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Abstract

In many scientific disciplines it is often required to make predictions about how a system will behave

or to deduce the correct control values to elicit a particular desired response. Efficiently solving

both of these tasks relies on the construction of a model capturing the system’s operation. In the

most interesting situations, the model needs to capture strongly nonlinear effects and deal with the

presence of uncertainty and noise. Building models for such systems purely based on a theoretical

understanding of underlying physical principles can be infeasibly complex and require a large number

of simplifying assumptions. An alternative is to use a data-driven approach, which builds a model

directly from observations. A powerful and principled approach to doing this is to use a Gaussian

Process (GP).

In this thesis we start by discussing how GPs can be applied to data sets which have noise affecting

their inputs. We present the ‘Noisy Input GP’, which uses a simple local-linearisation to refer the

input noise into heteroscedastic output noise, and compare it to other methods both theoretically

and empirically. We show that this technique leads to a effective model for nonlinear functions with

input and output noise. We then consider the broad topic of GP state space models for application to

dynamical systems. We discuss a very wide variety of approaches for using GPs in state space models,

including introducing a new method based on moment-matching, which consistently gave the best

performance. We analyse the methods in some detail including providing a systematic comparison

between approximate-analytic and particle methods. To our knowledge such a comparison has not

been provided before in this area. Finally, we investigate an automatic control learning framework,

which uses Gaussian Processes to model a system for which we wish to design a controller. Controller

design for complex systems is a difficult task and thus a framework which allows an automatic design

directly from data promises to be extremely useful. We demonstrate that the previously published

framework cannot cope with the presence of observation noise but that the introduction of a state space

model dramatically improves its performance. This contribution, along with some other suggested

improvements opens the door for this framework to be used in real-world applications.
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Chapter 1

Introduction

1.1 Motivation

Control theory, as we know the field today, has been studied for over 150 years and yet it only ever

becomes more important as we seek to automate control of ever more advanced systems. Many of these

systems, such as cars, have a direct, observable impact on our lives and thus the challenges control

engineers must overcome are very much in the spotlight. These control challenges are often beyond

stabilisation of simple systems around a set point and are focused on complex planning and decision

operations or control of systems for which there is no simple mathematical model from which we may

derive a control law. For this reason many authors are expanding the borders of traditional control

theory to include more data-driven approaches from the field of machine learning. These approaches

are able to design and adapt controllers directly from data measurements rather than requiring, or

being limited by, a previously created mathematical model. This potentially allows us to design

controllers for complex systems, which can adapt to their environments and are not limited by the

knowledge of the control designer. It is this idea which is the driving motivation for this thesis.

We investigate and improve one particular machine learning/control framework, known as ‘Pilco’,

which uses Gaussian Processes to build a model of the system dynamics directly from data. Unfor-

tunately, observed data is usually corrupted by noise and may not contain all the information we

would like. Our investigations into this control learning framework, which can be found in chapter

4, demonstrate that observation noise is a serious problem for the algorithm. As observation noise is

extremely common this is a fatal flaw in the framework and one which we, partly, overcome in this

thesis.

As building models in the face of uncertain or noisy data is an important challenge in and of itself,

we will develop and analyse the theory separately from the control application; this is the subject

of chapters 2 and 3. We return to the control learning framework, armed with the results of the

proceeding chapters, in chapter 4.

1



2 CHAPTER 1. INTRODUCTION

1.2 Thesis Overview

In this chapter we introduce and motivate Gaussian Processes and some of the the key concepts, which

will be referred to in later chapters. In chapter 2, we discuss modelling with Gaussian Processes in

the presence of input noise — a common situation which can cause the classic GP formulation to

perform poorly. In chapter 3 we provide a detailed investigation into modelling dynamical systems

with GPs. Dynamical systems, those which change their state over time, can be found in nearly every

area of our lives and are becoming even more important as we seek further automation of common

tasks (for example, consider the recent investment in driverless cars). Thus modelling in this area is

vitally important and is often a prerequisite for the design of control strategies, which is the topic of

chapter 4. There, we consider an automatic control learning framework, which can design a controller

to solve a task based on observed data from the real system. This framework has been shown to be

very powerful on noise-free tasks. We provide some of the necessary steps to apply the framework to

real-world data, that is, in the presence of non-negligible noise. Finally, we present our conclusions,

and some directions for future research, in chapter 5.

1.3 Background

A common task in data modelling applications is to estimate a function f(x) given some noisy observa-

tions y at particular input locations x. For example, consider the data shown in figure 1.1 and imagine

we believe the data is generated from some hidden, underlying process which we want to model. A

simple approach to doing this is to pick a particular function class to use as our model, say second

order polynomials, and then fit the model to the data by, for example, minimising the squared error

between the predicted values and the observed values. This gives us a so called function of ‘best-fit’.

However, there are two fundamental flaws with this approach. Firstly, how do we pick the class of

functions to use as our model? As figure 1.1 shows, there are multiple possible functions, which all

could be valid fits to the observed data, depending on how much noise there is: is the underlying

function simple and the observations just very noisy, or should we be trying to fit the observations ex-

actly? The quadratic distance metric will favour the more complex models which fit the data exactly,

but this will lead to overfitting in the presence of noise. We therefore need to decide how to trade-off

model fit with model complexity, typically done via the use of a regularisation term. Even if we enforce

that the function should pass exactly through the observed points, there are still an infinite number

of possibilities (e.g. all polynomials of order greater than four). A common approach to try and avoid

this model selection problem is to fit multiple models using different function classes and then use

cross-validation on a held-out test set to pick the model with the best generalisation performance.

However, this still restricts our model to belonging to one of a pre-determined set of classes. Also

this approach typically becomes unwieldy if we include too many different classes — whilst fitting

polynomials might be straightforward, it is a lot more complicated once we start including radial basis

functions with different numbers of components and different choices for basis function.

The second fundamental flaw with picking a single function of ‘best-fit’ is that we have no way

to represent the uncertainty in our model. Clearly we should be very sceptical about our model’s

prediction at a location far away from the data, but as figure 1.1 shows, there can also be significant

uncertainty about the function’s behaviour even within the range of the data. If we pick just one of
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Figure 1.1: Four example function fits to observed data (blue crosses) out of an infinite number of
possibilities

the example functions shown in the figure and proceed to make predictions with it we should expect

very poor modelling performance: the predictions will frequently be wrong and the model will give

no indication of how much you can trust its output. Our two modelling requirements are therefore

to

1. Find a model class which allows us to easily consider a very wide variety of candidate functions

2. Find a model which can quantify and express the uncertainty in its fit

The solution to both of these requirements can be found in the field of Bayesian non-parameterics.

In Bayesian reasoning a probability distribution is used to represent our belief over the value of a

particular variable, for example the function value f at an input location x. We encapsulate our

current knowledge about the unknown variable f in the prior distribution p(f) and specify how an

observed output y at input x is related to the function variable f , via the likelihood p(y | f, x). Bayes’

rule then tells us how to update our belief over the uncertain function variable given the observations

we have,

p(f | x, y) =
p(y | f, x) p(f)

p(y | x)
(1.1)

where p(f | x, y) is called the posterior and where p(y | x) ensures that the posterior normalises

(integrates to 1). By taking this approach we end up with a probability distribution over the function

value at a particular input f(x), conditioned on the observed data. This is in stark contrast to

the ‘best-fit’ approach which only provided a single value for f(x). This provides a solution for the

second modelling requirement as listed above. We must now consider which model class to use; in

the Bayesian setting this can be seen as choosing the prior over functions. For this we turn to the

Gaussian Process.



4 CHAPTER 1. INTRODUCTION

1.4 Gaussian Processes

1.4.1 Introduction to Gaussian Processes

Gaussian Processes (GPs) (Rasmussen and Williams, 2006; O’Hagan and Kingman, 1978) are a flexible

and principled method for modelling functions from data. Rather than providing a single ‘best-fit’ to

the observed data, GPs take a Bayesian approach and provide a complete posterior distribution over

possible functions. As mentioned above, in Bayesian reasoning, a probability distribution describes our

belief over the value of a finite-dimensional variable. Roughly speaking a stochastic process extends

this concept to a distribution over functions (or an infinite collection of variables). As its name

suggests, a Gaussian Process is the extension of the Gaussian distribution to functions. Figure 1.2

shows the familiar Gaussian distribution in one, two, and three dimensions. A Gaussian Process can

be though of as a distribution on the space of functions where the function values (or outputs) at any

and every point are jointly Gaussian. A Gaussian distribution is fully determined by its mean and

variance, as is a Gaussian Process, except that here they are generalised into a mean function, m(x),

and (co)variance function, k(x). These allow the marginal mean and variance of the GP to vary across

the input space, as is shown in figure 1.3
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Figure 1.2: A Gaussian distribution in 1D (left), 2D (middle), and 3D (right). The first two plots show
the probability density function over the input space, the third plot shows contours of iso-probabilities,
where red indicates a contour of high probability.

Figure 1.3 shows how the mean and covariance function of a GP can specify a distribution on a col-

lection of function values. With this particular covariance function there are areas of high uncertainty

where the distribution is very broad and areas of very low uncertainty, where the distribution collapses

around a particular function value. However, the most important role of the covariance function is

not to specify the marginal variance of a function value but rather to determine how two function

values covary. The blue crosses in figure 1.3 show sampled function values, drawing each sample

independently from the distribution at that particular value of x. As there is no covariance specified

between function values they appear just like Gaussian noise, albeit with a varying mean and variance,

which is clearly not a very satisfactory distribution on functions. Furthermore, if we were to observe

a particular value of the function at an input location then, without covariance, this would have no
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f(
x
)

x

Figure 1.3: A Gaussian distribution on function values, with a mean function of sin(x) and a marginal
variance function of cos2(x). The solid green line represents the mean and the shaded green area shows
two standard deviations either side of the mean. The marginal distribution over the function value at
a particular value of x is Gaussian, as illustrated by the red and black vertical slices. The blue crosses
are independently sampled function values from this distribution.

effect at all on any of the other function values. In other words, without covariance we cannot learn

anything from any observed data. Thus specifying how function values covary is vitally important.

The covariance function therefore takes two arguments, k(x1, x2), and returns the covariance between

their corresponding function values,

C[f(x1), f(x2)] = k(x1, x2) (1.2)

Notice that the covariance between function values is fully specified by the corresponding input loca-

tions, and not at all by the actual values of the function; this is a property of the Gaussian Process.

We can now formulate the statement we made earlier, that in a GP all the function values are jointly

Gaussian, by writing,
f(x1)

...

f(xN )

 ∼ N



m(x1)
...

m(xN )

 ,


k(x1, x1) k(x1, xN )

. . .

k(x1, xN ) k(xN , xN )


 (1.3)

where x1 to xN are a set of input locations. We will mostly use the shorthand,

f(X) ∼ N (m(X), K(X, X)) (1.4)

or K = K(X, X).

The most common choices for the covariance function k exhibit the stationarity property, that is the

covariance between two function values f(x1) and f(x2) is purely dependent on the distance between

their inputs and not the actual values of x1 and x2. In these covariance functions it is usual for the

covariance between two function values to increase the closer their corresponding inputs get to each

other. This captures a simple intuition: if the inputs are close then the function outputs are also likely
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to be close. This is clearly a sensible assumption for continuous functions. If we extend this argument

then it is not hard to see how the shape of the covariance function can affect the smoothness of the

resulting sampled functions — if the covariance decays slowly as a function of the distance between the

input points, as it does in the ‘squared exponential’ covariance function, then the resulting functions

are much smoother than if the covariance decays rapidly, as for example in the Matérn 3
2 covariance

function. We can also use the covariance function to encode properties such as periodicity by specifying

that a function value covaries strongly with points which are separated by any multiple of the period.

Examples of these three covariance functions are shown in figure 1.4, along with an example sampled

function. These sampled functions can be drawn in the same way as one samples from a Gaussian

distribution. That is, for an ith sample,

f i(X) = m(X) + L ri (1.5)

where LLT = K(X, X), ri ∼ N (0, I) (1.6)

Note that all three sampled functions in figure 1.4 use the same set of random values r, the only

difference is in the covariance between each value. The different covariance functions lead to very

different functions: the ‘squared exponential’ (SE) covariance function gives rise to very smooth

functions, whereas the Matérn produces very rough functions. Unsurprisingly, the periodic covariance

function results in functions which are themselves periodic. Thus the choice of covariance function

encodes high level properties into the distribution over functions, such as smoothness and periodicity,

but does not have to constrict the functions to a particular class, e.g. polynomials. Indeed the model

class is very broad indeed: for example a GP with squared exponential covariance function places some

probability mass on every infinitely-smooth function. By way of comparison, this modelling power is

equivalent to a Gaussian radial basis function (RBF) with an infinite number of basis functions. As

figure 1.5 shows, this flexibility leads to an extremely broad range of the potential functions. The use

of a GP within the Bayesian framework thus satisfies both the modelling requirements listed above.

