using Monte Carlo integration. This
amounts to the regular dropout procedure only with dropout also applied at test
time, giving us output uncertainty from our dynamics model.

This approach also offers insights into the use of NNs with small data. Gal and
Ghahramani (2015) show that the network’s weight decay can be parameterised as a
function of dataset size, dropout probability, and observation noise. Together with
adaptive learning-rate optimisation techniques, the number of parameters requiring
tuning becomes negligible.
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5.1.2 INPUT UNCERTAINTY

A second difficulty with NN dynamics models is handling input uncertainty. To
plan under dynamics uncertainty, PILCO analytically propagates state distributions
approximately through the dynamics model (Algorithm 1, line 5). To do so, the
dynamics model must pass uncertain dynamics outputs at time t as the uncertain
input into the dynamics model at time t + 1. As far as theauthor is aware, no
analytical method is known to approximately transform input uncertainty through
a NN that closely resembles the true (intractible) transformed distribution. To
feed a distribution into the dynamics model, we thus resort to particle methods
(Algorithm 2). This involves sampling a set of particles from the input distribution
(step 1 in Algorithm 2), passing these particles through the BNN dynamics model
(and sampling the uncertain output, step 7 in Algorithm 2), which yields an output
distribution of particles.

Algorithm 2 Step 5 of Algorithm 1: Simulate system trajectories from p(X0) to p(XT )

1: Initialise set of P particles xp
0

iid∼ p(X0).
2: for p = 1 to P do
3: Sample BNN dynamics model weights W p.
4: end for
5: for time t = 0 to T do
6: for each particle x1

t to xP
t do

7: Evaluate BNN with weights W p and input particle x̃p
t , obtain output zp

t .
8: end for
9: Calculate mean µt and variance Σt of {z1

t , ...,z
P
t }.

10: Sample set of P particles xp
t+1 ∼N (µt ,Σt).

11: end for

A similar approach using a particle filter for dynamics model training was at-
tempted unsuccessfully in the past with PILCO. McHutchon (2014, section 3.7)
encountered several problems optimising hyperparameters of a model with particle
methods, the main problem being the abundance of local optima in the optimisa-
tion surface, impeding their BFGS optimisation method, which PILCO also uses to
optimise the controller. McHutchon (2014) suggested that this may be due to the
finite number of particles P used and their deterministic optimisation. To avoid
these issues when optimising the controller, we randomly re-sample a new set of
particles at each optimisation step, giving us an unbiased estimator for the objective
(Algorithm 1, line 6). In conjunction we use a stochastic optimisation procedure
Adam (Kingma and Ba, 2014) instead of BFGS.
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We found that fitting a Gaussian distribution to the output state distribution at
each timestep, as PILCO does, is of crucial importance (steps 9-10 in Algorithm 2).
Moment matching avoids multi-modalities in predictive state distributions. Fitting
a multi-modal distribution with a (wide) Gaussian causes the cost function to span
many high-cost states, often resulting in a larger expected cost for the unimodal fitted
distribution than the original multi-model distribution (Deisenroth et al., 2015). By
forcing a unimodal fit, the algorithm penalises controllers that cause the predictive
states to bifurcate, often a precursor to a loss of control. In this sense, the Gaussian
fit is a form of reward-shaping (Ng et al., 1999) where the cost function altered in
a way that improves learning speed. Using a smooth unimodal fit (Gaussian) to
the dynamics outputs, combined with our smooth cost function, results in smooth
loss gradients (reduced local optima and discontinuities), helpful for controller
optimisation via gradient decent (this is explained further, with examples, in the
experiments section). We hypothesised this to be an important modelling choice
used by PILCO and assessed this assumption in our experiments.

5.1.3 SAMPLING FUNCTIONS FROM THE DYNAMICS MODEL

Unlike the original PILCO’s GP model, Deep PILCO can sample individual plau-
sible dynamics functions from our probabilistic dynamics model and following a
single function throughout an entire episode. Two advantages of sampling from
a probabilistic model are 1) a directed exploration strategy is easily implemented
using Thompson sampling (discussed § 4.2.1), and 2) to consider temporal corre-
lation in model uncertainty. Temporal correlations reflect that – whilst the robot is
(epistemically) uncertain about the dynamics function – whatever the true dynam-
ics function is, it is consistent accross time! The true function is not ‘re-sampled’
from the robot’s uncertainty at each point in time. PILCO does not consider such
temporal correlation in model uncertainty between successive state transitions, but
rather treats each timestep as independence. This independence probably results
in PILCO underestimating state uncertainty at future timesteps (Deisenroth et al.,
2015). Fig. 5.3 (explained in detail below) shows episodes obtained with a fixed
controller and sampled dynamics model functions for the cart-pole swing-up task.
They are generated by sampling particles from the initial distribution, and sampling
and fixing a dropout mask throughout the episode for each particle.



136 Data Efficient Deep Reinforcement Learning

5.2 EXPERIMENTS

This section describes the experimental setup we used to compare our Deep-PILCO

algorithm against the original PILCO, using the cart-pole swing-up task as a bench-
mark. We follow with an analysis of the experiment results in § 5.3. The cart-pole
swing-up task (Fig. D.1 on page 177) is a standard benchmark for nonlinear con-
trol due to the nonlinearity in the dynamics, and the requirement for nonlinear
controllers to successfully swing up and balance the pendulum.

The cart-pole swing-up is a continuous state, continuous controls, discrete time
task. In Chapter 3 we used the cart-pole with significant observation noise, however,
here we will now assume negligible observation noise. Our goal is again to balance
the pendulum upright. The system state x comprises the cart position, pendulum
angle, and their time derivatives x = [xc,θ , ẋc, θ̇ ]

T. Task parameters (summarised
Table D.2) used are pendulum length l = 0.6m, cart mass mc = 0.5kg, pendulum mass
mp = 0.5kg, time horizon T = 2.5s, time discretisation ∆t = 0.1s, and acceleration
due to gravity g = 9.82m/s2. In addition, friction resists the cart’s motion with a
damping coefficient b = 0.1Ns/m. The cart-pole’s motion is described with the
differential equation:

ẋ =
[

ẋc, θ̇ ,
−2mplθ̇ 2s+3mpgsc+4u−4bẋc

4(mc +mp)−3mpc2 ,
−3mplθ̇ 2sc+6(mc +mp)gs+6(u−bẋc)c

4l(mc +mp)−3mplc2

]
,

using shorthand s = sinθ and c = cosθ . Both the initial latent state and initial belief

are assumed to be iid: X0
iid∼ N

(
µx

0 ,Σ
x
0
)

where µx
0 ∼ δ ([0m,πrad,0m/s,0rad/s]T) and

(Σx
0)

1
2 = diag([0.2m,0.2rad,0.2m/s,0.2rad/s]).

We use a saturating cost function as PILCO did: 1− exp
(
−1

2d2/λ 2
c
)

where λc =

0.25m and d2 is the squared Euclidean distance between the pendulum’s end point
(xp,yp) and its goal (0, l).

For our deep dynamics model we experimented with dropout probabilities
pdropout = 0, 0.05, 0.1, and 0.2. We found that pdropout = 0.05 performed best and
used this in our comparison to PILCO. As per Algorithm 1 we alternate between
fitting a dynamics model and optimising the controller. To fit the dynamics model
we use 5× 103 optimisation steps, each step using 100 particles (batch size). To
optimise the controller we use 103 steps, each step with batch size of 10. Weight
decay of the NN dynamics model is set to 10−4. The dynamics model architecture
has 200 units with 2 hidden layers and sigmoid activation functions. Our controller
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is a RBF network with R = 50 units. Like Lillicrap et al. (2015), we use a “replay
buffer” of finite size (the most recent 10 episodes), discarding older episodes of data.

As per Algorithm 1 line 2, we first generate a single random episode when
experimenting with each method, before iterating over Algorithm 1’s main loop
for 100 episodes (40 for PILCO due to its time complexity). At each iteration a
single episode of data is acquired by executing the cart-pole for 2.5s, generating
25 transition datum per episode. We evaluate each method (for visualisation, not
optimisation) at each iteration by calculating the controller’s cost averaged over 50
randomly sampled initial states from p(X0). Both PILCO and Deep-PILCO use the
same physical simulator and cost function settings summarised Table D.2. Thus,
the online time for each algorithm is 2.5 seconds per episode. Comparing offline
time, PILCO averages 2.3 minutes per episode for the first 40 episodes using CPUs1

whereas Deep-PILCO requires 8.0 minutes per episode on a GPU. Thus, Deep-PILCO

is slower to converge than PILCO, yet our main goal is data efficiency,
Fig. 5.1 compares the average cost (y-axis) per episode (x-axis) of PILCO, Deep-

PILCO, and other deep-RL algorithms to help visualise data efficiency. We can see
PILCO converges after 7-8 episodes, whereas Deep-PILCO requires about 100 before
reaching an average cost slightly worse than PILCO. However, Deep-PILCO does
learn to achieve the task within 20-25 episodes only, not as data-efficicent as PILCO,
but much more than competiting deep-RL algorithms shown by vertical bars in
Fig. 5.1. We see in Fig. 5.2 the progression of deep PILCO’s fitting as more data is
collected. Slightly more than 20 episodes of data are required, to control the task.
Between 10-20 episodes are required to model the dynamics well using a BNN.

Our model can be seen as a Bayesian approach to data efficient deep RL. We
compare to recent deep RL algorithms (Lillicrap et al. (2015) and Gu et al. (2016)).
Lillicrap et al. (2015) use an actor-critic model-free algorithm based on deterministic
policy gradients. Gu et al. (2016) train a continuous version of model-free deep
Q-learning using imagined episodes generated with a learnt model. For their low
dimensional cart-pole swing-up task Lillicrap et al. (2015) require approximately
2.5×105 steps to achieve good results. This is equivalent to approximately 2.5×103

episodes of data, based on Figure 2 in Lillicrap et al. (2015) (note that Lillicrap et al.
(2015) used time horizon 2s and time discretisation ∆t = 0.02s, slightly different from
ours; they also normalised their reward, which does not allow us to compare to their
converged reward directly). Gu et al. (2016) require approximately 400 episodes for
model convergence. These two results are marked with vertical lines in Fig. 5.1 (as

1 PILCO is easily parallelised when training X GP models for each output dimension
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Fig. 5.1 Average costs per trial and convergence comparison on cart-pole swing-up task.
Shading shows one and two standard deviations of the average-costs’ standard error given 40
experimental repeats for both PILCO and Deep-PILCO. Vertical lines show estimates of number of
episodes required for model convergence (judged by successful balancing of the pendulum most
experimental repeats) for PILCO (5 trials), Deep-PILCO (42 trials), Gu et al. (2016) (∼ 400 trials),
and Lillicrap et al. (2015) (∼ 2,500 trials).

the respective papers do not provide high resolution episode-cost plots) obtained
from personal communication with the authors of both papers, after adjusting to
their different time horizon and discretisation into account. Both Gu et al. (2016) and
Lillicrap et al. (2015) used different cost functions, which is hard to compare with,
but even if they reach lower costs using a common utility function, Fig. 5.1 shows
their approaches require orders of magnitudes more episodes to solve the same task,
and are much less data efficient deep RL-algorithms than Deep PILCO.

Lastly, we report model run time for both Deep PILCO as well as PILCO. Deep
PILCO can leverage GPUs, and took an average of 5.3 hours total offline over 40
episodes. Time complexity for simulation (with gradient information) is technically
constant w.r.t. the data set size N for our experiments, since the dynamics model
is only trained on the 10 most recent episodes (so that the NN would give higher
weighting to newer information more likely useful in training a controller than older
data). However, as tasks become more complex the model will require more data,
likely scaling linearly with N. In addition, time complexity is cubic w.r.t. input
dimensionality X. Yet using the GPU and an ability to parallelise the operation
in a NN, the cubic effect is unnoticed for X < 100. PILCO’s simulation by contrast
took 1.5 hours for E = 40 episodes running on the CPU, with time complexity:
O(N2X2(X+U)2) (see Table 2.1). With more episodes collecting more data PILCO

slows down more and more between each episode. Consequently, PILCO is unsuited
for tasks requiring a large number of episodes, nor high-dimensional state tasks.
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Fig. 5.2 Progression of model fitting and controller optimisation as more episodes of data
are collected. We show the pendulum angle θ (see Fig. 3.6) per timestep to visualise whether the
system is learning to balance the pole. The goal is to swing the pendulum up such that
mod(θ ,2π)≈ 0. The green lines are samples from our (latent) physical simulator of the cart-pole.
The blue distribution is our Gaussian-fitted predictive distribution of states at each timestep. (a)
After the first episode the model fit (blue) does not yet have enough data to accurately capture the true
dynamics (green). Thus the controller performs poorly: the pendulum remains downwards swinging
between 2π and 4π . (b) After 10 episodes, the model fit (blue) predicts very well for the fist 13
timesteps before separating from the true rollouts (green). The controller has stabilised the pendulum
at 0π for about 10 timesteps (1 second). (c) After 20 episodes the model fit and controller are slightly
improved. (d) From episode 30 onward, the dynamics model successfully captured the true dynamics
and the controller successfully stabilises the pendulum upright at 0π radians most episodes.
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5.3 RESULTS AND ANALYSIS

We next analyse the results from the previous section, providing insights based
on the different setups we experimented with. First we note that Deep PILCO is
more data inefficient than PILCO – but not by much. Deep-PILCO requires more
data than PILCO and a 3.5 times more offline to train the dynamics model (a figure,
which continually improves with more episodes than 40 since PILCO’s dominant
time scaling follows a quadratic relationship with the amount of data observed) and
optimise a controller. One of PILCO’s limiting factors at the moment is its lack of
support of GPUs. We demonstrate this deficiency by giving GPU run time for our
model, which is supported out of the box.