1.4.2 Modelling data with Gaussian Processes

Figure 1.5 shows a GP prior on functions with the squared exponential covariance function. In this

section we look at how we can incorporate observations and find the posterior distribution on function

values. This can be thought of as finding the functions from the GP prior which agree ‘most’ with

the observed data. Suppose that there is some unknown function f(x), which maps a D-dimensional

input to a scalar output value f . We have a set of N noisy observations {yi}Ni=1 corresponding to a

set of N , D-dimensional inputs, {xi}Ni=1. We shall denote these collections of variables as the N ×D
input matrix X and the N × 1 output vector y. Our goal is to find the posterior distribution on the

unknown function values given the observed data, p(f | X, y) and using a GP prior on the function

values,

p(f | X) = N
(
m(X), k(X,X)

)
(1.7)

To do this we must first quantify the relationship between the unknown function value f(x) and the

observation y at the same input location. This relationship is usually problem-specific, but in this
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Figure 1.5: Example functions drawn from a GP prior with a squared exponential covariance function
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thesis we will limit ourselves to the case of additive noise,

y = f(x) + ε (1.8)

where ε is a noise variable. We will usually further assume (for reasons of tractabilitiy) that the noise

is Gaussian and independent on each data point, for example,

ε ∼ N (0, σ2
ε ) (1.9)

where Σε is the unknown noise variance. With these modelling assumptions in place we can write the

likelihood as,

p(y | f , X) =

N∏
i=1

N (yi; fi, σ
2
ε ) = N (y; f , σ2

ε IN ) (1.10)

We can combine the prior (equation 1.7) and the likelihood (equation 1.10) to write the joint probability

between f and y given X, [
f

y

]
∼ N

([
m(X)

m(X)

]
,

[
K K

K K + σ2
ε IN

])
(1.11)

We can now apply the standard Gaussian conditioning equations to find that

p(f | y, X) = N
(
m(X) +K [K + σ2

ε IN ]−1 (y −m(X)), K −K [K + σ2
ε IN ]−1K

)
(1.12)

Of course we are not just interested in finding the posterior distribution on the function values at the

points X where we have observed data, but also at a set of test points X∗. This is simple extension

as, from the definition of a GP, the function values f∗ at the test points X∗ are also jointly Gaussian

with the observations y,[
f∗

y

]
∼ N

([
m(X∗)

m(X)

]
,

[
K(X∗, X∗) K(X∗, X)

K(X, X∗) K + σ2
ε IN

])
(1.13)

which leads to the standard GP predictive equations,

p(f∗ | X∗, X, y) = N (m, s) (1.14)

m = m(X∗) + k(X∗, X)
[
K(X, X) + σ2

ε IN
]−1 (

y − m(X)
)

(1.15)

s = k(X∗, X∗) − K(X∗, X)
[
K(X, X) + σ2

ε IN
]−1

K(X, X∗) (1.16)

We will often abbreviate the inverse covariance matrix multiplied by the observations with β,

β =
[
K(X, X) + σ2

ε IN
]−1 (

y − m(X)
)

(1.17)

Figure 1.6 shows a GP posterior on the same set of points as we looked at in figure 1.1. We can

see how the uncertainty in the function value, represented by the shaded green area, shrinks as we

approach an observation and grows as we move away from the data. Thus we have a model which can

quantify and report its uncertainty.
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Figure 1.6: Example GP posterior using the same data as in figure 1.1 and using a squared exponential
covariance function. The green line shows the mean of the posterior distribution and the green shaded
area shows two standard deviations either side of the mean. Note how the uncertainty collapses around
the data points and expands as we move away from the observations.

In figure 1.6 we specified that the mean function m is zero (m(X) = 0), in other words, before we

observe any data points we expect the function to move symmetrically around zero. Figure 1.6 shows

that in the region of the data the GP posterior moves significantly away from zero — the data is

overriding the prior. However, as we move away from the data we fall back on the prior, which is

why the posterior mean is returning to zero at the edges of the figure. Thus the GP mean function

only has a strong effect away from the range of the data. Because of this, it is common to use the

zero mean function unless we have reason to believe a-priori that the true function exhibits a certain

parametric form, for example it might have a general linear rise, in which case we can use a linear

mean function.

1.4.3 Learning in Gaussian Processes

In the previous section we discussed ‘fitting’ the GP to observed data. However, we didn’t actually

do any ‘fitting’ — no parameters were optimised. This is the Bayesian methodology: we specify our

belief over any unknown variables by means of a prior and then we use the rules of probability to

update our beliefs in the presence of observed data. The advantage of this approach is that there is

no fear of overfitting, as we haven’t optimised anything. The disadvantage is that the equations we

need to solve to find the posterior are rarely analytically solvable. The great strength of the Gaussian

Process is that we can find the posterior on the function values analytically (for the case of a Gaussian

likelihood, as in equation 1.10). However, there are some additional unknown variables, which we have

not yet discussed. These lie in the covariance, and potentially mean, functions.

The covariance functions used in figure 1.4 are the ‘squared exponential’ (SE) (a.k.a. the Gaussian or
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‘exponentiated quadratic’ covariance function),

kSE(x1, x2) = σ2
f exp

(
−1

2
(x1 − x2)TΛ−1(x1 − x2)

)
(1.18)

the Matérn 3
2 ,

kM32(x1, x2) = σ2
f (1 + r) exp(−r) (1.19)

r =
√

3(x1 − x2)TΛ−1(x1 − x2) (1.20)

and the periodic covariance function, which first embeds the data points x1 and x2 into a trigonometric

feature space, and then applies a base covariance function k0, which can be any of the other stationary

covariance functions,

kper(x1, x2) = k0

(
u(x1), u(x2)

)
(1.21)

u(x) =

[
sin (a)

cos(a)

]
, ai =

πxi
pi

for i = 1 . . . D (1.22)

The covariance functions listed above have a number of parameters, including a scale term σ2
f , often

referred to as the signal variance, and a set of lengthscales Λ, which determine the relevant scales in the

input domain. The periodic function also has a period parameter p. These parameters are commonly

referred to as ‘hyperparameters’ as they parameterise the distribution over functions rather than the

functions themselves. We would like to treat these hyperparameters in a Bayesian manner — place

a prior over them and then find the posterior distribution on the function values f whilst averaging

over the hyperparameters θ,

p(f | X, y) =

∫
p(f | X, y, θ) p(θ) dθ (1.23)

Unfortunately, due to the complex way in which these hyperparameters affect the distribution over f ,

the integral in equation 1.23 is rarely solvable. We can either use an approximate inference method such

as Markov Chain Monte Carlo or variational inference, or we can proceed via a non-Bayesian approach

and use maximum (marginal) likelihood. In standard maximum likelihood we optimise the parameters

to maximise the probability of the data under the model. This is often the easiest and quickest

approach to fit a model in a probabilistic framework. However, it can suffer from problems with

overfitting as, once again, we are only considering the ‘best-fit’ setting of the parameters and ignoring

any uncertainty. In the GP hyperparameter setting overfitting isn’t so much of a problem (although

it can still occur) because by optimising the hyperparameters we are adapting the distribution over

the functions, rather than picking the single best-fitting function as we would if we were optimising

parameters. Recall that the likelihood is p(y | f , X, θ), which gives the probability of the observations

y at input locations X given the function values f . As we have just described, we don’t want to pick

a single set of function values f , we want to average over the distribution on functions,

p(y | X, θ) =

∫
p(y | f , X, θ) p(f | X, θ) df (1.24)

The distribution on f is Gaussian, from the definition of a GP, and thus if we also use a Gaussian

likelihood, which we did here by assuming Gaussian noise (equation 1.10), then equation 1.24 is
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analytically solvable. This allows us to write that the log marginal likelihood is,

log p(y | X, θ) = −1

2

(
y − m(X)

)T (
K + σ2

ε IN
)−1 (

y − m(X)
)
− 1

2

∣∣K + σ2
ε IN

∣∣ − N

2
log 2π

(1.25)

We can easily take derivatives of the equation 1.25, w.r.t. the hyperparameters θ, which lie within the

covariance matrix K and the mean vector m(X). In addition we can also differentiate w.r.t. the noise

variance σ2
ε , which allows us to optimise all these hyperparameters at the same time. For non-Gaussian

likelihoods, equation 1.24 is not tractable and so approximate inference methods are often used, such

as expectation propagation (Minka, 2001) or Laplace’s method.

1.4.4 Predictions at uncertain inputs

The GP predictive moments in equations 1.15 and 1.16 give the mean and variance of the GP posterior

at the known point x∗. However, in this thesis we will often be interested in making predictions at

uncertain inputs. This amounts to finding the average predictive distribution over the uncertainty in

the input point,

p(f∗ | y, X) =

∫
p(f∗ | x∗, y, X) p(x∗) dx∗ (1.26)

If the uncertain test point is Gaussian,

p(x∗) = N (µ∗, Σ∗) (1.27)

then, although the predictive distribution is non-Gaussian (see figure 1.7), we can still compute its

moments exactly for certain covariance functions. These have been derived in Girard et al. (2003) and

Deisenroth (2009) and we summarise the results here. The predictive mean can be found by the rule

of iterated expectations,

E [f∗ | y, X] = Ex∗∼p(x∗)
[
Ef∗∼p(f∗|x∗,y, X) [ f∗ ]

]
= Ex∗ [m(x∗)] + Ex∗ [k(x∗, X)] β (1.28)

where β is defined in equation 1.17. The expectation over the covariance function can be solved for

covariance functions such as the linear kernel and the squared exponential. We present the results for

the squared exponential in Appendix A. The predictive variance can be found by use of the rule of

total variance,

V [f∗ | y, X] = Vx∗∼p(x∗)
[
Ef∗∼p(f∗|x∗,y, X) [ f∗ ]

]
+ Ex∗∼p(x∗)

[
Vf∗∼p(f∗|x∗,y, X) [ f∗ ]

]
= Vx∗ [m(x∗)] + 2C [m(x∗), k(x∗, X)] β + βT Vx∗ [k(x∗, X)] β

+ E [k(x∗, x∗)] − E
[
k(x∗, X)

[
K + σ2

ε IN
]−1

k(X, x∗)
]

(1.29)

We can also find the covariance between the Gaussian test point x∗ and the GP function value
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Figure 1.7: Making a GP prediction at a Gaussian test input. The top right plot shows a GP posterior
based on the input-output data X, y. We wish to make a prediction at the uncertain test input x∗,
distributed according to the Gaussian shown in the bottom plot. The blue histogram shows the true
predictive distribution whilst the red Gaussian shows a moment-matched approximation.

f∗ = f(x∗),

Cx∗,f∗ [x∗, f(x∗)] = Ef,x∗ [x∗ f(x∗)] − Ex∗ [x∗] Ef,x∗ [f(x∗)]

= Ex∗
[
x∗ Ef [f(x∗)]

]
− µ∗ Ef,x∗ [f(x∗)]

= Ex∗ [x∗ k(x∗, X)]β − µ∗ Ef,x∗ [f(x∗)] (1.30)

where Ex∗ [x∗ k(x∗, X)] is computed for the SE kernel in the appendix and Ef,x∗ [f(x∗)] is the term we

computed above in equation 1.28. Equation 1.30 results in a D × 1 vector.

1.4.5 Comparison to Bayesian feature-space regression

Related to Gaussian Processes is Bayesian feature-space regression: which is Bayesian linear regression

where we first transform the input x into a feature vector φ(x), via some (nonlinear) mapping. Here

we provide a brief comparison. Whilst linear regression is very limited in the variety of functions

it can fit, it can be made vastly more powerful by the simple extension of mapping the inputs to a

feature-space. We then perform linear regression in this expanded space,

f(x) =

M∑
j=1

wj φj(x) = wTφ(x) (1.31)
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where w is a vector of weights and φj(x) is the mapping from the input x to the jth feature. A popular

choice for the features is to use a Gaussian radial basis function,

φj(x) = exp

(
−1

2
(x − cj)TΛ−1

j (x − cj)
)

(1.32)

where the basis function has centre cj, and width Λj. Inference in functions of the form of equation

1.31 is simple if we only treat the weights in a Bayesian manner and optimise any parameters of the

feature space mapping. For example,

p(wj) = N (0, σ2
w) (1.33)

⇒ p(f | x, θ) = N (0, σ2
w φ

Tφ) (1.34)

If we have a set of training inputs X and outputs y then, by applying a similar set of steps to the

GP derivations in section 1.4.2, we can find the predictive posterior distribution at a test point x∗ to

be,

p(f∗ | x∗, X, y) = N
(
σ−2
ε φ(x∗)T [σ−2

ε ΦT Φ + σ2
w IM ]−1ΦT y, φ(x∗)T [σ−2

ε ΦT Φ + σ2
w IM ]−1φ(x∗)

)
(1.35)

with Φij = φj(xi), a N ×M matrix. Figure 1.8 shows an example fit to the same five points as in

figures 1.1 and 1.6 using a Bayesian Gaussin RBF with ten fixed basis functions, as shown in red.

If we compare this plot to the GP posterior in figure 1.6 then we see that within the range of the

basis functions the posteriors look very similar. However, outside this range the variance of the RBF

drops away to zero, which is the exact opposite of what we would desire. There are two ways in which

this problem can be fixed, either the input space must be completely tiled with basis functions, or we

must also treat the centres and widths of the basis functions probabilistically, with appropriate priors.

Taking the second approach causes the inference to no longer be analytically tractable, although Barber

and Schottky (1998) discuss some suitable approximate inference methods. Tiling the complete input

space with basis functions sounds completely farcical. Surprisingly, however, this is in effect exactly

what the Gaussian Process does, by means of the ‘kernel trick’. Gaussian Processes can, therefore, be

viewed as the extension of the Bayesian feature-space regression to the case where we have infinitely

many features. For a more in depth discussion of these concepts, see MacKay (1998) and Rasmussen

and Williams (2006).

There are further difficulties with Bayesian feature-space regression, namely in how to choose the

number and form of the features. A RBF format is popular, due to the universal approximation

property, but this still leaves the question of which type of basis functions to use and how many

should be included. Gaussian Processes remove the need to choose the number of RBFs and elevate

the choice of basis function type to a choice of covariance functions, which are often easier to interpret.

Due to their nonparametric nature, GPs adjust their complexity to the number of observed data points

and are not limited to a predetermined complexity as RBFs are. The price paid for these advantages

is in terms of computational time, as GPs can scale more poorly with the data than an RBF. Although

this is only true for the case where the number of data points is greater than the number of basis

functions. If we need a very large number of basis functions so as to tile the space with fine enough

precision then GPs may even be faster. We believe that these many advantages strongly motivate the

use of Gaussian Processes in modelling tasks.
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Figure 1.8: Illustration of a Bayesian RBF fitted to the data shown previously. Ten Gaussian basis
functions where used as indicated by the red lines at the bottom of the plot. The basis function centres
and widths were fixed and the weights were integrated out. The resulting posterior is shown in green.

1.5 Variational Bayesian Inference

We will use variational methods (Attias, 1999; Jordan et al., 1999) for approximate Bayesian inference

in chapters 2 and 3. Therefore, we provide a brief introduction to variational methods here. Using

Bayes’ rule we can write the marginal likelihood of our observed data y in terms of our latent variables

x,

p(y) =
p(y | x) p(x)

p(x | y)
(1.36)

We can then multiply and divide by an arbitrary distribution q(x) and take logarithms,

p(y) =
p(y | x) p(x)

q(x)

q(x)

p(x | y)
(1.37)

⇒ log p(y) = log
p(y | x) p(x)

q(x)
+ log

q(x)

p(x | y)
(1.38)

Finally we can take the expectation of both sides w.r.t. q(x). As the left hand side has no dependence

on x this step only has an effect on the right hand side of the equation,

log p(y) =

∫
q(x) log

p(y | x) p(x)

q(x)
dx +

∫
q(x) log

q(x)

p(x | y)
dx (1.39)

We can recognise that the last term in equation 1.39 is the KL divergence between the arbitrary

distribution q(x) and the true posterior on the latent variables, p(x | y). As this term is always

positive the log marginal likelihood must be lower bounded by first integral term,

log p(y) ≥
∫
q(x) log

p(y | x) p(x)

q(x)
dx , L

(
q(x)

)
(1.40)
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The inequality in equation 1.40 is true for any distribution q(x) although clearly if q(x) is very far from

the true posterior p(x | y) the KL divergence term will be large and the lower bound will be very loose.

Equation 1.40 will reach equality if and only if q(x) = p(x | y), however we assume that we cannot

solve the equation for this situation. Thus the variational approach involves finding a q(x) that makes

equation 1.40 tractable whilst also minimising the KL divergence between q(x) and p(x | y). This is

usually achieved by assuming a particular form and/or independence structure for q(x) and then using

calculus of variations (hence the name) to find the optimal q(x) subject to those restrictions.

1.6 General Notation

This section contains some notation which will be standard across all chapters.

Scalars, vectors, and matrices

x Scalars are usually represented by a lower-case character

x Vectors are usually represented by a bold lower-case character

X Matrices are usually represented by an upper-case character

Common terms

x a D-dimensional column vector, usually representing a noise-free state

y a column vector of observations

X a collection of N x variables, arranged into a N ×D matrix

k(x1, x2) the covariance function k evaluated between points x1 and x2

k(X, x∗) or k(x) a N-dimensional column vector, where the ith entry is k(xi, x
∗)

k(x∗, X) a N-dimensional row vector, where the ith entry is k(x∗, xi)

K(X, X) or K a N ×N matrix, where the i, jth entry is k(xi, xj)

β a N-dimensional column vector defined in equation 1.17

m the GP predictive mean, equation 1.15

s the GP predictive variance, equation 1.16

Probability

p(x) the probability density function on x

q(x) usually implies an approximate probability density function on x

x ∼ p(x) Implies that x is distributed according to p(x)

Ex∼p(x)[x] The expectation of x over the distribution p(x)

Vx∼p(x)[x] The variance of x over the distribution p(x)

C[x, y] The covariance between x and y

N (µ, Σ) The Gaussian (normal) probability density function, with mean µ and variance Σ

1.7 Test systems

In this thesis we are particularly focussed on the modelling of dynamical systems. These systems are

pervasive in our lives, and thus modelling them, which is a prerequisite for making predictions (chapter

3) and designing controllers (chapter 4), is an incredibly important area for research. Throughout this
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thesis, we shall test various modelling strategies on two benchmark dynamical systems: a cart &

pendulum, and a robotic unicycle. We describe these two systems next.

1.7.1 Cart and Pendulum System

The first dynamical system we introduce is the four dimensional cart and pendulum, as shown in

figure 1.9. This consists of a cart, which is free to move side-to-side under the action of a force. An

unactuated, free-to-rotate pendulum is attached to the centre of the cart, as shown in the figure. The

system state vector is,

x =
[
x, ẋ, θ, θ̇

]T
(1.41)

and there is a single control variable: the force applied to the cart. The (idealised) equations of motion

can be derived fairly simply from Newtonian mechanics, e.g. see Hall (2013). There are two control

tasks which we will consider on the cart and pendulum:

• The balancing task In this task the pendulum starts in the inverted position and the

goal is to maintain it at this unstable equilibrium point. This is an extremely well studied

problem and it can be straightforwardly solved using linearised dynamics.

• The swing-up task In this task the pendulum starts hanging downwards and the con-

troller must move the cart so as to swing the pendulum up into the inverted position and then

hold it there. This is a considerably harder problem than the balancing task. It cannot be solved

with a linear model as the pendulum will move through at least 180 degrees. Because of this,

the swing-up task has been used to test various nonlinear control strategies (Åström and Furuta,

2000; Furuta et al., 1991).

1.7.2 Unicycle System

The ten dimensional unicycle system is considerably more complex than the cart and pendulum. It

consists of a body mounted above a single wheel, and with a flywheel set horizontally above it, as

shown in figure 1.10. The wheel and flywheel can be driven by a motor allowing the unicycle to move

in the forwards and backwards directions, and to rotate on the spot. We represent the unicycle by

the ten dimensional state,

x =
[
φ̇, θ̇, ψ̇, φ̇w, φ̇t, xc, yc, φ, θ, ψ

]
(1.42)

where we have ignored the angle of the wheel and the flywheel as these are assumed to have negligible

effect on the dynamics. The task is to balance the unicycle in the upright position, whilst minimising

its distance from the origin. If the unicycle starts to fall in pitch it can be corrected by moving forwards

or backwards as required. However, if the unicycle starts to fall in the roll direction there is no direct

control action it can take to remedy this situation: it must first use the flywheel to turn into the fall,

replacing and angle in roll with an angle in pitch, which it can then correct by moving forwards or

backwards. The task would be made much simpler if the flywheel where to be mounted vertically,

that is rotated ninety degrees in pitch (as defined in figure 1.10). In that situation a torque could be

generated to directly counteract a fall in roll by spinning the flywheel (this is similar to a human rider
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Figure 1.9: The cart and pendulum system. A cart of mass M is free to move in one dimension under
the action of a force F . Attached to the centre of the cart is a pendulum, consisting of a rod of mass
mr and length l, and a bob of mass mb. The pendulum is unactuated and free to rotate about its
attachment. The distance of the cart from the origin in denoted by x and the angle of the pendulum
by θ.

leaning to one side). Here we will concentrate on the much more challenging task of stabilising the

unicycle with a horizontally mounted flywheel.
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Figure B.3: The robotic unicycle with state variables: pitch angle φ, roll angle θ, yaw angle ψ, wheel
angle φw, turntable angle ψt, the associated angular velocities and the location of the global origin (xc, yc).
The actions are the wheel motor torque uw and the turntable motor torque ut. The global coordinate
system is defined by the vectors i, j and k.

where we employ a linear friction model Ff = bẋ. Eqs. (B.6)–(B.7) can then be rearranged to

isolate the terms ẍ and θ̈ and give the equations of motion for this system. The action force was

constrained to u ∈ [−10, 10]N and the physical constants we used were: length l = 1m, mass of

cart M = 0.5 kg, mass of pole m = 0.5 kg and coefficient of friction b = 0.1N sm−1.

B.3 Unicycle

B.3.1 Method

The robotic unicycle is shown in Fig.B.3 with global coordinate system defined by the orthonormal

vectors i, j and k. The spatial position of the unicycle is fully defined by the pitch angle φ,

roll angle θ, yaw angle ψ, wheel angle φw, turntable angle ψt and location of the global origin

with respect to the body-centred coordinate system (xc, yc). We chose the state vector to be

x = [φ, φ̇, θ, θ̇, ψ, ψ̇, φ̇w, ψ̇t, xc, yc]
⊤ ∈ R10 where we exclude φw and ψt since they clearly have

no effect on the dynamics. The action vector u is made up of a wheel motor torque uw and a

turntable motor torque ut. The equations of motion that govern the unicycle were derived by

Forster (2009). We shall provide a sketch of the full derivation here, in which we follow the steps

taken by Forster in Section 3.3 of his thesis.

Let us start with the coordinates (xc, yc). These are centred on the point of contact with the

floor and define the location of the global origin. The coordinate xc lies parallel to the current

direction of travel and yc is orthogonal to it. These coordinates evolve according to

ẋc = rwφ̇w cosψ (B.8)

ẏc = rwφ̇w sinψ (B.9)

Figure 1.10: Idealised diagram of the unicycle. The state is described by the pitch φ, roll θ, and
yaw ψ angles, the angles of the wheel φw and flywheel ψt, and their corresponding time derivatives.
In addition there are two position variables, which map the position of the origin w.r.t. the unicycle
(self-centred coordinates) xc and yc. Figure reproduced from Hall (2013).



Chapter 2

Gaussian Processes with Input Noise

2.1 Chapter Overview

In this chapter we look at the problem of regression using Gaussian Processes for the case where the

input points are corrupted with noise (a situation sometimes termed errors-in-the-variables). In such

cases Gaussian Process regression is no longer tractable and so a number of approximate methods have

been developed. In section 2.2 we introduce the problem and outline some of the approaches taken

to perform GP regression with input noise. In section 2.3 we demonstrate how to apply the work of

Titsias and Lawrence (2010) to find a variational approach to the problem; then in section 2.4 we

present a fast approach, Noisy Input Gaussian Process (NIGP) (McHutchon and Rasmussen, 2011),

based on the Taylor series expansion of the GP posterior. Finally we compare the various methods

and present our conclusions. We see that a variational approach tends to underfit but that NIGP

produces strong results. As an appendical section, we present mathematical results on the derivatives

of Gaussian Processes in section 2.7, which are needed by the NIGP model.

The main contribution of this chapter lies in the NIGP model published in NIPS 2011. We also apply

the variational approach proposed by Titsias and Lawrence (2010) to GP regression with input noise

and compare the results.

2.2 Introduction

Over the last decade the use of Gaussian Processes (GPs) as non-parametric regression models has

grown significantly. They have been successfully used to learn mappings between inputs and outputs

in a wide variety of tasks. However, many authors have highlighted a limitation in the way GPs

handle noisy measurements. Standard GP regression (Rasmussen and Williams, 2006) makes two

assumptions about the noise in datasets: firstly that measurements of input points, yin, are noise-free,

and, secondly, that output points, yout, are corrupted by constant-variance noise. For some datasets

this makes intuitive sense: for example, an application in Rasmussen and Williams (2006) is that of

modelling CO2 concentration in the atmosphere over the last forty years. One can viably assume that

the date is available noise-free and the CO2 sensors are affected by signal-independent sensor noise.

However, in many datasets, either or both of these assumptions are not valid and proceeding as if

they are leads to poor modelling performance. In this chapter we look at datasets where the input

19
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measurements yin, as well as the output yout, are corrupted by noise. As figure 2.1 illustrates, input

and output noise can have very different effects on observed values from a regression point of view,

where we are interested in the outputs as a function of the inputs; hence input noise needs to be

specifically accounted for by regression methodologies.
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Noise-free input, xin Noisy input, yin Noisy input, yin

Figure 2.1: Illustration of the effects of output (left) and input (middle) noise in regression. In each
of the three plots the solid line shows the true function from input (x-axis) to output (y-axis). The
shaded regions show two standard deviations of noise (here Gaussian), indicating where observed
points may lie; the blue crosses show sample observations. The left plot shows pure output noise, the
middle pure input noise, and the right plot shows both input and output noise. In all cases the noise
has constant variance across the input space.

Figure 2.2 shows the graphical model for regression with input and output noise. We assume that there

exists a mapping f from the hidden, noise-free inputs, xin to the noise-free outputs xout. In regression

we attempt to model this mapping function f by using a set of N paired input-output observations,

{yiin, yiout}Ni=1. As we have just stated, the standard Gaussian Process regression approach is to assume

that the input noise, εin is zero. The result of this assumption is that the GP attempts to model the

function g in figure 2.2, rather than the function f . However, if εin is actually non-zero, the presence

of random noise in yin means that there is, most likely, no function g which satisfies the mapping

yin to xout. It is not surprising therefore, that a Gaussian Process struggles to model a system with

input noise. Figure 2.3 shows some input-output pairings taken from a simple quadratic function

with additive, constant-variance noise on both inputs and outputs. If we take the GP approach and

assume that there is only output noise then we will greatly underestimate the noise on some points

and overestimate it on others. If we are using a Gaussian noise model for tractability then the light-

tails nature of a Gaussian distribution (there is relatively little probability mass in the tails compared

to the central part of the distribution) commonly results in the GP greatly overestimating the total

amount of noise in the system. This is because the points where noise is overestimated have a much

stronger effect than the points where there is an underestimate of the noise.