5.3.1 DYNAMICS MODELS OF FINITE CAPACITY

PILCO’s dynamics model is a GP, a nonparametric model of infinite capacity, effec-
tively able to memorise all observed transition data. As more data are observed,
the model’s flexibility increases to fit the additional data. NNs on the other hand
are parametric with finite capacity, and must “smooth” over different data points
when fitting to the data. This poses a difficulty in our setting since when fitting a
NN model to a sequence of episodes, the same importance would be given to new
episodes as old ones. But new episode’s worth of data are much more important for
the robot to learn, and with many old episodes a NN might not model the new ones
well.

One possible solution would be to use a larger NN with each iteration, making
inference slower as we get more data. Another solution is to downweigh older
episodes, and use a weighted Euclidean loss (which can be seen as a naive form of
“experience replay”). We experimented with an exponential decay, such that data
from the oldest episode either had weight 0.01, 0.1 or 0.4. A disadvantage of this
approach is slower optimisation. It requires several passes over the training dataset
with most observations being inconsequential to the optimisation and did not work
well in practice for any decay rate. We suspect this to be due to the finite capacity of
the NN, where the function complexity keeps increasing but the model complexity
does not.

Our solution was instead to keep the last 10 episodes of data only, similar to
Lillicrap et al. (2015)’s “replay buffer”. A disadvantage of this approach is that the
robot ‘forgets’ bad episodes, and will continuously attempt to explore these even
with a good controller. The effect is that – even after 50 episodes – the controller
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would fail to stabilise the pole every 4th or 5th episode thereafter. Such behaviour
degrades Deep PILCO’s performance, and one of the main factors explaining its
inferior performance to PILCO (Fig. 5.1). A better solution, that retains all training
data is no doubt possible, left for future work.

5.3.2 PARTICLE METHODS AND MOMENT MATCHING

In our method we moment-matched the output distribution at each timestep before
propagating it to the next timestep. This forces the state distribution to be unimodal,
avoiding bifurcations. We hypothesised in § 5.1 that this is an important modelling
choice in PILCO. To assess this hypothesis, we experimented with an identical
experiment setup to the above, but without moment matching. Instead, we pass the
particles unchanged from the output of one timestep to the next.

Fig. 5.3 shows the dynamics model fit (in a similar plot to Fig. 5.2). The robot
is able to swing the pendulum up and balance the pendulum inverted for 0.5s,
but then loses control and has to swing it up again. Notice the state trajectories
bifurcating at the origin, with half of the states swinging clockwise, and the other
half counter-clockwise. The controller’s parameterisation in Fig. 5.3 is at a local
optimum (improving the cost of clockwise trajectories can be at the expense of
counter-clockwise trajectories), with the controller optimisation procedure unable to
escape this bifurcating behaviour after 100 episodes (regardless of whether the 10
episode memory restriction is in place or not).

Imposing a moment matching modelling assumption, the robot incurs much
higher cost by averaging over a Gaussian fit at time t = 9 in Fig. 5.3 than by averaging
over the true bimodal distribution at time t = 9, whose values of pendulum angle
θ are 0π and 2π , both of which indicate an inverted pendulum near its goal, each
incurring little cost. Instead of having half of the trajectories at 2π and the other half
at 0π (resulting in overall low cost), a Gaussian fit to these trajectories placing most
probability mass in the centre at θ = π which entails large cost, even though we see
there is very little probability the pendulum will have θ = π at t = 9. In addition, the
state variance is predicted to be large, which in this case causes overestimation of
the predicted cost variance (by covering low cost θ = 0π,2π , and high cost θ = π)
interfering with directed exploration strategies discussed Chapter 4. By sampling
new particles from a Gaussian fitted distribution at t = 9, almost all particles have
high cost. For timesteps after such bifurcation with unimodal fitting and saturating
cost function, then the Gaussian is stretched so wide that state distributions have
small partial derivatives w.r.t. the controller parameters, however have large full
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Fig. 5.3 Pendulum angle θ (from Fig. 3.6) as a function of timesteps t. Each trajectory
corresponds to a single particle sampled from the initial distribution at t = 0. A controller is
optimised using Deep PILCO and fixed. Blue trajectories are pendulum angle following the learnt
dynamics model with the fixed controller, and green trajectories are pendulum angle following the
system (true) dynamics with the same controller. Each blue trajectory follows a single sampled
function from the dynamics model (applying the same dropout mask at each timestep). The learnt
dynamics model matches the system dynamics, and the particle distribution successfully captures the
multi-modal predictive distribution of future states. However, without moment matching we could
not optimise a good controller from these multi-modal distributions.

derivatives w.r.t. the controller parameters due to the chain rule: whatever happened
in previous timesteps that led up the bifurcation. This directs controller optimisation
towards robot behaviours of low cost that do not bifurcate.

5.3.3 IMPORTANCE OF UNCERTAINTY IN DYNAMICS MODELLING

We assessed the importance of a probabilistic dynamics model in our setting. This
can easily be done by setting the dropout probability to pdropout = 0, which results
in a MAP estimate. As can be seen in Fig. 5.4a, even after 75 episodes the dynamics
model did not converge to anything sensible. This suggests that input uncertainty,
originating solely from the initial state variance Σx

0 is insufficient, and propagating
the input distribution with a MAP estimate will not necessarily avoid model bias.
Similar behaviour is observed when the dropout probability is too large (Fig. 5.4d)
presumably as the model underfits. Dropout probabilities of 0.05 and 0.1 seem to
work best (Fig. 5.4b and Fig. 5.4c). Note though that suitable dropout probabilities are
dependent on model size. Larger NNs may necessitate larger dropout probabilities
to adequately capture output uncertainty.



5.3 Results and Analysis 143

time step t

pe
nd

ul
um

an
gl

e
θ

(r
ad

ia
ns

)

(a) Dropout = 0 (MAP)

time step t

pe
nd

ul
um

an
gl

e
θ

(r
ad

ia
ns

)

(b) Dropout = 0.05

time step t

pe
nd

ul
um

an
gl

e
θ

(r
ad

ia
ns

)

(c) Dropout = 0.1

time step t

pe
nd

ul
um

an
gl

e
θ

(r
ad

ia
ns

)

(d) Dropout = 0.2

Fig. 5.4 Effects of dropout probabilities on the dynamics model after 75 episodes. Each
x-axis is timestep t, and each y-axis is pendulum angle θ . MAP estimate fails to capture the
dynamics as it offers no probabilistic output (the depicted uncertainty is that of the propagated input
distribution). Too high dropout probability (0.2) does not allow the model to learn the system
dynamics.
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5.4 DISCUSSION AND FUTURE WORK

In this chapter we laid some foundations to apply the PILCO framework to higher
state-dimensional control tasks. The time complexity of learning to control with
PILCO with GP prediction (with gradients) scales O(X4) and difficult to parallelise.
Our new algorithm presented this chapter, Deep PILCO, instead uses Bayesian
Neural Networks (BNN), scaling only O(X3) and it is easily parallelised. Although
our experiments in § 5.2 were still low dimensional, we have made a step towards
high-dimensional learning of control with PILCO by replacing PILCO’s GP dynamics
model with a BNN, a nontrivial task. Neural networks are commonly used for image
processing, with pixel inputs of thousands of dimensions. BNNs are not typically
used for such tasks which is why we opted for a scalable BNN inference using Gal
and Ghahramani (2015). A remaining challenge for high-dimensional PILCO is to be
able to compress a high dimensional input space into a much smaller latent space,
which a dynamics model can use for forwards simulation, propagating uncertain
state inputs and producing uncertain state outputs for the purpose of controller
evaluation. We plan to build on these foundations to scale the model to high X in
future work.

We demonstrated that BNNs can mitigate model bias when learning control with
a small amount of data by following PILCO’s framework. PILCO’s framework used
probabilistic dynamics models, using probability theory as a principled method
for handling subjective uncertainties a robot has over the set of plausible dynamics
functions that might exist. In addition, we compared Deep PILCO against three
similar algorithms by averaging the performance over multiple runs of a 100 episode
cart-pole swing-up task, Fig. 5.1. However, Deep-PILCO discovered converged to
higher-cost controllers on average, and required 3.5 times the offline processing time,
and required 8-9 times more data to invert the pendulum in the cart-pole task that
PILCO required. Thus whilst PILCO outperformed Deep PILCO in each of the above
three metrics on the cart-pole setup, we hope successful utilisation of a scalable BNN
dynamics model will be scalable to pixels in future work, which PILCOcannot scale
to.

By replacing PILCO’s GP model with a BNN, several choice for BNN parame-
ters existed which required tuning. In this chapter, we investigated 1) automatic
discovery of how much data to retain in our ‘replay buffer’, 2) how the model fit
improves per episode by projecting the simulation of state trajectories along only
a single dimension, the pendulum angle (Fig. 5.2), 3) analysed particle methods
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vs moment-matching (Fig. 5.3), and 4) compared dropout parameter values and
inference settings (Fig. 5.4).

An exciting set of options also exist for future work:

1. Observation noise: We can easily extend the dynamics model to consider
observation noise – even heteroscedastic observation noise (Gal, 2016a). For
example, heteroscedastic observation noise exists in using a camera to ob-
serve the position of moving objects. The speed of the pendulum increases
uncertainty in observing the pendulum’s position due to blurring of the im-
age. Capturing observation noise can be challenging with the standard PILCO

framework, but would be a simple extension in ours.

2. Exploration: We can increase data efficiency further by updating Deep PILCO

using directed-exploration via Thompson sampling. A NN is easy to sample
from by probabilistically drawing a random dropout mask, which specifies
which nodes are ‘on’ and ‘off’ in proportion to pdropout. The controller could be
optimised w.r.t. the sampled dynamics model, and executed for one episode,
before sampling another NN from the BNN for the following episode.

3. Higher dimensions: Several compression techniques remain available to learn
in high dimensional spaces (e.g. pixels) by compressing down to low dimen-
sional state representations. Ideally one can avoid the use of data inefficient
autoencoders which are unsupervised w.r.t. the cost function, e.g. Wahlström
et al. (2015). Better would be to use a supervised compression, supervised in
the sense that the robot can still predict future costs, required for controller
optimisation.

4. Faster controller optimisation: Gradient smoothness can be increased to better
facilitate the controller optimisation process, smoothing the particles at each
time-point with Gaussian bumps.

5. Multi-modality: Ideally Deep PILCO should handle multi-modal distributions.
Unfortunately, we could not successfully train a cart-pole swing-up controller
without moment-matching at each timestep.





CHAPTER 6

CONCLUSIONS AND OUTLOOK

This thesis addressed several avenues to autonomously learn control of nonlinear
systems efficiently. By ‘efficient’ we mean data efficient: minimal system interaction.
Data efficiency is a goal of this thesis, critical when systems are slow, expensive to
operate, or prone to wear and tear. A previous benchmark of data efficient learning
of control was PILCO by Deisenroth and Rasmussen (2011). Until now, PILCO

had been an unbeaten benchmark of data efficiency, specifically of autonomously
learning black-box, nonlinear, time-invariant, stochastic, continuous-state-action
dynamical systems with real-time episodic tasks. We extended the PILCO framework
in three principle ways: 1) evaluating controllers w.r.t. to a filtering process to learn
effectively under significant observation noise (Chapter 3); 2) balancing exploration
and exploitation to achieve greater data efficiency than PILCO (Chapter 4); and 3)
using Bayesian Neural Network (BNN) dynamics models efficiently (Chapter 5),
to develop a framework for data efficient deep Reinforcement Learning (RL) for
high dimensional applications. By contrast, the original PILCO did not filter, was
purely-exploitative, and limited to Gaussian Process (GP) dynamics models only.