We now attempt to derive the GP posterior for a system with input noise. Let Xin be a N ×D matrix

of noise-free training inputs, Xout a N × 1 vector of noise-free training targets, and Yin, Yout be the
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xin xout

yin yout

f

g
+εin +εout

Figure 2.2: Graphical model of regression with input and output noise.

Apparent
noise level

True noise
level

Figure 2.3: Input noise, if not taken into account, can lead regression methods to overestimate the
amount of output noise present. The plot on the left shows the true function in green along with a
number of observed values (blue crosses) corrupted by input and output noise. The red lines show
where the corresponding noise-free points lie. The right hand plot shows a point in closer detail. The
true amount of output noise corrupting the observation is shown with the cyan error bar on the right.
However, as the observation has also been corrupted in the input dimension it appears to have a much
larger output noise — larger than both the true input and true output noise levels combined.

corresponding noisy versions. For the sake of this argument we will assume Gaussian noise,

yiin = xiin + εiin, εiin ∼ N (0, Σin)

yiout = xiout + εiout, εiout ∼ N (0, σ2
out)

(2.1)

Recall from section 1.4.2 that the equations for a GP prediction at a noise-free test input xin are,

p(xout | xin, Xin, Yout, θ) = N (xout; m, s)

m = k(xin, Xin)
[
K(Xin, Xin) + σ2

outI
]−1

Xout

s = k(xin, xin) − k(xin, Xin)
[
K(Xin, Xin) + σ2

outI
]−1

k(Xin,xin)

(2.2)

In the case we are considering in this chapter, we do not have access to either the latent test input xin

or the latent training inputs Xin, only to the noisy versions, yin and Yin. We therefore need to integrate

both of these quantities out, as well as integrating out Xout as is usually done in GP regression. We
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start from the joint and expand it according to the graphical model in figure 2.2,

p(yin, Yin, Yout, xin, xout, Xin, Xout | θ)

= p(yin, Yin | xin, Xin) p(xout, Xout | xin, Xin) p(Yout | Xout) p(xin, Xin)

(2.3)

p(xout, Xout, xin, Xin | yin, Yin, Yout, θ)

=
p(yin, Yin | xin, Xin) p(xout, Xout | xin, Xin) p(Yout | Xout) p(xin, Xin)∫

p(yin, Yin | xin, Xin) p(xout, Xout | xin, Xin) p(Yout | Xout) p(xin, Xin) dxout dXout dxin dXin

(2.4)

p(xout |yin, Yin, Yout, θ)

=

∫
p(yin, Yin | xin, Xin) p(xout, Xout | xin, Xin) p(Yout | Xout) p(xin, Xin) dXout dxin dXin∫

p(yin, Yin | xin, Xin) p(xout, Xout | xin, Xin) p(Yout | Xout) p(xin, Xin) dxout dXout dxin dXin

(2.5)

The GP prior implies,

p(xout, Xout | xin, Xin) = N
([

m(xin)

m(Xin)

]
,

[
k(xin,xin) k(xin, Xin)

k(Xin,xin) k(Xin, Xin)

])
(2.6)

Given that the covariance function k is nearly always a nonlinear function, integrating out the latent

inputs, xin, and Xin will result in a non-Gaussian distribution over the latent outputs, for all but the

most trivial of priors, p(xin, Xin). THis means we cannot integrate out the latent outputs analytically.

Thus, exact inference in the GP framework with each input location as a distribution is intractable.

One could design a sampling scheme (e.g. MCMC) to compute the posteriors on both the hyperparam-

eters and the prediction approximately. However, such schemes are not straightforward to implement

and are likely to be computationally very expensive. They can also be awkward to make predictions

with, if it is necessary to run sampling for every prediction. The alternative approach is to use an

approximate-analytic method. A number of authors have attempted to tackle this problem and we

now look at two approaches: using the expected covariance matrix (section 2.2.1), and via use of the

Taylor series (section 2.2.2).

2.2.1 The Expected Covariance Matrix Approach

One approximate solution presented in Dallaire et al. (2008) is to replace the training point covariance

matrix K in equation 2.2 with the expected covariance matrix,

K̃ =

∫
K(Xin, Xin) p(Xin | Yin) dXin (2.7)
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As we stated above regarding xin, for the squared exponential covariance function and a Gaussian

distribution on Xin this integral is solvable. Assuming independent noise on the training inputs,

K̃ij =

∫
k(xiin, x

j
in) p(xiin | yiin) p(xjin | yjin) dxiin dx

j
in (2.8)

=

∫
σ2
f exp

(
−1

2
(xiin − xjin)TΛ−1(xiin − xjin)

)
N (xiin; yiin, Σin)N (xjin; yjin, Σin) dxiin dx

j
in

=
∣∣2Λ−1Σin + I

∣∣−1/2
σ2
f exp

(
−1

2
(yiin − yjin)T (Λ + 2Σin)

−1
(yiin − yjin)

)
for i 6= j (2.9)

This is the equation as presented in Dallaire et al. (2008), however, it is actually only valid for i 6= j

due to the independence assumption between xiin and xjin in equation 2.8. For the diagonal elements

of the covariance matrix, i = j, the distance between xiin and xjin will always be zero as they covary

‘perfectly’; thus the the diagonal elements are actually all equal to their usual value of σ2
f ,

K̃ij = σ2
f if i = j (2.10)

In the work of Dallaire et al. (2008) the model is used in the situation of known Gaussian distributions

on the training points. In our case the input noise variance in unknown, however we can extend the

approach by taking derivatives of K̃ w.r.t. Σin and optimising the input noise level along with the other

hyperparameters. Differentiating w.r.t. the input noise variance, or rather, the log of the standard

deviation as this is easier to optimise,

∂K̃ij

∂ log σin,d
=

(
− 2Λ−1

d Σin,d

2Λ−1
d Σin,d + 1

+
2(yiin,d − yjin,d)

2Σin,d

(Λd + 2Σin,d)
2

)
K̃ij i 6= j (2.11)

and zero if i = j. However, we need not proceed any further with this method as we can show that

when the input noise variance is a parameter the model reduces to a standard GP: if we assume the

hyperparameters from this standard GP are [Λ, σ2
f , σ

2
out], and the corresponding hyperparameters from

the GP with the expected covariance matrix are [Λ̃, σ̃2
f , σ̃

2
out, σ̃

2
in], then if we

1. Choose: 0 < σ̃2
out < σ2

out

2. Set: σ̃2
f = σ2

f + σ2
out − σ̃2

out

3. Set: Λ̃ = Λ
σ4
f

σ̃4
f

4. Set: σ2
in = 1

2 (Λ − Λ̃)

we have that,

∣∣∣2Λ̃−1σ2
in + I

∣∣∣−1/2

σ̃2
f =

∣∣∣Λ−1Λ̃
∣∣∣1/2 σ̃2

f =
σ2
f

σ̃2
f

σ̃2
f = σ2

f (2.12)

and,

Λ̃ + 2σ2
in = Λ (2.13)
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which implies K̃ij = Kij. In other words, using the expected covariance matrix and optimising the

input noise variance provides no extra flexibility to the model: the model classes are the same and

thus the optimal setting of the hyperparameters and predictive distributions are also identical.

2.2.2 A Taylor Series Approach

The computational difficulty arises due to the complexity of the function f implied by the GP prior.

An alternative method therefore, proposed in Girard and Murray-Smith (2003), is to use a local

approximation to the GP function, which is simpler to work with. A natural form for this local

approximation is to use the Taylor series to approximate the GP latent function f about an input

point yin,

yout = f(xin, θ) + εout (2.14)

= f(yin − εin, θ) + εout (2.15)

= f(yin, θ) − εTin
∂f(yin, θ)

∂yin

+
1

2
εTin

∂2f(yin, θ)

∂yTin∂yin

εin + . . . + εout (2.16)

Girard and Murray-Smith (2003) make their approximation by selecting terms up to and including the

quadratic term in the Taylor expansion. However, rather than then marginalising over the uncertainty

in the input points they proceed by just taking the expectation over εin,

yout ≈ Eεin

[
f(yin, θ) − εTin

∂f(yin, θ)

∂yin

+
1

2
εTin

∂2f(yin, θ)

∂yTin∂yin

εin + εout

]
(2.17)

= f(yin, θ) +
1

2
Tr

{
∂2f(yin, θ)

∂yTin∂yin

Σin

}
+ εout (2.18)

as εin is zero-mean. As far as we can tell there is no justification made for only taking the expectation,

except perhaps for computational reasons. We shall return to this in our model, NIGP. For the sake of

simplifying the following derivations we will assume independent noise on each of the input dimensions.

This allows us to write,

yout = f(yin, θ) +
1

2

D∑
d=1

{
∂2f(yin, θ)

∂y2
in,d

σ2
in,d

}
+ εout (2.19)

We can then proceed to marginalise out the GP latent function by making use of the fact that the

derivatives of a GP are also GPs and thus have closed forms for their mean and covariance (Solak

et al., 2003). As shown in their paper (Girard and Murray-Smith, 2003), this leads to GP predictions

with the following moments,

E[yout | yin, Yin, Yout, θ] = qTQ−1 Yout (2.20)

V[yout | yin, Yin, Yout, θ] = q − qTQ−1 q (2.21)
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where q and q represent different variables (notation taken from Girard and Murray-Smith (2003)),

Qij = k(Y iin, Y
j
in) +

D∑
d=1

∂2k(Y iin, Y
j
in)

(∂Y iin,d)
2

σ2
in,d +

1

4

D∑
d=1

D∑
e=1

∂4k(Y iin, Y
j
in)

(∂Y iin,d)
2(∂Y jin,e)

2
σ2

in,d σ
2
in,e + σ2

out δij (2.22)

qi = k(Y iin, yin) +

D∑
d=1

∂2k(Y iin, yin)

(∂Y iin,d)
2

σ2
in,d +

1

4

D∑
d=1

D∑
e=1

∂4k(Y iin, yin)

(∂Y iin,d)
2∂y2

in,e

σ2
in,d σ

2
in,e (2.23)

q = k(yin, yin) +

D∑
d=1

∂2k(yin, yin)

∂y2
in,d

σ2
in,d +

1

4

D∑
d=1

D∑
e=1

∂4k(yin, yin)

∂y2
in,d∂y

2
in,e

σ2
in,d σ

2
in,e (2.24)

with the Kronecker δij = 1 if i = j and zero otherwise. This method has a significant drawback

in that it requires fourth order derivatives of the covariance function; or, even worse, if we are to

train the covariance function hyperparameters by gradient descent we will need fifth order derivatives.

As each derivative adds a factor of the dimension D to the complexity, this method has a potential

computational cost of O(D5). This is likely to be too expensive for systems with even a moderate

number of dimensions. A much cheaper approximation based on the Taylor series would be to only use

first order terms. In the derivation of Girard and Murray-Smith (2003) however these terms disappear

as they base their method on only the expectation over the input noise. Because this method does

not scale well we exclude it from our experiments.

2.2.3 Input Noise can be Treated as Heteroscedastic Output Noise

In regression we are interested in finding the output as a function of the input. In this setting, the

effect of input noise on the output is modulated by the shape of the function. We can see from figure

2.1 that, broadly speaking, in areas where the function is flat the input noise has very little effect

and in areas where the function is steep input noise has a large effect. This leads to the output

noise variance varying across the input space, a feature often called heteroscedasticity. Figure 2.4

demonstrates this for the function considered in figure 2.1. This intuition suggests that, rather than

modelling the input noise directly we can instead model its effects on the output if we can handle

heteroscedastic output noise. One method for modelling datasets with input noise is, therefore, to

hold the input measurements to be deterministic and then use a heteroscedastic GP model. This

approach has been strengthened by the breadth of research published recently on extending GPs to

heteroscedastic data.

A common approach to modelling changing variance with a GP, as proposed by Goldberg et al.

(Goldberg et al., 1998), is to make the noise variance, or rather its log, a random variable and attempt

to estimate its form at the same time as estimating the posterior mean. Goldberg et al. suggested

using a second GP to model the noise level as a function of the input location,

log σ2
out = g(yin) (2.25)

g ∼ GP(mg, kg) (2.26)

Inference is intractable in this model and so Goldberg et al. (1998) introduced a sampling scheme

to both find posteriors on the hyperparameters and to make predictions. This approach proved to

be computationally expensive and so Kersting et al. (2007) suggested an approximate “most likely”

training scheme. In this approach the uncertainty in the noise-GP is ignored and the mean value
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Figure 2.4: Illustration of how input noise can be treated as heteroscedastic output noise. The plot on
the left (repeated from figure 2.1) shows a function and two standard deviations of input noise. The
middle figure shows a reinterpretation of the input noise as heteroscedastic output noise (note that
the noise variance on the left of the plot is much greater than the variance on the right of the plot),
which is more appropriate for regression. The shaded region shows the fifth to ninety fifth confidence
interval — the distribution is not Gaussian. The right hand plot shows a moment-matched Gaussian
fit to the output distribution. The red line at the bottom of the right plot shows how the Gaussian’s
variance changes as a function of the input.

used,

log σout = Eg [g(yin)] (2.27)

The hyperparameters are then optimised by using the following iterative scheme,

1. Train a standard (homoscedastic) GP on the observed data

2. Compute an estimate of the log noise variance at each training point, log σ2
out,i for i = 1 to N ,

using the observed data and the trained GP (GP1)

3. Train a second homoscedastic GP (GP2) using the pairs of observed inputs and estimated noise

levels from step 2, {yin,i, log σ2
out,i}Ni=1

4. Train a third GP (GP3) to fit the observed data, {yin,i, yout,i}Ni=1, using the posterior mean of

GP2 to provide the noise variance at each training point

5. Set GP1 = GP3 and go back to step 2. Repeat until converged (although convergence is not

guaranteed).