To successfully extend PILCO in various ways, we needed to retain what made
PILCO so successful in the first place. It should go without saying, that data efficient
methods must be able to learn effectively in small-data regimes. Yet small-data
regimes are notorious for causing highly flexible models to overfit. The first tenet
to PILCO’s success we used was the Bayesian probabilistic dynamics modelling.
Bayesian models are critical to overcoming issues of overfitting, by considering a
distribution of plausible dynamics model rather than a single model throughout
prediction, simulation, and controller evaluation. Probabilistic prediction helps
controller evaluation to focus on what will probably improve the controller (according
to the set of plausible models). Deterministic prediction by contrast has no ability
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to distinguish probable-vs-improbable improvements, instead trusting a single
dynamics model with arbitrary values when far from data, easily leading controller
optimisation astray. Bayesian nonparametric models in particular resist overfitting
and underfitting the data, and thus we continued to use a GP dynamics model in
most chapters. One exception was Chapter 5, where we instead use a BNN. Being
Bayesian, our BNN resisted overfitting, however, being parametric we did need to
select the number of nodes carefully. Probabilistic simulations required predictions
of uncertain inputs, which we approximated using MC sampling with our BNN.

A second tenet behind PILCO we continued to follow was: simulations should be
faithful to reality. For accurate controller evaluation, the entire robot should act in
simulation exactly as it acts in reality. For example, PILCO simulated the probabilistic
process of closed-loop control, precisely because it executes closed-loop control.
Similarly, we faithfully simulated closed-loop filtered control, precisely because we
execute closed-loop filtered control. By doing so, we optimised a controller for the
exact context in which it is used and consequently outperformed other methods
which did not, § 3.3.6.

A third tenet is dual control. To learn to control in a data efficient way, a robot
must have a chance to learn actively: to be able to influence which data it collects and
learns from next. Many approaches to control first consider system identification
(dynamics modelling), and only after system identification is complete is a controller
designed. Data-efficient learning requires both system identification and control
design be done simultaneously. PILCO iterates between them, seen Algorithm 1,
which we continued to do.

A forth tenet was the analytic framework for simulating control using Gaussian-
fitted distributions for tractability. An analytic framework has the advantage of
smooth and analytically computable gradient information useful for controller opti-
misation. An advantage of also using GPs is that output moments are analytically
and exactly computable, given Gaussian distributions as input and squared expo-
nential covariance functions. We continued to use an analytic framework to tractably
simulate control, retaining PILCO’s linear time-complexity w.r.t. time horizon, not
exponential as many BRL methods have. We also continued to use bounded cost
functions, not quadratic, to avoid issues of cost of arbitrary-magnitude, which can
dominate the controller optimisation process. Following the four tenets above
resulted in our successful development of various data efficient algorithm. By com-
parison, for the problems we tested, many other algorithms will find near-optimal



6.1 Summary of Contributions 149

controllers eventually, but require much data to do so. We conclude with a summary
contributions and an outlook of interesting avenues to extend this research.

6.1 SUMMARY OF CONTRIBUTIONS

Six novel contributions this thesis has made to data efficient automatic learning of
control are:

1. A probabilistic framework to simulate a process of filtered control for, for
accurate controller evaluation under significant observation noise (§ 3.3).

2. Gaussian process prediction derivations given hierarchically-uncertain inputs,
for an analytic framework of distributions over Gaussian-belief-distributions
(Chapter 3, Appendix B.4).

3. A Markov process, latent-variable belief MDP, which is more general than
POMDPs being able to predict consequences of incorrect prior beliefs and
to accurately evaluate a filtered process which must rely on inaccurate, real-
time dynamics models (§ 3.4).

4. Compute the predictive cumulative-cost distribution of a controller, used for
exploration (§ 4.4).

5. A new Bayesian Optimisation (BO) technique: an approximate lower-bound
of Gittins index for Gaussian bandits (§ 4.3.4).

6. Developed a framework for deep Bayesian RL for data efficient control with
high-dimensional states (Chapter 5).

6.2 OUTLOOK

Here we discuss further interesting avenues of research, what could be done next to
extend the research of this thesis. We discuss some big ideas for improvements first,
and progress to smaller, more specific ideas.

Our experiments with a filtered version of PILCO in § 3.3 demonstrated how
faithful simulators benefit controller performance, since controllers thus designed for
the specific circumstance in which they are then used. A deficiency of our simulation
in § 3.3 is that our uncertain belief-states B∼N (M,V ) considers distributions on the
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belief-mean M but not the belief-variance V . A more accurate simulation would be
to also randomise the variance V matrix too, to analytically simulate distributions of
beliefs states with varying degrees of certainty. Such an approach may be possible
using Wishart distributions over PSD variance matrices.

We showed that exploration and exploitation can improve data efficiency of
PILCO using cumulative-cost distributions and BO exploration heuristics in § 4.4.
However, an important extension yet to be completed is distinguishing aleatoric and
epistemic uncertainties. Aleatoric uncertainty, represents inherent random system
noises, which contribute to cumulative-cost variance, yet offer no exploratory value
(since their randomness is persistent and irreducible). Epistemic uncertainty on the
other hand, represents subjective uncertainty of the system dynamics, which also
contributes to cumulative-cost variance, yet does offer exploratory value (being a
reducible uncertainty). In § 4.4, both forms of uncertainty are confounded in a single
cumulative-cost variance term, and ideally we wish to separate these confounding
factors, to target epistemic uncertainty only. Work in progress for doing so was
discussed § 4.5.

Another exciting avenue for continued research lies in deep RL. In Chapter 4 we
developed a framework for data efficient deep RL. The great promise of deep RL
is learning control of tasks with high dimensional states, observations and control
outputs (e.g. millions of dimensions). However, we have only shown how data
efficient deep RL is possible in smaller, four dimensional state tasks. Future work
could be to incorporate both dimensional-reduction of pixel-space observations and
probabilistic simulation of smaller-dimensional states. Ideally the dimensionality
reduction would be supervised by an ability to predict future simulated costs (critical
for controller optimisation), not unsupervised (e.g. auto-encoders) as some other
methods do (Stadie et al., 2015; Wahlström et al., 2015). The result would be the first
data efficient high-dimensional RL algorithm.

Now we examine some smaller scale improvements to our work. We revisit the
equations of control on page 151, to compare: 1) the general equations of control (6.1)
– (6.6) (copied from § 2.1 for reader convenience), 2) the restricted set of equations
we considered throughout this thesis (6.7) – (6.13) (copied from § 2.6 for reader
convenience), and 3) a potential set of equations we consider for future work: (6.14)
– (6.20).

Observations that can be modelled as the latent state with additive Gaussian
noise is one of our greatest restrictions in this thesis. In (6.9) our sensor model
is much less general than (6.3). Learning a nonlinear observation function is too
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General equations of discrete-time control:

x0 = ε
x0 ∈ RX, (6.1)

xt+1 = f (xt ,ut , t,εx
t ) ∈ RX, (6.2)

yt = g(xt ,ut , t,ε
y
t ) ∈ RY, (6.3)

ut = π(y0:t ,u0:t−1, t,εu
t ) ∈ RU, (6.4)

ct = cost(xt ,ut ,xt+1, t,εc
t ) ∈ R, (6.5)

Jt = ∑
T
τ=tγ

τ−tE [cτ ] ∈ R. (6.6)

Control equations this thesis considered:

x0 = ε
x0 ∈ RX , ε

x0 iid∼ N (µx
0 ,Σ

x
0) , (6.7)

xt+1 = f (xt ,ut)+ ε
x
t ∈ RX , ε

x
t

iid∼ N (0,Σε
x) , (6.8)

yt = xt + ε
y
t ∈ RX , ε

y
t

iid∼ N
(
0,Σε

y
)
, (6.9)

bt|t = p(xt |y0:t ,u0:t−1) ∈ NX , (6.10)

ut = π(E
[
bt|t
]
) ∈ RU , (6.11)

ct = cost(xt) ∈ [0,1] , (6.12)

Jt = ∑
T
τ=tγ

τ−tE [cτ ] ∈ [0,T − t +1] . (6.13)

Control equations for future work:

x0 = ε
x0 ∈ RX , ε

x0 iid∼ N (µx
0 ,Σ

x
0) , (6.14)

xt+1 = f (xt ,ut)+ ε
x
t ∈ RX , ε

x
t

iid∼ N (0,Σε
x) , (6.15)

yt = Cxt +Dut + ε
y
t ∈ RY , ε

y
t

iid∼ N
(
0,Σε

y
)
, (6.16)

bt|t = p(xt |y0:t ,u0:t−1) ∈ NX , (6.17)

ut = π(E
[
bt|t
]
,V
[
bt|t
]
, t)+ ε

u
t ∈ RU , ε

u
t

iid∼ N (0,Σε
u) , (6.18)

ct = cost(xt ,ut ,xt+1, t)+ ε
c
t ∈ R, , ε

c
t

iid∼ p(·), (6.19)

Jt = ∑
T
τ=tγ

τ−tE [cτ ] ∈ R . (6.20)
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complex a topic for this thesis. However, linear control theory is more complete and
mature, and an easier extension is to use a linear observation function seen (6.16).

In Chapter 3 we changed the controller’s input from observation yt to a function
of the belief-mean in (6.11). A better approach would be to decide controls based
on the full belief-distribution. Since we fit belief distributions as Gaussian, an easy
extension of our work is a controller that is a function of both belief-mean and belief-
variance, seen (6.18). Such an extension may improve performance significantly,
giving a controller the flexibility to act ‘cautiously’ under significant uncertainty
about the system state (large belief-variance), otherwise aggressively for a particular
state x if certain (small belief-variance). Additionally inputting time t would be
a trivial change, although the time-invariant dynamical system we consider, the
benefits are limited. Additive iid Gaussian controller noise εu

t seen (6.18) would also
be an easy extension to our analytic Gaussian framework.

We also considered a generic cost function, (6.12), as a function of the state only.
Since our cost function is already arbitrary, the user has reasonable freedom in
specifying the objective ‘undesirability’ of particular systems states xt , opposed to
LQ control methods (see § 2.2.3) which must use quadratic cost functions, regardless
of user preferences. Additionally, we found saturating cost functions useful, since
they bound the cost function (e.g. within [0,1]), useful for systems whose performance
is evaluated with a soft binary of ‘works well’ or ‘is not working’. Quadratic-costs
by contrast can evaluate states as arbitrarily-bad, and can completely dominate the
controller optimisation process as the expense of improving the probably that a
system can be controlled ‘well enough’.

Our cost function could easily be generalised to (6.19), almost as general as (6.5)
except with additive noise. Since the loss function uses expected costs, and cost-
noise represents only aleatoric not epistemic uncertainty (see § 4.5), we can safely
ignore additive iid cost noise from arbitrary probability distributions. The other
cost inputs in (6.19), the control ut and following state xt+1 are straightforward to
integrate into simulation (the complete sequence of states, controls, and associated
cross-covariances required for simulation were already derived in § 4.4.1). Inputting
time is also a trivial change to the cost function, since it is ‘known’ in advance - no
need to simulate it!

Thus, several open questions and avenues for continued research exist, which
can hopefully extend the field of data efficient learning of control even further.
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MATHEMATICAL IDENTITIES

A.1 BASICS OF PROBABILITY

A.1.1 OPERATORS OF RANDOM VARIABLES

Notation: Random variables and matrices are capitalised.
Let X and Y each be a random column vector.

EXPECTATION

EX [ f (X)]
.
=

∫
f (x)p(X = x)dx. (A.1)

COVARIANCE

CX ,Y [X , Y ] .
= EX ,Y [(X−EX [X ])(Y −EY [Y ])T]

= EX ,Y [XY T]−EX [X ]EY [Y ]
T . (A.2)

VARIANCE

VX [X ]
.
= CX [X , X ] . (A.3)
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INDEPENDENCE

X⊥ and Y⊥ are independent if and only if:

p(X⊥,Y⊥) = p(X⊥)p(Y⊥). (A.4)

Independence is a stronger property than zero-covariance: independence implies
zero-covariance, however, zero-covariance does not imply independence.

A.1.2 ALGEBRA OF RANDOM VARIABLES

Let X and Y be (possibly ‘intra’ and/or ‘inter’ dependent) random row vectors, and
A and B be matrices.

Expectation:

E [AX +BY + c] = AE [X ]+BE [Y ]+ c. (A.5)

Variance:

V [AX +BY + c] , = V

[
[A,B]

[
X
Y

]
+ c

]

= [A,B]V

[
X
Y

]
[A,B]T

= [A,B]
(
E

[[
X
Y

][
X
Y

]T]
−E

[
X
Y

]
E

[
X
Y

]T)
[A,B]T

= AV [X ]AT +AC [X , Y ]BT +BCX [Y, A]T +BV [Y ]BT. (A.6)

Covariance:

C [AX +BY +a, CZ + c] = AC [X , Z]CT +BC [Y, Z]CT. (A.7)

A.2 GAUSSIANS

A.2.1 GAUSSIAN DISTRIBUTION

p(X = x) = N (x;a,A) = (2π)−
d
2 |A|−

1
2 exp

[
− 1

2(x−a)TA−1(x−a)
]
. (A.8)
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A.2.2 GAUSSIAN PRODUCT

N (X ;a,A)N (X ;b,B) = ηN (X ;c,C) , (A.9)

where

C = (A−1 +B−1)−1

= A(A+B)−1B

= B(A+B)−1A, (A.10)

c = C(A−1a+B−1b)

= B(A+B)−1a+A(A+B)−1b, (A.11)

η = N (a;b,A+B) . (A.12)

More generally:

∏
i
N (X ; µi,Σi) ∝N (X ; µ,Σ) , (A.13)

where

Σ
−1 = ∑

i
Σ
−1
i , (A.14)

Σ
−1

µ = ∑
i

Σ
−1
i µi. (A.15)

Another generalisation, with square matrix A, and general matrix B,

N (AX ;a,A)N (BX ;b,B) ∝N (X ;c,C) , (A.16)

where

C = (ATA−1A+BTB−1B)−1

= Â− ÂBT(B+BÂBT)−1︸ ︷︷ ︸
K

BÂ, (using (A.81)), (A.17)

c = C(ATA−1a+BTB−1b) (A.18)

= (I−KB)AT(AAT)−1a+Kb, (A.19)

Â−1 .
= ATA−1A. (A.20)



156 Mathematical Identities

A.2.3 GAUSSIAN MARGINALISATION OF A MEAN PARAMETER

∫
N (X ;AY,B)N (Y ;c,C)dY = N (X ;Ac,ACAT +B) . (A.21)

A.2.4 GAUSSIAN MARGINALS AND CONDITIONALS

Let: [
X
Y

]
∼ N

([
a
b

]
,

[
A C

CT B

])

∼ N

[a
b

]
,

[
Â Ĉ

ĈT B̂

]−1
 , (A.22)

then

X ∼ N (a,A) , (A.23)

Y ∼ N (b,B) , (A.24)

X |Y ∼ N
(
a+CB−1(Y −b),A−CB−1CT

)
∼ N

(
a− Â−1Ĉ(Y −b), Â−1) , (A.25)

Y |X ∼ N
(
b+CTA−1(X−a),B−CTA−1C

)
∼ N

(
b− B̂−1ĈT(X−a), B̂−1) . (A.26)

A.2.5 MOMENTS OF FUNCTIONS OF GAUSSIANS

LINEAR AND QUADRATIC FUNCTIONS OF GAUSSIANS

Let X ∼ N (µ,Σ), and inter-independent X⊥ ∼ N (µx,Σx), Y⊥ ∼ N (µy,Σy), be
Gaussian random vectors,

E [AX +a] = Aµ +a, (A.27)

V [AX +a] = AΣAT, (A.28)

E [XXT] = Σ+µµ
T, (A.29)

E [(AX−a)TB(AX−a)] = Tr[ATBAΣ]+ (Aµ−a)TB(Aµ−a), (A.30)

V [XTBX ] = Tr[BΣ(B+BT)Σ]+µ
T(B+BT)Σ(B+BT)µ, (A.31)

E [XT
⊥Y⊥] = µ

T
x µy, (A.32)

V [XT
⊥Y⊥] = Tr[ΣxΣy]+µ

T
x Σyµx +µ

T
y Σxµy. (A.33)
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TRUNCATED UNIVARIATE GAUSSIAN

Let X ∼N
(
µ,σ2), −∞≤ a < b≤∞, φ(·) be the standard normal distribution, Φ(·) its

cumulative distribution function,

α = (a−µ)/σ , (A.34)

β = (b−µ)/σ , (A.35)

EX [X |a < X < b] = µ +σ
φ(α)−φ(β )

Φ(β )−Φ(α)
, (A.36)

VX [X |a < X < b] = σ
2

[
1+

αφ(α)−βφ(β )

Φ(β )−Φ(α)
−
(

φ(α)−φ(β )

Φ(β )−Φ(α)

)2
]
. (A.37)

EXPONENTIAL FUNCTIONS OF GAUSSIANS

Let X ∼N (µ,Σ) be a Gaussian random vector, where µ ∈RD, Σ ∈RD×D (symmetric),
and a ∈ R, b ∈ RD, B ∈ RD×D (symmetric), and Y = exp

(
−1

2(X−b)TB(X−b)
)
,

EX [exp(aXi)] = exp(aµi +a2
Σii/2), (A.38)

EX [Y ] = det(I +ΣB)−1/2 exp
(
− 1

2(µ−b)TB(I +ΣB)−1(µ−b)
)
, (A.39)

VX [Y ] = det(I +2ΣB)−1/2 exp
(
− (µ−b)TB(I +2ΣB)−1(µ−b)

)
−EX [Y ]2 , (A.40)

CX [X , Y ] = ΣEX [Y ]
(

Bb−B(I +ΣB)−1(ΣBb+µ)
)
. (A.41)

Proofs available Appendix E.1.
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TRIGONOMETRIC FUNCTIONS OF GAUSSIANS

Let X ∼N (µ,Σ) be a Gaussian random vector, where µ ∈RD, Σ ∈RD×D (symmetric),
and a ∈ R:

EX [sin(aXi)] = exp(−a2
Σii/2)sin(aµi), (A.42)

EX [cos(aXi)] = exp(−a2
Σii/2)cos(aµi), (A.43)

VX [sin(aXi)] = 1
2

(
1+exp(−a2

Σii)cos(2aµi)
)(

1−exp(−a2
Σii)
)
,(A.44)

VX [cos(aXi)] = 1
2

(
1−exp(−a2

Σii)cos(2aµi)
)(

1−exp(−a2
Σii)
)
,(A.45)

CX [sin(aXi), cos(aXi)] = −1
2 exp(−a2

Σii)sin(2aµi)
(

1−exp(−a2
Σii)
)
, (A.46)

CX
[
Xi, sin(X j)

]
= Σi j exp(−Σ j j/2)cos(µ j), (A.47)

CX
[
Xi, cos(X j)

]
= −Σi j exp(−Σ j j/2)sin(µ j). (A.48)

Proofs available Appendix E.2.

A.2.6 APPROXIMATE COVARIANCE OF FUNCTIONS OF GAUSSIANS

Let X ∼ N (µ,Σ) be a Gaussian-distributed vector, and f and g be two nonlinear
functions:

CX [ f (X), g(X)] ≈ CX [ f (X), X ]Σ−1CX [X , g(X)] (A.49)

= FT
ΣG, (A.50)

F .
= Σ

−1CX [X , f (X)] , (A.51)

G .
= Σ

−1CX [X , g(X)] . (A.52)

Explanation: even though the distribution of f (X) is intractable and non-Gaussian,
f is often of the form where we can often compute F = Σ−1CX [X , f (X)] analytically.
If so, then the matrix F is useful since the linear transformation f̄ (X) = FTX is
Gaussian-distributed and preserves the input-output covariance of X and f (X), i.e.
CX
[
X , f̄ (X)

]
= CX [X , FTX ] = ΣF = CX [X , f (X)]. We can use this linearisation of

function f (a linearisation which considers both µ and Σ) to approximate other
quantities, i.e. : CX [ f (X), g(X)] ≈ CX

[
f̄ (X), ḡ(X)

]
= CX [FTX , GTX ] = FTΣG. Note

the approximation in (A.49) becomes an exact equality if either f or g is linear.
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Consider another, similar problem of computing CX [X , h( f (X))] approximately,
given two nonlinear functions f and h. Then using (A.49) we have:

CX [X , h( f (X))] ≈ CX [X , f (X)]VX [ f (X)]−1CX [ f (X), h( f (X))] (A.53)

= ΣFH, (A.54)

F .
= Σ

−1CX [X , f (X)] , (A.55)

H .
= VX [ f (X)]−1CX [ f (X), h( f (X))] , (A.56)

applicable to situations where F and H are computable. Note a nesting of functions in
(A.53) correspond to multiplication of linearisation terms in (A.54). The relationship
holds for deeper nesting too. Intuitively this makes sense for linear functions (where
the approximate equality becomes exact) since nested linear functions h( f (X)) can
be collapsed to a single linear function (FH)TX . Viewing FH as a single linear
transform, the relationship above is obvious: CX [X , (FH)TX ] = Σ(FH).

A.2.7 GAUSSIAN DERIVATIVES

The following holds for symmetric A, where ⊙ is the element wise product:

∂

∂x
logN (x;a,A) =

∂

∂x

(
− 1

2(x−a)TA−1(x−a)
)

= −A−1(x−a), (A.57)
∂

∂a
logN (x;a,A) = A−1(x−a), (A.58)

∂

∂A
logN (x;a,A) =

∂

∂A

(
− 1

2 log(|A|)− 1
2(x−a)TA−1(x−a)

)
= −1

2A−1 + 1
2A−1(x−a)(x−a)TA−1, (A.59)

∂N (·) = N (·)⊙∂ logN (·) . (A.60)

A.2.8 GAUSSIAN INTEGRALS

Let φ(·) be the standard normal distribution, Φ(·) its cumulative distribution func-
tion,
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∫
zφ(z)dz = −φ(z)+C, (A.61)∫

zφ(a+bz)dz = −b−2(φ(a+bz)+aΦ(a+bz))+C, (A.62)∫
xN
(
x; µ,σ2)dx = −σφ(

x−µ

σ
)+µΦ(

x−µ

σ
)+C. (A.63)

A.3 MATRICES

A.3.1 TRACE

The following reduces a O(n3) operation to O(n2):

Tr(XTY ) = ∑
i j
(X⊙Y )i j. (A.64)

A.3.2 DETERMINANT

The determinate has a geometric interpretation. Consider matrices A ∈ Rn×n, B ∈
Rn×n, C ∈Rn×m, D∈Rm×m, E ∈Rm×n, and a∈R. If we separate the rows (or columns)
of A into n many n-dimensional vectors, then intuitive for the determinate is that
det(A) equals the volume of the n-dimensional parallelepiped the vectors define.

det(A) =
n

∑
i=1

(−1)i+ jai jMi j

=
n

∑
j=1

(−1)i+ jai jMi j, (A.65)

det(A) = ∏
i

eigi(A), (A.66)

det(AT) = det(A), (A.67)

det(aA) = an det(A), where a ∈ R,A ∈ Rn×n, (A.68)

det(AB) = det(A)det(B), (A.69)

det(A−1) = 1/det(A), (A.70)

det(aIn±CD−1E) = an−m det(aD±EC)/det(D), (A.71)

where Mi j is the minor matrix (removing the i’th row and j’th column of matrix A.)
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A.3.3 ADJUNCT

A−1 = 1
det(A)adj(A), (A.72)

adj(AT) = adj(A)T, (A.73)

adj(aA) = an−1adj(A), (A.74)

adj(AB) = adj(B)adj(A). (A.75)

A.3.4 EIGENVALUES

Let matrix A ∈ Rn×n have unsorted eigenvalues eig(A) = [λ1, ...,λn].

det(A) = ∏
i

λi, (A.76)

Tr(A) = ∑
i

λi, (A.77)

eig(AT) = eig(A), (A.78)

eig(Am) = [λ m
1 , ...,λ m

n ], (A.79)

eig(A−1) = [1/λ1, ...,1/λn]. (A.80)

A.3.5 INVERSE

MATRIX INVERSION LEMMA

Let A, C and C−1 +DA−1B be non-singular square matrices, then:

(A+BCD)−1 = A−1−A−1B(C−1 +DA−1B)−1DA−1. (A.81)

BLOCK-MATRIX INVERSE

In general:[
A B
C D

]−1

=

[
(A−BD−1C)−1 −A−1B(D−CA−1B)−1

−D−1C(A−BD−1C)−1 (D−CA−1B)−1

]

=

[
(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−(D−CA−1B)−1CA−1 (D−CA−1B)−1

]
. (A.82)
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A special case is if the full matrix are symmetric and all individual block matrices
are themselves symmetric:[

A B
B D

]−1

=

[
(A−BD−1B)−1 (B−DB−1A)−1

(B−AB−1D)−1 (D−BA−1B)−1

]
. (A.83)

INVERSE WITH AN INFINITE ELEMENT

The inverse of a matrix A whose element Ai j = ∞, is such that (A−1)kl = 0 if k = j or
l = i, otherwise populated by values of submatrix (MI\{i},J\{ j})