Other related work with heteroscedastic models includes Yuan and Wahba (Yuan and Wahba, 2004),

and Le at al. (Le et al., 2005) who proposed a scheme to find the variance via a maximum-a-

posteriori estimate set in the exponential family. Snelson and Ghahramani (Snelson and Ghahramani,

2006b) suggest a different approach whereby the importance of points in a pseudo-training set can

be varied, allowing the posterior variance to vary as well. Wilson and Ghahramani broadened the

scope still further and proposed Copula and Wishart Process methods (Wilson and Ghahramani,

2010, 2011).
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Referring the input noise to the output results in heteroscedasticity with a very particular structure.

Therefore, although all of these methods could be applied to datasets with input noise, they are

designed for a more general class of heteroscedastic problems and so none of them exploits the structure

inherent in input noise datasets. This structure can be used to improve upon current heteroscedastic

GP models for datasets with input noise. As we stated previously, one can imagine that in regions

where a process is changing its output value rapidly, corrupted input measurements will have a much

greater effect than in regions where the output is almost constant. In other words, the effect of

the input noise is related to the gradient of the function mapping input to output; this idea can be

captured in a first order Taylor series expansion.

In McHutchon and Rasmussen (2011) we introduced a method (NIGP) for training GPs on data with

input noise, based on a first order Taylor expansion of the posterior (although we could use higher

order terms if desired). The method refers the input noise, through the Taylor expansion, to the

output, proportional to the square of the posterior mean function’s gradient (with optional additional

terms to capture the uncertainty in the gradient). This means we treat the input measurements as if

they were deterministic, and inflate the corresponding output variance to compensate. This approach

is particularly powerful in the case of time-series data where the output at time t−1 becomes the input

at time t. In this situation, input measurements are clearly not noise-free: the noise on a particular

measurement is the same whether it is considered an input or output. By also assuming the inputs

are noisy, NIGP is better able to fit datasets of this type. Furthermore, we can estimate the noise

variance on each input dimension, which is often very useful for analysis. We will present and discuss

NIGP in section 2.4.

2.3 The Variational Approach

Before we consider the NIGP method we first demonstrate how the problem can be solved by using a

variational approach (see section 1.5 for an introduction to variational methods). Titsias and Lawrence

(2010) showed how a clever choice of variational distribution can lead to a tractable lower bound on

the marginal likelihood of a GP model in the face of uncertainty over the input points. In Titsias and

Lawrence (2010), the authors study the GP latent variable model (Lawrence, 2004) (also see chapter

3) although they point out their approximation scheme could be applied to the problem of input noise.

In this section we unpack the variational approach and show how it leads to a tractable lower bound,

L, for hyperparameter optimisation and how we can make predictions on unseen data.

Using the structure of the graphical model (figure 2.2), we can write the marginal likelihood as,

p(Yout | Yin, θ) =
1

p(Yin)

∫
p(Yout, Xout, Xin, Yin, θ) dXout dXin

=
1

p(Yin)

∫
p(Yout | Xout, θ) p(Xout | Xin, θ) p(Yin | Xin, θ) p(Xin) dXout dXin (2.28)

Recall that, the terms including the observations in this integral are Gaussian,

p(Yout | Xout, θ) =

N∏
i=1

N
(
yiout; x

i
out, σ

2
out

)
and p(Yin | Xin, θ) =

N∏
i=1

N
(
yiin; xiin, Σin

)
(2.29)
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and whilst the second term is also Gaussian it is a nonlinear function of the latent variables Xin,

p(Xout | Xin, θ) = N (Xout; 0, K (Xin, Xin)) (2.30)

which makes the integral in equation 2.28 intractable. However, we can compute a lower bound by

using a variational approach. Following Titsias and Lawrence (2010), we first need to augment the

Gaussian Process with a set of M ‘inducing points’ (a.k.a. pseudo-outputs), u, an M × 1 vector, and

their corresponding inputs Z, a M ×D matrix, such that the inducing points and the latent outputs

Xout are jointly distributed according the the GP,

Xout, u | Xin, Z, θ ∼ GP (m, k) (2.31)

These inducing points are not introduced for the sake of computational speed (as they were in Snel-

son and Ghahramani (2006b)) but rather to act as an ‘information store’, which allows learning to

take place. The graphical model with these extra variables is shown in figure 2.5. Given the joint

distribution in equation 2.31, we can find the conditional distribution,

p(xout | xin, u, Z, θ) = N
(
xout; k(xin, Z)K(Z, Z)−1u, k(xin,xin)− k(xin, Z)K(Z, Z)−1k(Z, xin)

)
(2.32)

For now we will treat the inducing inputs Z as extra parameters. The marginal likelihood for the

extended model is,

p(Yout | Yin, Z, θ) =
1

p(Yin)

∫
p(Yout | Xout, θ) p(Xout | Xin, u, Z, θ) p(Yin | Xin, θ) p(u | Z, θ) p(Xin) dXout dXin du

(2.33)

We now introduce a variational distribution on the latent variables, which we choose to be of the

xiin f i xiout

yiin yiout

ujzj

i = 1 . . . N

j = 1 . . .M

GP + εi

g g

GP

Figure 2.5: Graphical model of Gaussian Process regression with noisy observations and with a set of
inducing points {Z, u}. The thick line indicates that every uj is connected to every f i.
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form,

q(Xout, Xin, u) = p(Xout | Xin, u, Z, θ) q(Xin) q(u) (2.34)

We will restrict the variational distribution on in latent inputs to be a fully factored Gaussian,

q(Xin) =

N∏
i=1

N (xiin; µix, Σix) (2.35)

With this form for the variational distributions, the lower bound on the marginal likelihood L
(
q(u, Xin), θ

)
is,

p(Yout | Yin, Z, θ)

≥
∫
q(Xout, Xin, u) log

p(Yout | Xout, θ) p(Xout | Xin, u, Z, θ) p(Xin | Yin, θ) p(u | Z, θ)

q(Xout, Xin, u)
dXout dXin du

=

∫
q(Xout, Xin, u) log

p(Yout | Xout, θ) p(Xout | Xin, u, Z, θ) p(Xin | Yin, θ) p(u | Z, θ)

p(Xout | Xin, u, Z, θ) q(Xin) q(u)
dXout dXin du

=

∫
q(Xout, Xin, u) log

p(Yout | Xout, θ) p(Xin | Yin, θ) p(u | Z, θ)

q(Xin) q(u)
dXout dXin du

=

∫
p(Xout | Xin, u, Z, θ) q(Xin) q(u) log p(Yout | Xout, θ) dXout dXin du

+

∫
q(Xin) log p(Xin | Yin, θ) dXin − KL (q(u) || p(u | Z, θ)) + H (q(Xin))

(2.36)

, L
(
q(u, Xin), θ

)
(2.37)

Note that the lower bound is currently a functional of the variational distributions on u and Xin, as well

as the GP hyperparameters θ. There are two terms with integrals remaining to be solved in equation

2.36, which we have highlighted in colour. The first of these terms requires integrating over Xout, Xin,

and u; we solve the integral over Xout for this term in equation 2.38, then over Xin in equation 2.39,

and finally over u in equation 2.49. We solve the integral over Xin in the second highlighted term, in

equation 2.40. First the integral over Xout for the first highlighted term, introducing the shorthand

KZZ = K(Z, Z),∫
p(Xout| Xin, u, Z, θ) log p(Yout | Xout, θ) dXout

=

N∑
i=1

∫
p(xiout | xiin, u, Z, θ) logN

(
yiout; x

i
out, σ

2
out

)
dxout

= −N
2

log 2π − N

2
log σ2

out −
1

2

N∑
i=1

∫
p(xiout | xiin, u, Z, θ)

(yiout − xiout)
2

σ2
out

dxout

= −N
2

log 2π − N

2
log σ2

out

− 1

2σ2
out

N∑
i=1

[
(yiout − k(xiin, Z)K−1

ZZ u)2︸ ︷︷ ︸
Exout [yout−xout]2

+ k(xiin,x
i
in)− k(xiin, Z)K−1

ZZ k(Z, xiin)︸ ︷︷ ︸
Vxout [yout−xout]

]
(2.38)

Note that if we had not introduced the inducing points then we would have taken the expectations

in equation 2.38 over the distribution p(Xout | Xin, θ) = N (0, K). This would have led to the first

term (in green) being just (yiout)
2 and the second (blue), k(xiin, x

i
in), which for a stationary kernel is
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a constant, and thus neither of these terms would depend on xin. We would not therefore be able

to learn anything meaningful with this bound. However, by introducing the inducing points we have

circumvented this problem by providing additional variables for learning. Having solved the integral

over Xout for the first term in equation 2.36 we now solve the integral w.r.t. Xin,∫
q(Xin) p(Xout| Xin, u, Z, θ) log p(Yout | Xout, θ) dXout dXin

= −N
2

log 2π − N

2
log σ2

out −
1

2σ2
out

N∑
i=1

[ (
yiout − E

q(xi
in

)

[
k(xiin, Z)

]
K−1
ZZ u

)2

+ uTK−1
ZZ V

q(xi
in

)

[
k(xiin, Z)

]
K−1
ZZ u + E

q(xi
in

)

[
k(xiin,x

i
in)
]

− E
q(xi

in
)

[
k(xiin, Z)

]
K−1
ZZ E

q(xi
in

)

[
k(Z, xiin)

]
− tr

{
K−1
ZZ V

q(xi
in

)

[
k(Z, xiin)

]}]
(2.39)

With a Gaussian form for q(Xin) we can solve the required expectations in equation 2.39 for a limited

set of covariance functions, such as the squared exponential (see Appendix A) and polynomial kernels.

We have solved two of the three integrals in the first highlighted term of equation 2.36: the integral

over u still remains. However, we have not yet specified a form for the variational distribution on the

inducing points, q(u), and so we shall pause here and look instead at the second highlighted integral

term in equation 2.36,∫
q(Xin) log p(Xin | Yin, θ) dXin

=

N∑
i=1

∫
q(xiin) log p(xiin | yiin, θ) dxiin

= −N
2

log 2π − N

2
log |Σin| −

1

2
E
q(xi

in
)

[(
xiin − yiin

)T
Σ−1

in

(
xiin − yiin

)]
= −N

2
log 2π − N

2
log |Σin| −

1

2

N∑
i=1

(
µix − yiin

)T
Σ−1

in

(
µix − yiin

)
− 1

2

N∑
i=1

tr
{

Σ−1
in Σix

}
(2.40)

At this point, the expression for the lower bound is,

L
(
q(u), q(Xin), θ

)
= −N

2
log 2π − N

2
log σ2

out −
1

2σ2
out

N∑
i=1

[ ∫
q(u)

(
yiout − E

q(xi
in

)

[
k(xiin, Z)

]
K−1
ZZ u

)2

du

+

∫
q(u)uTK−1

ZZ V
q(xi

in
)

[
k(xiin, Z)

]
K−1
ZZ u du + E

q(xi
in

)

[
k(xiin,x

i
in)
]

− E
q(xi

in
)

[
k(xiin, Z)

]
K−1
ZZ E

q(xi
in

)

[
k(Z, xiin)

]
− tr

{
K−1
ZZ V

q(xi
in

)

[
k(Z, xiin)

]}]

− N

2
log 2π − N

2
log |Σin| −

1

2

N∑
i=1

(
µix − yiin

)T
Σ−1

in

(
µix − yiin

)
− 1

2

N∑
i=1

tr
{

Σ−1
in Σix

}
− KL (q(u) || p(u | Z, θ)) + H (q(Xin)) (2.41)

We still need to specify the variational distribution q(u) and solve the integrals over u. However,

rather than picking a particular q(u), we can use variational calculus to find the optimal setting. The
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only terms in the lower bound (equation 2.41) which depend on the inducing points are,

L
(
q(u), q(Xin), θ

)
=

∫
q(u)

[
log

p(u | Z, θ)

q(u)
− 1

2σ2
out

N∑
i=1

(
(yiout)

2 − 2 yiout Eq(xi
in

)

[
k(xiin, Z)

]
K−1
ZZ u

)
− 1

2σ2
out

N∑
i=1

uT K−1
ZZ E

q(xi
in

)

[
k(Z, xiin)k(xiin, Z)

]
K−1
ZZ u

]
du + c

(2.42)

where c represents all the terms which do not depend on the inducing points and we have rewritten

the KL term in the lower bound in terms of an integral. We now introduce some shorthand to keep

the expressions manageable,

Eik , E
q(xi

in
)

[
k(xiin, Z)

]
and Ekk ,

N∑
i=1

E
q(xi

in
)

[
k(Z, xiin)k(xiin, Z)

]
(2.43)

where the subscript k does not indicate an index but rather represents the covariance function, E

indicates the expectation, and the superscript i indicates the expectation is taken over the ith input

point, xiin. Thus Eik is a 1×M row vector and Ekk is a M ×M matrix. We now use variational calculus

to solve for the optimal distribution on u.