−1. I.e. let

A =

a ∞ c
d e f
g h i

 , with submatrix

M12 =

[
d f
g i

]
and

M−1
12 =

[
d̂ f̂
ĝ î

]
. Then

A−1 =

0 d̂ f̂
0 0 0
0 ĝ î

 .
A.4 MATRIX DERIVATIVES

A.4.1 BASIC IDENTITIES

∂X−1 = −X−1(
∂X
)
X−1, (A.84)

∂ (XY ) = ∂ (X)Y +X∂ (Y ), (A.85)

∂ Tr(X) = Tr(∂X), (A.86)

∂ det(X) = det(X)Tr
(
X−1

∂X
)
, (A.87)

∂ logdet(X) = Tr
(
X−1

∂X
)
, (A.88)
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with some proofs available in Appendix E.3. Thus,

∂

∂X
det(X) = det(X)X -T, (A.89)

∂

∂X
logdet(X) = X -T, (A.90)

∂

∂X
det(X−1) = −det(X−1)X -T, (A.91)

∂

∂Xi j
(X−1)kl = −(X−1)ki(X−1) jl, (A.92)

∂

∂ (X−1)
f (X) = −XT

(
∂

∂X
f (X)

)
XT, f : Rn×n→ R, (A.93)

∂

∂ (X−1)i j
f (X)kl = −X jl

(
∂

∂Xkl
f (X)kl

)
Xki, f : Rn×n→ Rn×n. (A.94)

A.4.2 SCALAR-NUMERATOR IDENTITIES

For general matrices X , A, B, C, Di∀i, columns vectors a, b, functions Ui(X)∀i, and
letting:

• Y = AXB+C,

• Z = A∑i
[
(X +Di)

−1]B+C,

• U = ∏iUi(X),

we have:

∂

∂X
aTXb = abT, (A.95)

∂

∂X
logdet(Y ) = ATY -TBT, (A.96)

∂

∂X
logdet(Z) = −∑

i

[
(X +Di)

-TATZ-TBT(X +Di)
-T
]
, (A.97)

∂

∂X
aTY−1b = −ATY -TabTY -TBT, (A.98)

∂

∂X
aTZ−1b = ∑

i

[
(X +Di)

-TATZ-TabTZ-TBT(X +Di)
-T
]
, (A.99)

∂

∂X
U = U⊙∑

i

[
∂

∂X
logUi

]
, (product rule). (A.100)
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A.4.3 MATRIX-NUMERATOR IDENTITIES

Let vectors a and b be instead ei = [0, ..., 1︸︷︷︸
i’th element

, ...0] and e j = [0, ..., 1︸︷︷︸
j’th element

, ...0],

we can rewrite the above expressions as:

∂

∂X
(·)i j =

∂

∂X
eT

i (·)e j = IeieT
j J. (A.101)

Iterating over i and j creates a 4-dimensional tensor, whose first two dimensions
correspond to elements in the matrix-numerator (·), and last two dimensions cor-
respond to elements in the matrix-denominator X . We transform 4D tensors by
partially unwrapping into 2D matrices, whose rows are unwrapped numerators,
columns unwrapped denominators. Let vec(·) a function that unwraps matrices into
vectors in column-major order (enumerating down columns first, then rows):

∂

∂vec(X)
vec(·) = kron(J, IT)

=


J11IT J12IT · · ·
J21IT J22IT · · ·

...
... . . .

 . (A.102)

Example 1:

Let Y = AXB+C,

∂

∂X
eT

i DY−1Ee j, = (−ATY -TDT)︸ ︷︷ ︸
I

eieT
j (E

TY -TBT)︸ ︷︷ ︸
J

,

∴
∂

∂vec(X)
vec(DY−1E) = kron(J, IT)

= kron(ETY -TBT , −DY−1A).

Example 2:

∂

∂X
eT

i ITXJTe j = IeieT
j J,

∴
∂

∂vec(X)
vec(ITXJT) = kron(J, IT).

Note, kron terms can be collected using

kron(A+B,C+D) = kron(A,C)+kron(A,D)+kron(B,C)+kron(B,D). (A.103)
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GAUSSIAN PROCESS PREDICTION

B.1 SOME IDENTITIES

The two functions

q(x,x′,Λ,V )
.
= |Λ−1V + I|−1/2 exp

(
− 1

2(x− x′)[Λ+V ]−1(x− x′)
)

= (2π)D/2|Λ|1/2N
(
x;x′,Λ+V

)
, (B.1)

Q(x,x′,Λa,Λb,V,µ,Σ)
.
= c1 exp

(
− 1

2(x− x′)T[Λa +Λb +2V ]−1(x− x′)
)

× exp
(
− 1

2(z−µ)T
[(
(Λa +V )−1 +(Λb +V )−1)−1

+Σ
]−1

(z−µ)
)
, (B.2)

= c2 q(x,µ,Λa,V )q(µ,x′Λb,V )

× exp
(1

2rT
[
(Λa +V )−1 +(Λb +V )−1 +Σ

−1]−1r
)
,(B.3)

where

z .
= (Λb +V )(Λa +Λb +2V )−1x+(Λa +V )(Λa +Λb +2V )−1x′, (B.4)

r .
= (Λa +V )−1(x−µ)+(Λb +V )−1(x′−µ), (B.5)

c1
.
=

∣∣(Λa +V )(Λb +V )+(Λa +Λb +2V )Σ
∣∣−1/2∣∣ΛaΛb

∣∣1/2
, (B.6)

c2
.
=

∣∣((Λa +V )−1 +(Λb +V )−1)
Σ+ I

∣∣−1/2
, (B.7)
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have the following Gaussian integrals∫
q(x, t,Λ,V )N (t; µ,Σ)dt = q(x,µ,Λ,Σ+V ), (B.8)∫

(t−µ)q(x, t,Λ,V )N (t; µ,Σ)dt = Σ(Λ+Σ+V )−1(x−µ)

×q(x,µ,Λ,Σ+V ), (B.9)∫
(x− t)q(x, t,Λ,V )N (t; µ,Σ)dt = (Λ+V )(Λ+Σ+V )−1(x−µ)

×q(x,µ,Λ,Σ+V ), (B.10)∫
q(x, t,Λa,V )q(t,x′,Λb,V )N (t; µ,Σ)dt = Q(x,x′,Λa,Λb,V,µ,Σ), (B.11)∫

Q(x,x′,Λa,Λb,0, t,V )N (t; µ,Σ)dt = Q(x,x′,Λa,Λb,0,µ,Σ+V ), (B.12)

with some proofs available in Appendix E.4.

B.1.1 DERIVATIVES

For symmetric Λ and V and Σ:

∂ lnq(x,x′,Λ,V )

∂x
= −(Λ+V )−1(x− x′) =−(Λ−1V + I)−1

Λ
−1(x− x′), (B.13)

∂ lnq(x,x′,Λ,V )

∂x′
= (Λ+V )−1(x− x′), (B.14)

∂ lnq(x,x′,Λ,V )

∂V
= −1

2(Λ+V )−1 + 1
2(Λ+V )−1(x− x′)(x− x′)T(Λ+V )−1.(B.15)

Let L = (Λa +V )−1 +(Λb +V )−1, S = ΣL+ I, R = S−1Σ =
[
L+Σ−1]−1, then

∂Q(x,x′,Λa,Λb,V,µ,Σ) = Q⊙∂

(
lnc2 + lnq(x,µ,Λa,V ),

+ lnq(µ,x′Λb,V )+ 1
2rTRr

)
, (B.16)
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where

1
2

∂ rTRr
∂ µ

= rTR
∂ r
∂ µ

= −rTRL, (B.17)

∂ lnc2

∂Σ
= −1

2
∂ ln |LΣ+ I|

∂Σ
= −1

2LT(LΣ+ I)-T = −1
2LS−1, (B.18)

∂ rTRr
∂Σ

= Σ
-TRTrrTRT

Σ
-T = S-TrrTS−1, (B.19)

∂ lnc2

∂V
= −1

2
∂ ln |LΣ+ I|

∂V
= −1

2
∂ ln |∑i

[
(Λi +V )−1]Σ+ I|

∂V

= 1
2 ∑

i

[
(Λi +V )-T

(
∑

j

[
(Λ j +V )−1]

Σ+ I
)-T

Σ
T(Λi +V )-T

]
= 1

2 ∑
i

[
(Λi +V )−1R(Λi +V )−1

]
, (B.20)

∂ rTRr
∂V

= rT ∂R
∂V

r+
∂ rT

∂V
Rr+ rTR

∂ r
∂V

= ∑
i

[
(Λi +V )−1RTrrTRT(Λi +V )−1

]
−∑

i

[
(Λi +V )−1(xni−µ)(Rr)T(Λi +V )−1

]
−∑

i

[
(Λi +V )−1(rTR)T(xni−µ)T(Λi +V )−1

]
. (B.21)

B.2 PREDICTIONS FROM DETERMINISTIC INPUTS

Consider modelling data comprising vector-input x̃ ∈ R(X+U), vector-output f (x̃) ∈
RX with separate combinations of linear models and GPs to make predictions,
a = 1, . . . ,X:

fa(x̃) ∼ N
(
E f [ fa(x̃)] ,V f [ fa(x̃)]

)
, (B.22)

E f [ fa(x̃)] = β
T
a ka(X , x̃)+φ

T
a x̃, (B.23)

V f [ fa(x̃)] = ka(x̃, x̃)− ka(x̃,X)(Ka +Σ
ε
a)
−1ka(X , x̃), (B.24)

where the X squared exponential covariance functions are

ka(x,x′) = s2
aq(x,x′,Λa,0), where a = 1, . . . ,X, (B.25)

and s2
a are the signal variances and Λa is a diagonal matrix of squared length scales

for GP number a. The noise variances Σε
a is the identity matrix multiplied by the

observation noise of the a’th GP. The inputs are X and the outputs ya and we define
βa = (Ka +Σε

a)
−1(ya−φ T

a X), where Ka is the Gram matrix.
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B.3 PREDICTIONS FROM UNCERTAIN INPUTS

Prediction from uncertain inputs has been discussed previously in Deisenroth and
Rasmussen (2011) and also used for filtered control and dynamics predictions during
the system-execution phase. Consider making predictions from a = 1, . . . ,X GPs at
uncertain test input X̃ with specification

p(X̃) ∼ N (m,V ) . (B.26)

We have the following expressions for the predictive mean m, variances V and
input-output covariances C using the law of iterated expectations and variances:

fa(X̃) ∼ N (m,V) . (B.27)

B.3.1 MEAN:

The scalar expectation of the a’th element of predictive output vector f (X̃) w.r.t.
random input vector X̃ is:

ma .
= EX̃

[
E f
[

fa(X̃)
]]

=
∫ (

s2
aβ

T
a q(X , X̃ ,Λa,0)+φ

T
a X̃
)
N
(
X̃ ;m,V

)
dX̃

= s2
aβ

T
a qa +φ

T
a m, (B.28)

where

βa
.
= (Ka +Σ

ε
a)
−1(ya−φ

T
a X), (B.29)

qi
a

.
= q(Xi,m,Λa,V ). (B.30)

B.3.2 COVARIANCE:

Let us first define, using identity (B.9):

Ca
.
= V−1CX̃

[
X̃ , s2

aβ
T
a q(X , X̃ ,Λa,0)

]
= V−1

∫
(X̃−m)s2

aβ
T
a q(X , X̃ ,Λa,0)N

(
X̃ ;m,V

)
dX̃

= s2
a(Λa +V )−1(X−m)β T

a qa. (B.31)
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The covariance vector of the input vector X̃ with the a’th element of predictive
output vector f (X̃) is thus:

CX̃
[
X̃ , fa(X̃)

]
= CX̃

[
X̃ , s2

aβ
T
a q(X , X̃ ,Λa,0)+φ

T
a X̃
]

= V Ca +V φa. (B.32)

B.3.3 VARIANCE:

The scalar covariance of the a’th and b’th elements of predictive output vector f (X̃)

is:

Vab .
= CX̃

[
fa(X̃), fb(X̃)

]
= CX̃

[
E f
[

fa(X̃)
]
, E f

[
fb(X̃)

]]
+EX̃

[
C f
[

fa(X̃), fb(X̃)
]]

= CX̃
[
s2

aβ
T
a q(X , X̃ ,Λa,0)+φ

T
a X̃ , s2

bβ
T
b q(X , X̃ ,Λb,0)+φ

T
b X̃
]
+

δabEX̃
[
s2

a− ka(X̃ ,X)(Ka +Σ
ε
a)
−1ka(X , X̃)

]
= s2

as2
b
[
β

T
a (Qab−qaqT

b)βb +

δab
(
s−2

a − tr((Ka +Σ
ε
a)
−1Qaa)

)]
+CT

aV φb +φ
T
a V Cb +φ

T
a V φb, (B.33)

where

Qi j
ab

.
= Q

(
Xi,X j,Λa,Λb,0,m,V

)
, (B.34)

and training inputs are X , outputs are ya and Ka is a Gram matrix.

B.4 PREDICTIONS FROM HIERARCHICALLY UNCERTAIN

INPUTS

Prediction from hierarchically-uncertain inputs is useful for filtered control and
dynamics predictions for the random belief state during system-prediction. Consider
making predictions from a = 1, . . . ,X GPs at X̃ with hierarchical specification,

p(X̃) ∼ N (M,V ) , and M ∼ N (µ,Σ) , (B.35)

or equivalently the joint

p

([
X̃
M

])
∼ N

([
µ

µ

]
,

[
Σ+V Σ

Σ Σ

])
. (B.36)
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Considering the input distribution can be expressed as a hierarchy of uncertainties,
it should be little surprise that the resultant predictive output distribution can also:

fa(X̃)∼N
(
M, V̄

)
, and M∼N (µµµ,ΣΣΣ) . (B.37)

B.4.1 MEAN OF THE MEAN:

The scalar expectation of the a’th element of predictive output mean vector M
(defined (B.28)) w.r.t. the random input mean vector M is:

µµµ
a .

= EM [Ma]

=
∫

MaN (M; µ,Σ)dM

= s2
aβ

T
a

∫
q(X ,M,Λa,V )N (M; µ,Σ)dM+φ

T
a µ

= s2
aβ

T
a q̂a +φ

T
a µ, (B.38)

q̂i
a

.
= q(Xi,µ,Λa,Σ+V ). (B.39)

B.4.2 COVARIANCE OF THE MEAN:

Let us first define, using identity (B.9):

C̄a
.
= Σ

−1CM
[
M, s2

aβ
T
a qa
]

= Σ
−1
∫
(M−µ)s2

aβ
T
a q(X ,M,Λa,V )N (M; µ,Σ)dM

= s2
a(Λa +Σ+V )−1(X−µ)β T

a q̂a. (B.40)

The covariance vector of the input mean vector M with the a’th element of predictive
output mean vector M (defined (B.28)) is thus:

CM [M, Ma] = CM
[
M, s2

aβ
T
a qa +φ

T
a M
]

= ΣC̄a +Σφa. (B.41)
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B.4.3 VARIANCE OF THE MEAN:

The scalar covariance of the a’th and b’th elements of predictive output mean vector
M (defined (B.28)) is:

ΣΣΣ
ab .

= CM

[
Ma, Mb

]
=

∫
(Ma−µµµ

a)(Mb−µµµ
b)N (M; µ,Σ)dM

=
∫ (

s2
aβ

T
a (qa− q̂a)+φ

T
a (M−µ)

)(
s2

b(q
T
b− q̂T

b)βb +(MT−µ
T)φb

)
×N (M; µ,Σ)dM

= s2
as2

bβ
T
a (Q̂ab− q̂aq̂T

b)βb + C̄T
aΣφb +φ

T
a ΣC̄b +φ

T
a Σφb, (B.42)

Q̂i j
ab

.
= Q(Xi,X j,Λa,Λb,V,µ,Σ). (B.43)

B.4.4 MEAN OF THE COVARIANCE:

First, let us derive the expectation of (B.31) w.r.t. the random input mean vector M,
and using identity (B.10):

EM [Ca] =
∫

CaN (M; µ,Σ)dM

=
∫

s2
a(Λa +V )−1(X−M)β T

a q(X ,M,Λa,V )N (M; µ,Σ)dM

= s2
a(Λa +Σ+V )−1(X−µ)β T

a q̂a

= C̄a. (B.44)

Now, the expectation of the covariance of input vector X̃ with the a’th element of
predictive output vector f (X̃) (defined (B.31)), w.r.t. the random input mean vector
M, is thus:

EM
[
CX̃
[
X̃ , fa(X̃)

]]
= EM [V Ca +V φa]

= V C̄a +V φa. (B.45)
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B.4.5 MEAN OF THE VARIANCE:

The scalar expectation of the belief-variance Vab defined (B.33), w.r.t. the random
input mean vector M, using (B.12), is:

V̄ab .
= EM [Vab]

=
∫

VabN (M; µ,Σ)dM

=
∫ (

s2
as2

b
[
β

T
a (Qab−qaqT

b)βb +δab
(
s−2

a − tr((Ka +Σ
ε
a)
−1Qaa)

)]
+CT

aV φb +φ
T
a V Cb +φ

T
a V φb

)
N (M; µ,Σ)dM

= s2
as2

b
[
β

T
a (Q̃ab− Q̂ab)βb +δab

(
s−2

a − tr((Ka +Σ
ε
a)
−1Q̃aa)

)]
+C̄T

aV φb +φ
T
a V C̄b +φ

T
a V φb, (B.46)

Q̃i j
ab = Q(Xi,X j,Λa,Λb,0,µ,Σ+V ). (B.47)



APPENDIX C

BAYESIAN OPTIMISATION

C.1 PROBABILITY OF IMPROVEMENT

The probability of improvement, a Bayesian optimisation algorithm discussed
§ 4.3.2, is defined here with accompanying derivatives. Let the (possibly uncertain)
cumulative-cost of the best performing controller executed so far be parameterised:

C∗ ∼ N
(

µ
C
∗ ,Σ

C
∗

)
. (C.1)

We would like to choose a new parameterisation, ψ , in such a way that it maximises
the probability of improvement (PI) of the cumulative-cost. However, for consistency
of minimising objective functions, we shall instead minimise the negative of the PI.
For arbitrary ψ we have cumulative-cost distribution Cψ ∼N

(
µC ,ΣC). What is the

probability of improvement P(Cψ < C∗)? Let ∆C .
= Cψ −C∗. Note:

∆C ∼ N
(

µ
C−µ

C
∗ , Σ

C +Σ
C
∗ −2c

)
, (C.2)

where c is the covariance between Cψ and C∗. Let’s approximate c = 0 for simplicity.
So now the probability of improvement, by changing parameterisation from ∗ to ψ
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is:

PI(Cψ) = −p
(
Cψ < C∗

)
= −p

(
∆C < 0

)
= −

∫ 0

−∞

N
(

x; µ
C−µ

C
∗ ,Σ

C +Σ
C
∗

)
dx

= Φ(z)−1, where (C.3)

z .
=

µC−µC
∗√

ΣC +ΣC
∗
, (C.4)

where Φ(·) is the cumulative standard normal function. The gradients are

dPI
dµC =

1√
ΣC +ΣC

∗
φ(z), (C.5)

dPI
dΣC = − 1

2(ΣC +ΣC
∗)

zφ(z), (C.6)

where φ(·) is the standard normal distribution.

C.2 EXPECTED IMPROVEMENT

As before, let the cumulative-cost of the best performing controller executed so far
be distributed:

C∗ ∼N
(

µ
C
∗ ,Σ

C
∗

)
. (C.7)

We would like to choose a new parameterisation, ψ , in such a way that it optimises
the expected improvement (EI) of the cumulative-cost. An ‘improvement’ means
a decrease in cost. For arbitrary ψ we again have cumulative-cost distribution
Cψ ∼N

(
µC ,ΣC), and improvement ∆C .

= Cψ −C∗ where

∆C ∼ N
(

µ
C−µ

C
∗ ,Σ

C +Σ
C
∗ −2c

)
, (C.8)
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with c again approximated as zero. So now the expected improvement if we were to
change a controller’s parameterisation from ∗ to ψ would be:

EI(Cψ) = ECψ [min(∆C, 0)]

=
∫ 0

−∞

xN
(

x; µ
C−µ

C
∗ ,Σ

C +Σ
C
∗

)
dx

= Φ(−z)(µC−µ
C
∗ )−φ(z)

√
ΣC +ΣC

∗ , where (C.9)

z .
=

µC−µC
∗√

ΣC +ΣC
∗
. (C.10)

where φ(·) is the standard normal distribution, Φ(·) its cumulative standard normal
function. The gradients are:

dEI
dµC = − ∂ z

∂ µC φ(z)(µC−µ
C
∗ )+Φ(−z)+

∂ z
∂ µC zφ(z)

√
ΣC +ΣC

∗

= Φ(−z), (C.11)
dEI
dΣC = − ∂ z

∂ΣC φ(z)(µC−µ
C
∗ )+

∂ z
∂ΣC zφ(z)

√
ΣC +ΣC

∗ −
φ(z)

2
√

ΣC +ΣC
∗

= − φ(z)

2
√

ΣC +ΣC
∗
. (C.12)





APPENDIX D

EXPERIMENTAL SETUPS

D.1 CART POLE SWING UP

mc

mp

l

θ

xc

yp

xp

l

u

Fig. D.1 The cartpole swing-up task.

For the cartpole swing-up task, the ground truth equations of motion are:

ẋ .
=

dx
dt

=


ẋc

θ̇

−2mplθ̇ 2s+3mpgsc+4u−4bẋc

4(mc+mp)−3mpc2

−3mplθ̇ 2sc+6(mc+mp)gs+6(u−bẋc)c
4l(mc+mp)−3mplc2

 , (D.1)

where s and c are shorthand for sin(θ) and cos(θ) respectively.
A saturating cost function is used: 1− exp

(
−1

2d2/λ 2
c
)

where d2 is the squared
Euclidean distance between the pendulum’s end point (xp,yp) and its goal (0, l).
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In Chapter 3 our state includes the previous control: xt = [ut−1,xc
t ,θt , ẋc

t , θ̇t ]
T.

Table D.1 The cartpole parameter values, Chapter 3

Parameter Symbol Value

friction b 0.1Nsm−1

number episodes per exp. E 10
gravity g 9.82ms−2

pole length l 0.2m
cart mass mc 0.5kg
pole mass mp 0.5kg
# controller RBF centroids R 100
time discretisation ∆t 0.0333s
time horizon (# timesteps) T 60
time horizon (seconds) (none) 2.0s
max force umax 10N
min force umin -10N
# control variables U 1
# state variables X 5
discount factor γ 1
mean initial state µx

0 [0m,πrad,0m/s,0rad/s]T

std. dev. initial state (Σx
0)

1/2 diag([0.2m,0.2rad,0.2m/s,0.2rad/s])

std. dev. observation (Σε
y)

1/2 diag([0.03m,0.03rad,0.9m/s,0.9rad/s])

cost lengthscale λc 0.25m
sensor lag τlag 0.005s
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In Chapter 5 we use the state representation: x = [xc
t ,θt , ẋc

t , θ̇t ]
T.

Table D.2 The cartpole parameter values, Chapter 5

Parameter Symbol Value

friction b 0.1Nsm−1

number episodes per exp. E 100
gravity g 9.82ms−2

pole length l 0.6m
cart mass mc 0.5kg
pole mass mp 0.5kg
# particles (fit f ) P 100
# particles (opt. π) P 10
# controller RBF centroids R 50
time discretisation ∆t 0.1s
time horizon (# timesteps) T 25
time horizon (seconds) (none) 2.5s
max force umax 10N
min force umin -10N
# control variables U 1
# state variables X 4
discount factor γ 1
mean initial state µx

0 [0m,πrad,0m/s,0rad/s]T

std. dev. initial state (Σx
0)

1/2 diag([0.2m,0.2rad,0.2m/s,0.2rad/s])

std. dev. observation (Σε
y)

1/2 diag([0.001m,0.001rad,0.001m/s,0.001rad/s])

cost lengthscale λc 0.25m
sensor lag τlag 0s
dropout probability pdropout 0.05
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D.2 CART DOUBLE-POLE SWING UP
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+
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Fig. D.2 The cart-double-pole swing-up task.