∂L
(
q(u), q(Xin), θ

)
∂q(u)

= log
p(u | Z, θ)

q(u)
− 1 − 1

2σ2
out

uTK−1
ZZ EkkK

−1
ZZ u −

1

2σ2
out

N∑
i=1

(yiout y
i
out − 2 yioutE

i
kK
−1
ZZ u) = 0

p(u | Z, θ)

q(u)
∝ exp

(
1 +

1

2σ2
out

uTK−1
ZZ EkkK

−1
ZZ u +

1

2σ2
out

N∑
i=1

(yiout y
i
out − 2 yioutE

i
kK
−1
ZZ u)

)

q(u) ∝ N (u; 0, KZZ) exp

(
−1 − 1

2σ2
out

uTK−1
ZZ EkkK

−1
ZZ u −

1

2σ2
out

N∑
i=1

(
(yiout)

2 − 2 yioutE
i
kK
−1
ZZ u

))

= exp

(
−1

2
uT K−1

ZZ u − 1 − 1

2σ2
out

uTK−1
ZZ EkkK

−1
ZZ u −

1

2σ2
out

N∑
i=1

(
(
(yiout)

2 − 2 yiout EikK
−1
ZZ u

))

= exp

(
−1

2
uT
(
K−1
ZZ +

K−1
ZZ EkkK

−1
ZZ

σ2
out

)
u +

1

σ2
out

N∑
i=1

yioutE
i
kK
−1
ZZ u −

1

2σ2
out

N∑
i=1

(yiout)
2 − 1

)
(2.44)

∝ exp

(
−1

2

[
uT
(
K−1
ZZ +

K−1
ZZ EkkK

−1
ZZ

σ2
out

)
u − 2EykK

−1
ZZ u

σ2
out

])
(2.45)

Equation 2.44 is the form of an un-normalised Gaussian. Thus, with some rearranging, we find that

the optimal variational distribution on the inducing points, q∗(u), is,

q∗(u) = N (u; µu, Σu) (2.46)

Σu = KZZ

(
KZZ +

1

σ2
out

N∑
i=1

E
q(xi

in
)

[
k(Z, xiin)k(xiin, Z)

])−1

KZZ (2.47)

µu =
1

σ2
out

ΣuK
−1
ZZ

N∑
i=1

E
q(xi

in
)

[
k(Z, xiin)

]
yiout (2.48)

Note that (as expected) this has the same form as the optimal q(u) found in Titsias and Lawrence
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(2010). We can now find the lower bound by completing the integrals over the inducing points.

Looking at equation 2.36 we can see that there are only two to do: one in the first highlighted term

(which we left in our previous derivations with this term) and one in the KL term. We will first solve

the integral in the first highlighted term of equation 2.36. We previously solved the integrals over Xout

and Xin for this term and so we now integrate the result of those integrals, shown in equation 2.39,

w.r.t. q∗(u),∫
p(Xout | Xin, u, Z, θ) q(Xin) q∗(u) log p(Yout | Xout, θ) dXout dXin du

= −N
2

log 2π − N

2
log σ2

out −
1

2σ2
out

(
Eq∗(u)

[
uTK−1

ZZ EkkK
−1
ZZ u

]
− Eq∗(u) [u]

T
K−1
ZZ

N∑
i=1

(Eik)T yiout

+ yiout y
i
out + E

q(xi
in

)

[
k(xiin,x

i
in)
]
− E

q(xi
in

)

[
k(xiin, Z)

]
K−1
ZZ E

q(xi
in

)

[
k(Z, xiin)

]
− tr

{
K−1
ZZ V

q(xi
in

)

[
k(Z, xiin)

]})

= −N
2

log 2π − N

2
log σ2

out −
1

2σ2
out

(
µTuK

−1
ZZ EkkK

−1
ZZ µu + tr

{
K−1
ZZ EkkK

−1
ZZ Σu

}
− µTuK

−1
ZZ

N∑
i=1

(Eik)T yiout + yiout y
i
out + E

q(xi
in

)

[
k(xiin,x

i
in)
]

− E
q(xi

in
)

[
k(xiin, Z)

]
K−1
ZZ E

q(xi
in

)

[
k(Z, xiin)

]
− tr

{
K−1
ZZ V

q(xi
in

)

[
k(Z, xiin)

]})
(2.49)

Secondly, we compute the KL term in the lower bound,

−KL (q∗(u) || p(u | Z, θ)) = −1

2

(
tr
{
K−1
ZZ Σu

}
+ µTuK

−1
ZZ µu − M − log |Σu| + log |KZZ |

)
(2.50)

The complete variational lower bound on the marginal likelihood is,

p(Yout | Yin, Z, θ)

≥ −N log 2π − N

2
log σ2

out −
1

2σ2
out

(
µTuK

−1
ZZ EkkK

−1
ZZ µu + tr

{
K−1
ZZ EkkK

−1
ZZ Σu

}
− µTuK

−1
ZZ

N∑
i=1

(Eik)T yiout + yiout y
i
out + E

q(xi
in

)

[
k(xiin,x

i
in)
]

− E
q(xi

in
)

[
k(xiin, Z)

]
K−1
ZZ E

q(xi
in

)

[
k(Z, xiin)

]
− tr

{
K−1
ZZ V

q(xi
in

)

[
k(Z, xiin)

]})

− N

2
log |Σin| −

1

2

N∑
i=1

(
µix − yiin

)T
Σ−1

in

(
µix − yiin

)
− 1

2

N∑
i=1

tr
{

Σ−1
in Σix

}
− 1

2

(
tr
{
K−1
ZZ Σu

}
+ µTuK

−1
ZZ µu − M − log |Σu| + log |KZZ |

)
+

MD

2
log(2πe) +

N∑
i=1

log |Σix|

(2.51)

, L∗
(
q(Xin), Z, θ

)
(2.52)

In summary, we cannot compute the true marginal likelihood for GP regression with noisy inputs.

However, we have now formed a lower bound on the marginal likelihood L∗
(
q(Xin), Z, θ

)
, which is a
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functional of the variational distribution on the latent inputs q(Xin), the inducing inputs Z, and the

GP hyperparameters θ. Note that the lower bound no longer explicitly depends on q(u) as we have

an (optimally) defined q∗(u) in terms of the other parameters. For a particular setting of the GP

hyperparameters the true marginal likelihood is a fixed value, as we have stated however, the lower

bound additionally depends on q(Xin) and Z. Thus how we set these variational parameters affects

only how tight the lower bound is to the true marginal likelihood. Given that we have a lower bound,

we can find the tightest approximation to the true marginal likelihood by maximising L∗
(
q(Xin), Z, θ

)
w.r.t. q(Xin) and Z. Ultimately, we are not interested in evaluating the marginal likelihood but rather

finding the setting of θ which leads to the maximum true marginal likelihood. We can approximate this

by also maximising the lower bound with respect to θ, concurrently with optimising the variational

parameters. Note that this does not guarantee that the θ found by maximising the lower bound is the

same as the setting which maximises the true marginal likelihood, although if the bound is tight we

would expect that the values are close.

Optimisation can be performed by gradient ascent as we can differentiate the lower bound in equation

2.51 w.r.t. the GP hyperparameters, the noise variances Σin and σ2
out, and the moments of the varia-

tional distribution q(Xin), µix and Σix. There will be a large number of parameters compared to the

number of data points as we have a mean and variance for each noisy input value, plus the hyperpa-

rameters and noise variances. The variational approach protects us from overfitting as we are always

optimising a lower bound on the marginal likelihood. However, the large number of parameters does

make optimisation more difficult — there may be many local optima. A particularly unwelcome local

optimum can occur due to the fact that our variational distribution contains the inducing points. This

means that by maximising the lower bound we are trying to find the distribution q such that,

q(Xout, Xin, u) = arg min KL
(
q(Xout, Xin, u) || p(Xout, Xin, u | Yin, Yout)

)
(2.53)

Thus the variational approach wants to model the posterior over the inducing points as well as the

data. This can lead to a local optimum whereby the data is treated as pure noise and q∗(u) is set to

the inducing point prior p(u | Z, θ), which leads to the KL term in the lower bound (equation 2.50)

being exactly zero. Usually reinitialisation is sufficient to escape from this optimum but it is a pitfall

that the user must be aware of.

We can make predictions at a clean test input x∗in by using the approximation,

p(x∗out | x∗in, Yin, Yout, Z) =

∫
p(x∗out | x∗in, u, Z) p(u | Yin, Yout, Z) du

≈
∫
p(x∗out | x∗in, u, Z) q∗(u) du

=

∫
N
(
x∗out; k(x∗in, Z)K−1

ZZ u, k(x∗in,x
∗
in)− k(x∗in, Z)K−1

ZZ k(Z,x∗in)
)
q∗(u) du

= N (x∗out; µ
∗, Σ∗) (2.54)

with

µ∗ = k(x∗in, Z)K−1
ZZ µu (2.55)

Σ∗ = k(x∗in,x
∗
in) − k(x∗in, Z)K−1

ZZ k(Z,x∗in) + k(x∗in, Z)K−1
ZZ ΣuK

−1
ZZ k(Z,x∗in) (2.56)
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To make a prediction at a noisy test input y∗in we need to integrate out the latent test point,

p(x∗out | x∗in, Yin, Yout, Z) ≈
∫
N (x∗out; µ

∗, Σ∗) p(x∗in | y∗in) dx∗in

Unfortunately, this is no longer a Gaussian as x∗in appears inside the nonlinear covariance function.

However, as we have discussed earlier for a subset of covariance functions we can still find the first

two predictive moments,

µ∗x|y = Ex∗
in
∼N (y∗

in
,Σin) [k(x∗in, Z)] K−1

ZZ µu (2.57)

Σ∗x|y = Ex∗
in
∼N (y∗

in
,Σin) [k(x∗in,x

∗
in)] + Ex∗

in
[k(x∗in, Z)] K−1

ZZ (Σu − KZZ) K−1
ZZ Ex∗

in
[k(Z,x∗in)]

+ tr
{
K−1
ZZ

(
Σu − KZZ + µu µ

T
u

)
K−1
ZZ Vx∗

in
[k(Z,x∗in)]

}
(2.58)

where the moments of the squared exponential covariance function can be found in Appendix A. We

test this variational approach in section 2.5.

2.4 The Noisy Input Gaussian Process

The variational approach presented in the previous section provides a clear framework within which it

makes its approximation. This is very desirable, however it comes at a very large computational cost.

This is largely due to the sheer number of parameters we must optimise, which makes computing the

derivatives very slow. We now present NIGP, a simpler but faster method for tackling input noise,

based on referring the input noise to the output.

2.4.1 Model Specification

Recall that we are modelling an unknown function, f , with a Gaussian Process, based on noisy

measurements yin and yout of the true, latent, variables xin and xout,

yout = f(yin − εin, θ) + εout (2.59)

f ∼ GP(m, k) (2.60)

where m is the GP prior mean function, k is the GP covariance function, and θ is a parameter vector.

In this section θ contains the GP hyperparameters, the output noise variance σ2
out, and the input noise

variance Σin. Under this model we can write,

p(yout | yin, εin, θ) = N
(
m(yin − εin), k(yin − εin, yin − εin)

)
(2.61)

We need to marginalise over the input noise vector εin as this is an unknown quantity. However, as we

stated at the beginning of this chapter, doing this leads to difficulties due to the position of εin within

the covariance function k. We can use a first order Taylor series expansion of the Gaussian Process

latent function f to write an approximation to equation 2.59 as,

yout ≈ f(yin, θ) − εTin
∂f(yin, θ)

∂yin

+ εout (2.62)
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We can compute the moments of p(yout | yin, θ) implied by this Taylor series approximation: given

that the noise is modelled as zero mean the expected value of yout given the GP prior is still just the

GP prior mean (the same as for a standard Gaussian Process),

E [yout] = Ef,εin,εout

[
f(yin, θ) − εTin

∂f(yin, θ)

∂yin

+ εout

]
= Ef [f(yin, θ)]

= m(yout, θ) (2.63)

The variance, however, is different,

V [yout] = Vf,εin,εout

[
f(yin, θ) − εTin

∂f(yin, θ)

∂yin

+ εout

]
= Vf [f(yin, θ)] + Vf,εin

[
εTin

∂f(yin, θ)

∂yin

]
− 2Cf,εin

[
f(yin, θ), εTin

∂f(yin, θ)

∂yin

]
− 2Cf,εout [f(yin, θ), εout] − 2Cf,εin,εout

[
εTin

∂f(yin, θ)

∂yin

, εout

]
+ σ2

out

(2.64)

We will look at each of these terms individually. First, the prior variance of the latent function is

given by the GP covariance function,

Vf [f(yin, θ)] = k(yin, yin) (2.65)

The derivative of a GP is also a GP and thus the second variance term in equation 2.64 is a product

of two Gaussian distributed vectors. This results in a non-Gaussian solution, however we can still

compute the variance,

Vf,εin

[
εTin

∂f(yin, θ)

∂yin

]
= Tr

{
V [εin]V

[
∂f(yin, θ)

∂yin

]}
+ E [εin]

T V
[
∂f(yin, θ)

∂yin

]
E [εin]