In Chapter 4 we use the state: xT = [ẋc, θ̇2, θ̇3,xc,θ2,θ3]. The equations of motion for
the cart double pole are:

ẋ .
=

dx
dt

= [ẍc, θ̈2, θ̈3, ẋc, θ̇2, θ̇3]
T, (D.2)

whereẍc

θ̈2

θ̈3

 =

 2(m1 +m2 +m3) −(m2 +2m3)l2 cos(θ2) −m3l3 cos(θ3)

−(3m2 +6m3)cos(θ2) (2m2 +6m3)l2 3m3l3 cos(θ2−θ3)

−3cos(θ3) 3l2 cos(θ2−θ3) 2l3


−1

×

2u−2bẋc− (m2 +2m3)l2θ̇ 2
2 sin(θ2)−m3l3θ̇ 2

3 sin(θ3)

(3m2 +6m3)gsin(θ2)−3m3l3θ̇ 2
3 sin(θ2−θ3)

3l2θ̇ 2
2 sin(θ2−θ3)+3gsin(θ3)

 . (D.3)

We again use a saturating cost function: 1−exp(−1
2d2/λ 2

c ) except with λc = 1.0m and
d2 is the squared Euclidean distance between the pendulum’s end point and its goal
(0, l2 + l3).
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Table D.3 The cart-double-pole parameter values, Chapter 4

Parameter Symbol Value

friction b 0.1Ns/m
number episodes per exp. E 20
gravity g 9.82ms−2

moment inertia first pole I2 0.015 kg m2

moment inertia first pole I3 0.015 kg m2

first pole length l2 0.6m
second pole length l3 0.6m
cart mass m1 0.5kg
first pole mass m2 0.5kg
second pole mass m3 0.5kg
# controller RBF centroids R 200
time discretisation ∆t 0.05s
time horizon (# timesteps) T 30
time horizon (seconds) (none) 1.5s
max force umax 20N
min force umin -20N
# control variables U 1
# state variables X 6
discount factor γ 1
mean initial state µx

0 [0m/s,0rad/s,0rad/s,0m,πrad,πrad]T

std. dev. initial state (Σε
y)

1/2 diag([0m/s, 0rad/s, 0rad/s, 0m, 0rad, 0rad])

std. dev. observation
√

diag(Σε
y) diag([0.02m/s, 0.0349rad/s, 0.0349rad/s, 0.001m, 0.00175rad, 0.00175rad])

cost lengthscale λc 1.0m
sensor lag τlag 0s





APPENDIX E

PROOFS

E.1 MOMENTS OF EXPONENTIAL FUNCTIONS OF GAUS-
SIANS

This section derives the identities of Appendix A.2.5 in 1D. Let X ∼N
(
µ,σ2) and

z∼N (0,1),

EX [exp(aX)] = 1√
2π

∫
∞

−∞

ea(µ+σz)e−z2/2dz

= eaµ+a2σ2/2 · 1√
2π

∫
∞

−∞

e−(z−aσ)2/2dz

= eaµ+a2σ2/2,

EX
[
exp
(
− 1

2 (X−b)TB(X−b)
)]

= 1√
2π

∫
∞

−∞

e−(µ+σz−b)TB(µ+σz−b)/2e−z2/2dz (E.1)

= e−(µ−b)2B/2 1√
2π

∫
∞

−∞

e−
(

z2(σ2B+1)+2zσB(µ−b)
)
/2dz

= e
−
(
(µ−b)2B− σ2B2(µ−b)2

σ2B+1

)
/2
· 1√

2π

∫
∞

−∞

e
−(σ2B+1)

(
z+ σB(µ−b)

σ2B+1

)2

/2
dz

= e
−(µ−b)2B

(
1− σ2B

σ2B+1

)
/2
· (σ2B+1)−1/2

= e
−(µ−b)2B

(
1

σ2B+1

)
/2
· (σ2B+1)−1/2,

VX
[
exp
(
− 1

2 (X−b)TB(X−b)
)]

= E
[
exp(−(X−b)TB(X−b))

]
−E [·]2 (i.e. B→ 2B)

= e
−(µ−b)22B

(
1

σ22B+1

)
/2
· (σ22B+1)−1/2−E [·]2 ,

CX
[
X , exp

(
− 1

2 (X−b)TB(X−b)
)]

= 1√
2π

∫
∞

−∞

(µ +σz)e−(µ+σz−b)TB(µ+σz−b)/2e−z2/2dz,

where E [·] is shorthand for (E.1).
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E.2 MOMENTS OF TRIGONOMETRIC FUNCTIONS OF GAUS-
SIANS

This section derives the identities of Appendix A.2.5 in 1D. Let X ∼N
(
µ,σ2) and

z∼N (0,1),

EX [cos(aX)+ isin(aX)] = E
[
eiaX]

= 1√
2π

∫
∞

−∞

eia(µ+σz)e−z2/2dz

= eiaµ−a2σ2/2 · 1√
2π

∫
∞

−∞

e−(z−iaσ)2/2dz

= e−a2σ2/2(cos(aµ)+ isin(aµ)),

VX [sin(aX)] = E
[
sin2(aX)

]
−E [sin(aX)]2

= 1
2E [1− cos(2aX)]−E [sin(aX)]2

= 1
2 (1− e−2a2σ2

cos(2aµ))− e−a2σ2
sin2(aµ)

= 1
2 (1− e−2a2σ2

cos(2aµ)− e−a2σ2
(1− cos(2aµ)))

= 1
2 (1+ e−a2σ2

cos(2aµ))(1− e−a2σ2
),

VX [cos(aX)] = E
[
cos2(aX)

]
−E [cos(aX)]2

= 1
2E [1+ cos(2aX)]−E [cos(aX)]2

= 1
2 (1+ e−2a2σ2

cos(2aµ))− e−a2σ2
cos2(aµ)

= 1
2 (1+ e−2a2σ2

cos(2aµ)− e−a2σ2
(1+ cos(2aµ))

= 1
2 (1− e−a2σ2

cos(2aµ))(1− e−a2σ2
),

CX [sin(aX), cos(aX)] = E [sin(aX)cos(aX)]−E [sin(aX)]E [cos(aX)]

= 1
2E [sin(2aX)]−E [sin(aX)]E [cos(aX)]

= 1
2 (e
−2a2σ2

sin(2aµ))− e−a2σ2
sin(aµ)cos(aµ)

= − 1
2 e−a2σ2

sin(2aµ)(1− e−a2σ2
),

CX [X , cos(X)+ isin(X)] = E
[
XeiX]−E [X ]E

[
eiX]

= 1√
2π

∫
∞

−∞

(µ +σz)ei(µ+σz)−z2/2dz−µE
[
eiX]

= 1√
2π

∫
∞

−∞

(µ +σz)e−(z−iσ)2/2eiµ−σ2/2dz−µE
[
eiX]

= eiµ−σ2/2 1√
2π

∫
∞

−∞

(µ +σ(ẑ+ iσ))e−ẑ2/2dẑ−µE
[
eiX] , ẑ = z− iσ

= eiµ−σ2/2(µ + iσ2)−µE
[
eiX]

= E
[
eiX](µ + iσ2−µ)

= iσ2E
[
eiX] .
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using the trigonometric identities

sin(2x) = 2sin(x)cos(x),

sin2(x) = 1
2 (1− cos(2x)),

cos2(x) = 1
2 (1+ cos(2x)).

E.3 MATRIX DERIVATIVES

This section derives some identities of Appendix A.4

∂

∂xi j
logdet(X) =

1
det(X)

∂

∂xi j
det(X)

=
1

det(X)
adj(X) ji

= (X−1) ji.

U−1U = I,

∂ (U−1U) = 0,

∂ (U−1)U +U−1
∂ (U) = 0,

∂ (U−1) = U−1
∂ (U)U−1.

E.4 GAUSSIAN PROCESS PREDICTION

This section proves (B.9) and (B.10).

integral .
=

∫
(y− t)q(x, t,Λ,V )N (t; µ,Σ)dt

= (2π)
D
2 |Λ|

1
2

∫
(y− t)N (t;x,Λ+V )N (t; µ,Σ)dt

= (2π)
D
2 |Λ|

1
2N (x; µ,Λ+V +Σ)

∫
(y− t)N (t;z,Z)dt

= q(x,µ,Λ,V +Σ)(y− z)

= q(x,µ,Λ,V +Σ)(y−Σ[Λ+V +Σ]−1x− (Λ+V )[Λ+V +Σ]−1
µ),
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where

Z .
= [(Λ+V )−1 +Σ

−1]−1,

and

z .
= Z[(Λ+V )−1x+Σ

−1
µ]

= Σ[Λ+V +Σ]−1x+(Λ+V )[Λ+V +Σ]−1
µ.

Now if y = µ then

integral = q(x,µ,Λ,V +Σ)Σ(Λ+V +Σ)−1(µ− x),

else if y = x then

integral = q(x,µ,Λ,V +Σ)(Λ+V )(Λ+V +Σ)−1(x−µ).

E.5 HIERARCHICAL COST MOMENTS

This section derives some identities of the hierarchical cost in § 4.5.3. A previous
result from Deisenroth and Rasmussen (2011) of saturating costs given normally
distributed inputs X ∼N (µx,Σx), the cost-mean and cost-variance are respectively
computed as

mc .
= EX [cost(X ;x∗,Λc)] = 1−det(I +Σ

x
Λ
−1
c )−1/2 (E.2)

×exp
(
− 1

2(µ
x−x∗)T

Λ
−1
c (I+Σ

x
Λ
−1
c )−1(µx−x∗)

)
,

V c .
= VX [cost(X ;x∗,Λc)] = −(mc−1)2 +det(I +2Σ

x
Λ
−1
c )−1/2 (E.3)

×exp
(
− (µx−x∗)T

Λ
−1
c (I+2Σ

x
Λ
−1
c )−1(µx−x∗)

)
.

Now given a hierarchically distributed variable X ∼N (Mx,V x) and Mx ∼N (µx,Σx)
as input, and using shorthand Λ̂c = (I+V xΛ−1

c )Λc, then the expected of the cost-mean
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is:

µ
c .

= EMx [Mc]

= EMx

[
1−det(I +V x

Λ
−1
c )−

1
2 exp

(
− 1

2 (M
x− x∗)TΛ̂

−1
c (Mx− x∗)

)]
= 1−det(I +V x

Λ
−1
c )−

1
2
(

1−EMx
[
cost(Mx;x∗, Λ̂c)

])
= 1−det

(
(I +V x

Λ
−1
c )(I +Σ

x
Λ̂
−1
c )
)− 1

2 exp
(
− 1

2 (µ
x− x∗)TΛ̂

−1
c (I +Σ

x
Λ̂
−1
c )−1(µx− x∗)

)
= 1−det

(
I +(Σx +V x)Λ−1

c )
)− 1

2 exp
(
− 1

2 (µ
x− x∗)TΛ

−1
c (I +(Σx +V x)Λ−1

c )−1(µx− x∗)
)

= E [cost(N (µx,Σx +V x) ; x∗,Λc)] , (E.4)

the variance of the cost-mean is:

Σ
c .

= VMx [Mc]

= VMx

[
det(I +V x

Λ
−1
c )−

1
2 exp

(
− 1

2 (M
x− x∗)TΛ̂

−1
c (Mx− x∗)

)]
= det(I +V x

Λ
−1
c )−1VMx

[
cost(Mx;x∗, Λ̂c)

]
, (E.5)

and the average of the cost-variance can be computed from the ‘leftover variance’:

V̄ c .
= EMx [V c]

= V [cost(N (µx,Σx +V x) ;x∗,Λc)]−V [cost(N (µx,Σx) ;x∗,Λc)] , (E.6)

where all E [cost(·)] are computed with (E.2) and V [cost(·)] with (E.3).

E.6 LATENT VARIABLE BELIEF-MDPS MORE GENERAL

THAN BELIEF-MDPS

Here we show how the latent-variable belief-MDP of Fig. 3.13 is in fact a generalisa-
tion of belief-MDPs seen Fig. 3.4 since it is not clear by a visual comparison between
both PGMs. We show Fig. 3.13 is in fact a generalisation of Fig. 3.4 via demonstrating
their equivalence under special constraints. Four constraints are required:

• µx
t = µm

t ,

• Σx
t = Σm

t|t−1 +Vt|t−1,

• Σmx
t|t−1 = Σm

t|t−1,

• fb = fx = f .
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Under the above four conditions, the belief p(B)∼N (M,V ) is a sufficient statistic
for state X at all future timesteps, and the process seen Fig. 3.13 reduces to Fig. 3.4.
We show this is first true for the filtering update step, and then for the prediction
step.

Under the above constraints, the prior distribution of the system is

Bt|t−1 ∼ N
(
Mt|t−1,Vt|t−1

)
, (E.7)

Ht =

[
Xt

Mt|t−1

]
∼ N

([
µm

t|t−1

µm
t|t−1

]
,

[
Σm

t|t−1 +Vt|t−1 Σm
t|t−1

Σm
t|t−1 Σm

t|t−1

])
. (E.8)

Then, according to the latent-variable belief-MDP update equations ((3.82) – (3.86))
the same variable post update-step become

µ
m
t|t = µ

m
t|t−1, (E.9)

Σ
m
t|t = Σ

m
t|t−1 +Wy(Vt|t−1 +Σ

ε
y)W

T
y

= Σ
m
t|t−1 +WyVt|t−1, (E.10)

Σ
mx
t|t = Σ

m
t|t−1 +WyVt|t−1

= Σ
m
t|t , (E.11)

Vt|t = WmVt|t−1. (E.12)

Now notice, the mean is unchanged (E.9) and the total variance is conserved: Σm
t|t +

Vt|t = Σm
t|t−1 +Vt|t−1 = Σx

t . So up until now we have shown that the update step
preserves that fact that both Bt|t−1 and Bt|t are sufficient statistics of Xt|t .