+ E
[
∂f(yin, θ)

∂yin

]T
V [εin] E

[
∂f(yin, θ)

∂yin

]
= Tr

{
Σin V

[
∂f(yin, θ)

∂yin

]}
+ E

[
∂f(yin, θ)

∂yin

]T
Σin E

[
∂f(yin, θ)

∂yin

]
(2.66)

where we used E[εin] = 0. The mean and variance of the derivative of the GP are computed in section

2.7 at the end of this chapter. The first and second covariance terms in equation 2.64 are zero as the

noise is independent of the GP function,

2Cf,εin

[
f(yin, θ), εTin

∂f(yin, θ)

∂yin

]
= Cf,εout [f(yin, θ), εout] = 0 (2.67)

The third covariance term is,

Cf,εin,εout

[
εTin

∂f(yin, θ)

∂yin

, εout

]
= E[εin]TC

[
∂f(yin, θ)

∂yin

, εout

]
+ E

[
∂f(yin, θ)

∂yin

]T
C [εin, εout] (2.68)

The expectation of the input noise is zero therefore the first term in equation 2.68 is zero, as is the

second as we assume the noise corrupts different data points independently. Thus this covariance term
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is also zero. The complete variance of yout under our Taylor series approximation is thus,

V [yout] = k(yin) + Tr

{
Σin V

[
∂f(yin, θ)

∂yin

]}
+ E

[
∂f(yin, θ)

∂yin

]T
Σin E

[
∂f(yin, θ)

∂yin

]
+ σ2

out (2.69)

We can easily extend equation 2.69 to find the covariance between multiple observations. However, as

we are modelling the noise as independent between different observations we find that all the additional

variance contributions in equation 2.69 evaluate to zero for the covariance; thus,

C
[
yiout, y

j
out

]
= k(yiin, y

j
in) (2.70)

We have now computed the mean (equation 2.63) and variance (equation 2.69) of the distribution on

yout, p(yout | yin, θ), implied by our model in equation 2.62. However, if we return to the Taylor series

expansion in equation 2.62, we can see that this distribution is not Gaussian due to the product of the

two Gaussian vectors εin and the derivative of the GP. This means that inference is still not tractable

yet. Therefore we must make an approximation if we wish to use analytic methods. We look at two

different approximations here,

1. Replace the derivative of the GP in equation 2.62 with its expectation over the GP uncertainty,

Ef
[
∂f(yin, θ)

∂yin

]
. This means that the derivative term in equation 2.62 is now deterministic and thus

the distribution on yout is Gaussian. This approximation is the same as just taking the derivative

w.r.t. the GP posterior mean, rather than w.r.t. the complete GP posterior distribution. We

will refer to this approach using the subscript ‘m’ (for ‘mean’).

2. Moment match a Gaussian to the true distribution on yout using the exact moments we have

computed above. We will refer to this approach with the subscript ‘u’ (as this approach includes

the uncertainty in the derivative of the GP).

Neither of these approximations lead to a different approximate mean for p(yout | yin, θ), which remains

equal to the GP prior mean m(yin). The variances are different however. Under the first approximation

we no longer consider the uncertainty in the derivative as we are just using its expected value. This

results in an approximate variance which neglects the trace term in equation 2.69, and so the prior

probability of an observation is,

qm(yout | yin, θ) = N
(
m(yin), k(yin, yin) + ∂f̄(yin)TΣin ∂f̄(yin) + σ2

out

)
(2.71)

where we have used the shorthand ∂f̄(yin) = Ef
[
∂f(yin, θ)

∂yin

]
. Under the second approximation the

prior probability variance contains the additional trace term which represents the uncertainty in the

derivative,

qu(yout | yin, θ) = N
(
m(yin), k(yin, yin) + Tr

{
Σin V

[
∂f(yin, θ)

∂yin

]}
+ ∂f̄(yin)TΣin ∂f̄(yin) + σ2

out

)
(2.72)

The first approximation is computationally more attractive as the variance of the derivative involves

computations that scale with the number of data points squared. The second approximation is much

more accurate as it includes the uncertainty in the derivative, which is often non-negligible. We will

look at both of these approximations in the forthcoming sections, referring to our model as NIGP
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when the distinction between the two approximations is not required, and ‘NIGPm’/‘NIGPu’ when it

is.

Under these approximations multiple data points follow a joint Gaussian distribution, as given by the

GP prior plus a corrective diagonal variance term, which we designate as Σ̃(yin),

Σ̃(yin) = ∂f̄(yin)TΣin ∂f̄(yin) + Tr

{
Σin V

[
∂f(yin, θ)

∂yin

]}
(2.73)

This extra variance term can either include the trace term or not, depending on computational require-

ments. In terms of notation, Σ̃ should be thought of as a function, returning a scalar when written as a

function of a single data point (as in equation 2.73), and a diagonal matrix when written with a set of

data points, Σ̃(Yin). It captures the extra uncertainty resulting from the input noise but now referred

to the output. As we expected the extra variance is heteroscedastic — largest where the function

gradient is steepest and smallest where the gradient is at its most flat (the derivative uncertainty term

will cloud this interpretation somewhat if the uncertainty also varies across the space). Note that, if

the posterior gradient and its uncertainty is constant across the input space the heteroscedasticity is

removed and NIGP is essentially identical to a standard GP. As all observations are jointly Gaussian

we can find the predictive distribution at a new test point straightforwardly using conditioning, as in

the classic GP derivation. The joint covariance matrix is,

C
[
y1

out, y
2
out, . . . , y

N
out, y

∗
out

]
=



k(y1
in,y

1
in) + Σ̃(y1

in) k(y1
in,y

2
in) . . . k(y1

in,y
N
in) k(y1

in,y
∗
in)

k(y2
in,y

1
in) k(y2

in,y
2
in) + Σ̃(y2

in) k(y2
in,y

N
in) k(y2

in,y
∗
in)

...
. . .

k(yNin ,y
1
in) k(yNin ,y

2
in) k(yNin ,y

N
in) + Σ̃(yNin) k(yNin ,y

∗
in)

k(y∗in,y
1
in) k(y∗in,y

2
in) k(y∗in,y

N
in) k(y∗in,y

∗
in) + Σ̃(y∗in)


+ σ2

out I

(2.74)

=

[
K(Yin, Yin) + Σ̃(Yin) + σ2

out I k(Yin, y
∗
in)

k(y∗in, Yin) k(y∗in,y
∗
in) + Σ̃(y∗in) + σ2

out

]
(2.75)

which, after conditioning on Yout, gives

p(yout | Yin, Yout, y
∗
in) = N

(
y∗out; µ

∗
out, σ

∗2
out

)
µ∗out = k(y∗in, Yin)

[
K(Yin, Yin) + Σ̃(Yin) + σ2

outI
]−1

y

σ∗2out = k(y∗in,y
∗
in) − k(y∗in, Yin)

[
K(Yin, Yin) + Σ̃(Yin) + σ2

outI
]−1

k(Yin,y
∗
in) + Σ̃(y∗in) + σ2

out

(2.76)

An advantage of our approach can be seen in the case of multiple output dimensions for the same set

of input dimensions. As the input noise levels are the same for each of the output dimensions, NIGP

can use data from all of the outputs when learning the input noise variances. Not only does this give

more information about the noise variances without needing further input measurements but it also

reduces over-fitting as the learnt noise variances must agree with all output dimensions.
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For time-series datasets (where the model has to predict the next state given the current), each

dimension’s input and output noise variance can be constrained to be the same, since the noise level

on a measurement is independent of whether it is an input or output. This further constraint increases

the ability of the model to recover the actual noise variances. The model is thus suited to the common

task of multivariate time series modelling, which is the focus of chapter 3.

2.4.2 Training

NIGP introduces an extra D hyperparameters compared to the standard GP — one noise variance

hyperparameter per input dimension. A major advantage of NIGP is that these hyperparameters

can be trained alongside any others by maximisation of the marginal likelihood. This approach

automatically includes regularisation of the noise parameters and reduces the effect of over-fitting.

The approximate marginal likelihood for a single data point was derived in equations 2.71 and 2.72

(without and with the uncertainty in the derivatives), and we write it here for a set of points,

qNIGP(Yout | Yin, θ) = N
(
Yout; m(Yin), K(Yin, Yin) + Σ̃(Yin) + σ2

outI
)

(2.77)

⇒ − log qNIGP(Yout | Yin, θ) =
D

2
log 2π +

1

2
log
∣∣∣K(Yin, Yin) + Σ̃(Yin) + σ2

outI
∣∣∣

+
1

2
(m(Yin) − Yout)

T
[
K(Yin, Yin) + Σ̃(Yin) + σ2

outI
]−1

(m(Yin) − Yout)

=
D

2
log 2π +

1

2
log |Kn| +

1

2
(m(Yin) − Yout)

T
β̃ (2.78)

where,

Kn = K(Yin, Yin) + Σ̃(Yin) + σ2
outI (2.79)

β̃ = K−1
n (m(Yin) − Yout) (2.80)

Note that the subscript ‘n’ indicates that this is the training covariance matrix with added noise,

rather than implying an index. Equation 2.78 has the same form as the standard GP negative log

marginal likelihood (NLML) except that the noisy covariance matrix Kn has the additional, corrective

variance term Σ̃(Yin). We can train the hyperparameters using gradient descent on the NLML just as

with a standard GP. Assuming a zero mean function, the relevant derivatives are,

∂

∂Kn
{− log qNIGP(Yout | Yin, θ)} =

1

2

∂

∂Kn

{
D

2
log 2π +

1

2
log |Kn| +

1

2
(m(Yin) − Yout)

T
β̃

}
=

1

2
tr

{
K−1

n

∂Kn

∂Kn

}
− 1

2
β̃
T ∂Kn

∂Kn
β̃ (2.81)

∂Kn

∂θ
=

∂K(Yin, Yin)

∂θ
+

∂Σ̃(Yin)

∂θ
+

∂σ2
outI

∂θ
(2.82)

The first term in equation 2.82 is the derivative of the training point covariance matrix w.r.t. the

hyperparameters, which is the same as required for standard GP training. The third term is trivial,

thus the interesting term to compute is the derivative of the NIGP correction term. Recall that

Σ̃(Yin) is a diagonal matrix and so we look at the derivative of an arbitrary diagonal entry, the point
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yin ∈ Yin,

∂Σ̃(yin)

∂θ
=

∂

∂θ

{
Ef
[
∂f(yin, θ)

∂yin

]T
Σin Ef

[
∂f(yin, θ)

∂yin

]
+ tr

{
Σin Vf

[
∂f(yin, θ)

∂yin

]}}
(2.83)

To proceed further we need to choose a form for the covariance function. In order to compute the

required moments the covariance function must be twice differentiable w.r.t. the input points (once

if we neglect the variance of the derivative term). We will choose the popular squared exponential

covariance function although many other allowable choices are available,

k(y1
in, y

2
in) = σ2

f exp

(
−1

2
(y1

in − y2
in)TΛ−1(y1

in − y2
in)

)
(2.84)

where σ2
f and Λ are hyperparameters. As derived at the end of the chapter in section 2.7, for this

choice of kernel,

Ef
[
∂f(yin, θ)

∂yin

]
=

∂Ef [f(yin, θ)]

∂yin

= Λ−1
N∑
i=1

(Y iin − yin)k(Y iin, yin)βi (2.85)

Vf
[
∂f(yin, θ)

∂yin

]
=

∂2k(yin, yin)

∂yin ∂y
T
in

− ∂k(yin, Yin)

∂yin

K−1 ∂k(Yin, yin)

∂yin

(2.86)

In order to calculate the marginal likelihood of the training data we need the posterior distribution, and

the slope of its mean, at each of the training points. However, evaluating the posterior from equation

2.76 with y∗in ∈ Yin, results in an analytically unsolvable differential equation: the distribution on f

is a complicated function of its own derivative. Therefore, we define a two-step approach: first we

evaluate a standard GP with the training data, using our initial hyperparameter settings and ignoring

the input noise. We then evaluate the derivative terms on this GP at each of the training points and

use it to add in the corrective variance term, Σ̃(Yin). This process is summarised in figures 2.6a and

2.6b.

The marginal likelihood of the GP with the corrected variance is then computed, along with its

derivatives with respect to the initial hyperparameters, which include the input noise variances. This

step involves chaining the derivatives of the marginal likelihood back through the slope calculation.

Gradient descent can then be used to improve the hyperparameters. Figure 2.6c shows the GP posterior

for the trained hyperparameters and shows how NIGP can reduce output noise level estimates by taking

input noise into account. Figure 2.6d shows the NIGP fit for the trained hyperparameters.

To improve the fit further we can iterate this procedure: we use the slopes of the current trained

NIGP, instead of a standard GP, to calculate the effect of the input noise, i.e. replace the fit in figure

2.6a with the fit from figure 2.6d and re-train.