Next we look at the prediction step, showing under the four constraints, that
the hierarchical prediction equations (3.61) – (3.67) result in a new predictive belief
Bt+1|t that still acts as a sufficient statistic of Xt+1 which would otherwise need to be
computed using PILCO’s equations (2.40) – (2.45). We copy the relevant equations
below for reader convenience.

First is the predictive means. Since Σx
t = Σm

t|t−1 +Vt|t−1 and given (E.9), then q = q̂
((E.15), (E.21)), so µx

t+1 = µm
t+1|t ((E.13), (E.18)). Second is the predictive variances.

Note Cx̃x′ = Cm̃m′ ((E.17), (E.24)) and Q = Q̃ ((E.16), (E.23)). Then the addition of
both (E.19) and (E.20) (i.e. Σm

t+1|t +Vt+1|t) cancel their Q̂ terms, and together with
Σm

t|t−1 +Vt|t−1 = Σx
t , results in the definition of Σx

t+1 found (E.14). So far we have
shown the full distribution of Bt+1|t is a sufficient statistic of the full distribution of
Xt+1 without the need to explicitly do a prediction step for Xt+1.
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Predictive state equations p(Xt+1), copied from (2.40) – (2.45) on page 37

µ
x,a
t+1 = s2

aβ
T
a qa +φ

T
a µ

x̃
t , (E.13)

Σ
x,ab
t+1 = s2

as2
b
[
β

T
a (Q

ab−qaqbT)βbδab
(
s−2

a − tr((Ka +Σ
ε
a)
−1Qaa)

)]
+

+CaT
x̃x′Σ

x̃
t φb +φ

T
a Σ

x̃
t C

b
x̃x′+φ

T
a Σ

x̃
t φb, (E.14)

qa
i

.
= q(Xi,µ

x̃
t ,Λa,Σ

x̃
t ), (E.15)

Qab
i j

.
= Q

(
Xi,X j,Λa,Λb,0,µ x̃

t ,Σ
x̃
t
)
, (E.16)

Ca
x̃x′ = s2

a(Λa +Σ
x̃
t )
−1(X−µ

x̃
t )β

T
a qa. (E.17)

Predictive belief equations p(Bt+1|t), copied from (3.61) – (3.67) on page 65

µ
m,a
t+1|t = s2

aβ
T
a q̂a +φ

T
a µ

m̃
t|t , (E.18)

Σ
m,ab
t+1|t = s2

as2
bβ

T
a (Q̂

ab− q̂aq̂bT)βb +CaT
m̃m′Σ

m̃
t|tφb +φ

T
a Σ

m̃
t|tC

b
m̃m′+φ

T
a Σ

m̃
t|tφb, (E.19)

V ab
t+1|t = s2

as2
b
[
β

T
a (Q̃

ab− Q̂ab)βb +δab
(
s−2

a − tr((Ka +Σ
ε
a)
−1Q̃aa)

)]
+CaT

m̃m′Ṽt|tφb +φ
T
a Ṽt|tC

b
m̃m′+φ

T
a Ṽt|tφb, (E.20)

q̂a
i

.
= q

(
Xi,µ

m̃
t|t ,Λa,Σ

m̃
t|t +Ṽt|t

)
, (E.21)

Q̂ab
i j

.
= Q(Xi,X j,Λa,Λb,Ṽt|t ,µ

m̃
t|t ,Σ

m̃
t|t), (E.22)

Q̃ab
i j

.
= Q(Xi,X j,Λa,Λb,0,µ m̃

t|t ,Σ
m̃
t|t +Ṽt|t), (E.23)

Ca
m̃m′

.
= s2

a(Λa +Σ
m̃
t|t +Ṽt|t)

−1(X−µ
m̃
t|t)β

T
a q̂a. (E.24)

Finally third, we compute the new covariance term, to show the if special struc-
ture found in (E.8) is true on one timestep, then is persists to the next timestep, and
thereafter by induction. Using the ‘exact method’ of computing C

[
Xt+1, Mt+1|t

]
from

(3.105), we simplify based on our constraints above, including fx = fb:

C
[
Xk

t+1, Ml
t+1|t

]
= sx2

k sb2
l
[
β

xT
k ( ˆ̂Qkl−qx

kqbT
l )β b

l
]
+ĈxT

k Σ
z
φ̂

b
l + φ̂

xT
k Σ

zĈb
l + φ̂

xT
k Σ

z
φ̂

b
l

= sx2
k sb2

l
[
β

xT
k ( ˆ̂Qkl−qx

kqbT
l )β b

l
]
+CxT

k Σ
′
φ

b
l +φ

xT
k Σ
′Cb

l +φ
xT
k Σ
′
φ

b
l

= s2
ks2

l
[
β

T
k (Q̂kl− q̂kq̂T

l )βl
]
+CT

k Σ
m̃
t|tφl +φ

T
k Σ

m̃
t|tCl +φ

T
k Σ

m̃
t|tφl

= Σ
m,kl
t+1|t , as per (E.19), (E.25)
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using and the definition of Q (B.3) together with Σx
t = Σm

t|t +Vt|t , as well as since

Σ
′ =

[
Σxm

t|t Σxu
t

Σum
t|t Σu

t

]
=

[
Σxm

t|t Σxm
t|t Cmt|tu

CT
mt|tuΣm

t|t Σu

]
=

[
Σm

t|t Σm
t|tCmt|tu

CT
mt|tuΣm

t|t Σu

]
= Σ

m̃
t|t , (E.26)

where Σ′ was simplified to Σm̃
t|t using (3.98), (3.88), and (E.11).

Thus we have shown, given the four constraints, some reflected in the structure
of (E.8), the same structure persists thereafter:

Ht+1 =

[
Xt+1

Mt+1|t

]
∼ N

([
µm

t+1|t
µm

t+1|t

]
,

[
Σm

t+1|t +Vt+1|t Σm
t+1|t

Σm
t+1|t Σm

t+1|t

])
. (E.27)

In addition, the definition of the new terms Σm
t+1|t and Vt+1|t , which were computed

by the latent-variable belief-MDP equations, are the same as those computed by the
belief-MDP equations. This is easily seen showing the equivalence of the update
equations, providing identical inputs to the fb inputs, follows the same rule for
both PGMs. The update variables using latent-variable belief-MDP equations were
given (E.9) – (E.12). These are consistent with what is computed by the belief-MDP
equations in (3.53) – (3.56). This completes the proof that latent-variable belief-MDPs
seen Fig. 3.13 generalise belief-MDPs seen Fig. 3.4 since Fig. 3.13 can be reduced to
Fig. 3.4 given the four constraints introduced above.
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NOMENCLATURE

Roman Symbols

A linear(ised) dynamics function component ∂xt+1/∂xt

b, B probabilistic belief function of state (capitalised if hierarchically-distributed)

b (alternate use) a friction / damping coefficicent

B (alternate use) linear(ised) dynamics function component ∂xt+1/∂ut

c instantaneous cost value

c̄ expected instantaneous cost given uncertain input X

cost instantaneous cost function

C input-output covariance term premultiplied by inverse input variance

C (alternate use) linear(ised) observation function component ∂yt/∂xt

C cumulative cost

C covariance operator, defined (A.2)

d derivative

D linear(ised) observation function component ∂yt/∂ut

D data

E number of episodes (trials)

Ê number of episodes (trials) remaining

E expectation operator, defined (A.1)



196 Nomenclature

f dynamics function

fb dynamics function used for (online) belief monitoring

fx dynamics function used for (offline) system simulation

g observation function (sensor function)

g (alternate use) acceleration due to gravity

h, H ‘hybrid state’ concatenating state x and belief-mean m (capitalised if uncertain)

I identity matrix

J, J∗ loss function for one episode = expected cumulative cost (starred if optimal)

J summation of all episode’s losses

k,K a Gaussian process covariance vector (capitalised if matrix)

m, M belief-mean parameters (capitalised if uncertain)

M number of Gaussian process inducing points

m̃, M̃ belief-mean parameters m concat’d with control u (capitalised if uncertain)

N Normal (or Gaussian) distribution, defined (A.8)

N number of dynamics model training datum

P number of MC particles representing a distribution

q a Gaussian process prediction function, defined (B.1)

Q a Gaussian process prediction function, defined (B.2) and (B.3)

R number of RBF policy centroids

R space of real numbers

s Gaussian process signal standard deviation

t integer timestep

T time horizon (as an integer number of discrete timesteps)

u, U control output (capitalised if uncertain)
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U dimension of control u

vec function that does columnwise unwrapping of a matrix into a vector

V belief-variance parameters

V̄ expected belief-variance parameters

V variance operator, defined (A.3)

Wm filtering update weight matrix associated with bleief mean m, defined (3.39)

Wy filtering update weight matrix associated with observation y, defined (3.40)

W concatencated weight matrices W .
= [Wy,Wm]

x, X system state (capitalised if uncertain)

x∗ a desired goal state

xc cart’s lateral position

x̂ estimated state (a point prediction, not a probabilistic prediction)

x̃, X̃ system state x concatenated with control u (capitalised if uncertain)

X Gaussian process and dynamics model training input data over all epsiodes

X dimension of state x

y, Y observation (capitalised if uncertain)

y (alternate use) Gaussian process and dynamics model training targets over all
epsiodes

Y dimension of observation y

z, Z various local uses, including concatenation of {x,b,u} (capitalised if uncertain)

Greek Symbols

β a Gaussian process term: targets premultiplied by inverse covariance matrix

∆t time discretisation

εc
t random cost noise associated with cost function outputting cost c



198 Nomenclature

εu
t random control noise associated with controller/policy π outputting contol u

εx
t random process noise associated with system dynamics f outputting state x

εx0 random initialisation of the system state x

ε
y
t random observation noise associated with sensor g outputting observation y

γ discount factor

λ lengthscale scalar

λ (alternate use) Gittins index of a Gaussian bandit

Λ lengthscale matrix

µ generic mean vector

φ Gaussian process linear function

φ (alternate use) standard Gaussian distribution function

Φ standard Gaussian cumulative distribution function

π , π∗ controller/policy function deciding control u (starred if optimal)

Π controller/policy function linearisation matrix

ψ controller parameters

Ψ space of controller parameters

Σ generic (co)variance matrix

σ generic standard deviation scalar

θ pendulum angle

ξt a controlled path: {xt ,ut , ...,xT}

Superscripts

p particle index

T matrix transpose

-T inverse of matrix transpose
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∗ optimal quantity, optimal function, or goal state

Subscripts

e current episode e

t current time t

t : T a sequence of quantities indexed in time from t to T inclusive, e.g. xt:T =

{xt ,xt+1, ...,xT}.

t|t−1 prediction of latent system state x at time t given observations from time 0 to
time t−1 inclusive

Other Symbols

⊙ element-wise product

1 indicator function

∂ partial derivative

[·, ·] row-wise concatenation matrix operator

[·; ·] column-wise concatenation matrix operator

Acronyms / Abbreviations

ADF Assumed Density Filtering

BNN Bayesian Neural Network

BNP Bayesian NonParametric model

BO Bayesian Optimisation

BRL Bayesian Reinforcement Learning

DP Dynamic Programming

EI Expected Improvement

EKF Extended Kalman Filter

FITC Fully Independent Training Conditional



200 Nomenclature

GI Gittins Index

GP, GP Gaussian Process

HJB Hamilton-Jacobi-Bellman equation

IE Interval Estimation

iid Independent and Identically Distributed

KF Kalman Filter

KL Kullback-Leibler divergence

LQ Linear dynamics function and Quadratic cost function

LQG, iLQG (Iterative) Linear Quadratic Gaussian controller

LQR, iLQR (Iterative) Linear Quadratic Regulator

MAP Maximum A Posteriori

MC Monte Carlo

MDP Markov Decision Process

MPC Model Predictive Control

NN Neural Network

ODE Ordinary Differential Equation

PAC Probably Approximately Correct

PDE Partial Differential Equation

PGM Probabilistic Graphical Model

PI Probability of Improvement

PID Proportional-Integral-Derivative controller

PILCO Probabilistic Inference and Learning for COntrol

PMP Pontryagin’s Maximum (or Minimum) Principle

POMDP Partially Observable Markov Decision Process



Nomenclature 201

PSD Positive Semi-Definite matrix

RBF Radial Basis Function

RL Reinforcement Learning

UKF Unscented Kalman Filter

VFE Variational Free Energy

w.r.t. With Respect To
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