2.4.3 Prediction

Making predictions at noisy input locations with NIGP is particularly easy as the standard GP pre-

dictive equations can be used, along with the extra covariance term to account for the referred input

noise in both the test points and the training points. We therefore use the trained hyperparameters
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Figure 2.6: Training with NIGP. (a) A standard GP posterior distribution can be computed from an
initial set of hyperparameters and a training data set, shown by the blue crosses. The gradients of
the posterior mean (neglecting the uncertainty of the derivatives for this illustration) at each training
point can then be found analytically. (b) The NIGP method increases the posterior variance by
the square of the posterior mean slope multiplied by the current setting of the input noise variance
hyperparameter. The marginal likelihood of this fit is then calculated along with its derivatives w.r.t.
initial hyperparameter settings. Gradient descent is used to train the hyperparameters. (c) This plot
shows the standard GP posterior using the newly trained hyperparameters. Comparing to plot (a)
shows that the output noise hyperparameter has been greatly reduced. (d) This plot shows the NIGP
fit - plot(c) with the input noise corrective variance term, diag{∆f̄ Σx ∆T

f̄
}. Plot (d) is related to plot

(c) in the same way that plot (b) is related to plot (a).

and the training data to define a GP posterior, which we differentiate at each test point and each

training point. The calculated gradients are then used to add in the corrective variance terms.

p(y∗out | y∗in, Yin, Yout, θ) = N (y∗out; µ
∗, Σ∗) (2.87)

µ∗ = k(y∗in, Yin)
[
K(Yin, Yin) + Σ̃(Yin) + σ2

out I
]−1

Yout (2.88)

Σ∗ = k(y∗in, y
∗
in) − k(y∗in, Yin)

[
K(Yin, Yin) + Σ̃(Yin) + σ2

out I
]−1

k(Yin, y
∗
in) + Σ̃(y∗in) + σ2

out

(2.89)

There is an alternative option, however. As we discussed at the beginning of this chapter, Gaussian

distributed test points are not a problem for a GP as we can compute the exact predictive moments

analytically (Girard et al., 2003), it is the uncertain training points that are the problem. As NIGP

estimates the input noise variance Σin during training, we can write x∗in ∼ N (y∗in,Σin), and use the un-

certain test point equations to compute the predictive mean and variance of the posterior distribution
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(for a squared exponential kernel),

E [p(y∗out | y∗in, Yin, Yout, θ)] = aT
[
K(Yin, Yin) + Σ̃(Yin) + σ2

out I
]−1

Yout (2.90)

where we have replaced k(y∗in, Yin) with its expected value a,

a =

∫
k(x∗in, Yin) p(x∗in | y∗in, Σin) dx∗in (2.91)

ai = σ2
f

∣∣Σin Λ−1 + I
∣∣− 1

2 exp

(
−1

2
(xiin − x∗in)T (Σx + Λ)

−1
(xiin − x∗in)

)
(2.92)

where σ2
f and Λ are hyperparameters of the covariance function (see equation 2.84). Note that a is

termed q in Deisenroth (2009), which we avoid to prevent confusion with the approximate distributions

denoted by q in this thesis. The predictive variance,

V [p(y∗out | y∗in, Yin, Yout, θ)] = σ2
f − tr

([
K(Yin, Yin) + Σ̃(Yin) + σ2

out I
]−1

A

)
+ βTAβ − ¯yout

2
∗ (2.93)

where we used ¯yout∗ as shorthand for the predictive mean in equation 2.90 and where,

Aij =
k(yiin, y

∗
in) k(yjin, y

∗
in)

|2Σin Λ−1 + I| 12
exp

(
(z − y∗in)T

(
Λ +

1

2
Λ Σ−1

in Λ
)−1

(z − y∗in)

)
(2.94)

with z = 1
2 (yiin + yjin). If the input noise is zero then A is just the outer product of the test

point covariance vector k(y∗in, Yin) and the predictive variance reverts to the standard GP form 1.16.

This method is computationally slower than using equation 2.87 and is vulnerable to worse results

if the learnt input noise variance Σin is very different from the true value. However, it gives proper

consideration to the uncertainty surrounding the test point and exactly computes the moments of

the correct posterior distribution. This can lead it to outperform predictions based on equation 2.87,

although experimentation in this area tended to be somewhat inconclusive.

2.4.4 Comparison to the Variational Approach

We can see some parallels in the prediction equations for NIGP (equation 2.87) and for the variational

approach (equations 2.57 and 2.58). In particular if we look at the predictive variance equations we

can see that the variational approach includes a term,

µTuK
−1
ZZ Vx∗

in
∼N (yin, Σin)[k(Z, x∗in)]K−1

ZZ µu

which measures how great an effect on the mean predicted output value the uncertainty in the input

has; it does this by measuring the variance in the output due to the input noise. In an NIGP prediction

there is also an extra variance term to account for the output noise. In the simple case (excluding the

uncertainty in the derivative) this extra term is given by

Y ToutK(Yin, Yin)−1 ∂k(Yin,y
∗
in)

∂y∗in
Σin

∂k(y∗in, Yin)

∂y∗in
K(Yin, Yin)−1Yout

Assuming that there are sufficient inducing points, K−1
ZZ µu is equivalent to K(Yin, Yin)−1Yout and thus

we see that the difference is that where the variational approach calculates the variance of the output,



42 CHAPTER 2. GAUSSIAN PROCESSES WITH INPUT NOISE

NIGP calculates the squared derivative multiplied by the input noise variance. Of course, these

quantities are identical for a linear model as this is how NIGP was derived. We could remove this

difference by using the exact output moment calculations for prediction with NIGP, as described at

the end of the prediction section above, although it isn’t clear that this is always beneficial. It is

worth pointing out that there are other terms in the predictive variances of the two approaches: the

variational approach also includes terms to account for the uncertainty in the inducing points, likewise

NIGP can include a term to incorporate the uncertainty in the derivatives.

2.5 Analysis

We tested the various approaches on a variety of functions and datasets. We start our analysis by

illustrating a key difference between the NIGP method and the more general heteroscedastic GP of

Kersting et al. (2007).

2.5.1 Near-square wave test set
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Figure 2.7: Posterior distribution for a near-square wave with σ2
out = 0.052, Σin = 0.32, and 60 data

points. The solid line represents the predictive mean and the dashed lines are two standard deviations
either side. Also shown are the training points and the underlying function (for xin to xout). The left
image is for standard GP regression, the middle uses Kersting et al.’s MLHGP algorithm, the right
image shows NIGPm (neglecting the uncertainty in the derivatives). While the predictive means are
similar, both NIGP and MLHGP pinch in the variance around the low noise areas. NIGP correctly
expands the variance around all steep areas whereas MLHGP can only do so where high noise is
observed (see areas around yin = −6 and yin = 1).

Figure 2.7 shows an example comparison between standard GP regression, Kersting et al.’s MLHGP,

and NIGP for a simple near-square wave function. This function was chosen as it has areas of steep

gradient and near flat gradient and thus suffers from the heteroscedastic problems we are trying to

solve. The posterior means are very similar for the three models, however the variances are quite

different. The standard GP model has to take into account the large noise seen around the steep

sloped areas by assuming large noise everywhere, which leads to the much larger error bars. NIGP

can recover the actual noise levels by taking the input noise into account. Both NIGP and MLHGP
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pinch the variance in around the flat regions of the function and expand it around the steep areas.

For the example shown in figure 2.7 the standard GP estimated an output noise standard deviation of

0.16 (much too large) compared to NIGP’s estimate of 0.052, which is very close to the correct value

of 0.050. NIGP also learnt an input noise standard deviation of 0.305, very close to the real value of

0.300. MLHGP does not produce a single estimate of noise levels.

Predictions for 1000 noisy measurements were made using each of the models and the log probability

of the test set was calculated. The standard GP model had a log probability per data point of 0.419,

MLHGP 0.740, and NIGP 0.885, a significant improvement. Part of the reason for our improvement

over MLHGP can be seen around yin = 1: NIGP has near-symmetric ‘horns’ in the variance around

the corners of the square wave, whereas MLHGP only has one ‘horn’. This is because in NIGP, the

amount of noise expected is proportional to the derivative of the mean squared, which is the same

for both sides of the square wave. In Kersting et al.’s model the noise is estimated from the training

points themselves. In this example the training points around yin = 1 happen to have low noise and

so the learnt variance is smaller. The same problem can be seen around yin = −6 where MLHGP has

much too small variance. This illustrates an important aspect of NIGP: the accuracy in plotting the

varying effect of noise is only dependent on the accuracy of the mean posterior function and not on

an extra, learnt noise model. This means that NIGP typically requires fewer data points to achieve

the same accuracy as MLHGP on input noise datasets.

2.5.2 Sigmoid test set

We now move to compare standard GP regression with NIGP, the variational approach, and MLHGP

more generally. We first generated a simulated data set from a sigmoid function. Using a simulated

data set allows us to manually set the noise levels and compare estimated values to the ground truth.

We set the output noise standard deviation to a fairly small value of 0.025, and varied the input

noise standard deviation from 0 to 3 (note that the input and output scales are different). Figure 2.8

shows the trained posteriors with an input noise standard deviation of 2. The figure shows how poor

a standard GP posterior is: the uncertainty is too large and in the flat regions and too small in the

steep region, which is a direct result of having a single variable to model the noise level. Both NIGP

and the variational approach increase the uncertainty around the steep area of the function in a very

similar manner, demonstrating that the linear approximation at the heart of NIGP is not particularly

harming results. The heteroscedastic GP also learns to increase the noise level around the steep area

of the function, although it picks a much smaller noise level.

The results of the complete comparison for this test are shown in the box-plots of figure 2.9. This figure

shows the comparative performance of the methods on the rows with the methods on the columns,

where values above zero indicate that the row method is outperforming the column method. The five

different boxes in each plot show the results for the five different noise levels. The boxes are coloured

green if the row method outperformed the column method in at least 75% of the trials. We can first

see that for zero input noise all methods perform equivalently to a standard GP, and as the noise level

is increased the four methods which model the input noise strongly outperform the standard GP. As

the input noise reaches its highest level the data has become very difficult to model and so we see a

tailing off of performance in all models, although the standard GP is still performing the worst by

a very significant amount. The comparison between the two forms of NIGP (without and with the
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Figure 2.8: The trained posteriors on observed values for the sigmoid training set using the four
different models. The true input noise standard deviation of the data for this data set is 2. The green
line shows the posterior mean and the shaded region indicates two standard deviations of uncertainty
(including both input and output noise).

derivative uncertainty) shows that performance is essentially the same (the scale on the y-axis is very

small) although the difference does favour the more complex model. The comparison between NIGP

and the variational approach is very illuminating: for moderate input noise levels NIGP outperforms

the variational approach but for high noise levels the comparison is the other way around. This is

likely to be because for the range of inputs covered by a large input noise variance the GP functions are

poorly approximated by a linear model, thus NIGP sees a drop in performance. For small noise levels

this is not the case and so NIGP performs well. The variational approach has a very large number of

parameters to fit — for a training set consisting of five hundred points there are one thousand and

four parameters. This means that optimisation can be difficult and gradient ascent requires a large

number of steps to converge; it also increases the chance of being stuck in a local optimum. There

are other possible explanations as well, which are common to most variational approaches, such as

the optimum of the lower bound being in a different location to the optimum of the true marginal

likelihood.

The heteroscedastic GP method was very variable in its performance. It’s training procedure had the

tendency to get stuck in bad local optima, which led to a number of the outliers seen in figure 2.9.

Even when it avoided these situations it rarely outperformed NIGP or the variational approach as

it was inclined to underestimate the noise levels, as can be seen in figure 2.8. There are a number

of explanations for this, such as it only using a MAP approach and the fact that it is a much more
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Figure 2.9: Pairwise differences in test log likelihood per test data point for a sigmoid function with
five hundred training points and different levels of input noise. The pairwise differences were formed by
taking the test log likelihood score of the method on the row and subtracting the score for the method
on the column, thus values above zero imply the row is outperforming the column. The methods were
trained on fifteen different training sets of five hundred points and test sets of one thousand points.
The boxes are coloured green if the method on the row outperformed the method on the column in
at least 75% of the data sets. Note that for the comparisons with MLHGP there are four outliers not
shown where MLHGP performs very poorly. The five methods being compared are: GP — a standard
Gaussian Process, NIGPm — the NIGP model only including the mean derivative term in Σ̃, NIGPu
— the NIGP model also including the derivative uncertainty in Σ̃, Var — the variational approach,
and MLHGP — the heteroscedastic GP of Kersting et al. (2007)

general model designed to tackle heteroscedasticity of a more complex form than input noise alone

produces. Another way of judging the models is to look at the noise levels which they learn. These are

shown in table 2.1, for all methods apart from MLHGP, which does not produce a single noise level.

The table shows that recovery of the noise variances are very good for moderate noise levels. The

variational approach always tends to underestimate the noise, whereas NIGP tends to overestimate it.
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Including the uncertainty in the derivatives for NIGP has a small beneficial effect, particularly at high

noise levels. In general the variational approach is slightly better at recovering the noise variances

than NIGP is.

Table 2.1: Input and output noise standard deviations learnt by a standard GP, the two variants of
NIGP, and the variational approach (MLHGP does not estimate a single noise level) for four different
settings of input noise (the four columns of output noise correspond to the four columns of input
noise). The values are averaged over 15 trials.

Input Noise Std Dev Output Noise Std Dev

True 0.50 1.00 2.00 3.00 0.025 0.025 0.025 0.025

GP - - - - 0.049 0.085 0.150 0.202
NIGPm 0.51 1.05 2.28 3.70 0.026 0.026 0.026 0.031
NIGPu 0.51 1.04 2.27 3.65 0.025 0.025 0.025 0.029
Variational 0.50 0.95 1.76 2.64 0.026 0.027 0.029 0.035

It is important to also look at training computation times. Table 2.2 shows the mean training times

for each method over the fifteen trials. It is immediately noticeable how much slower the variational

method is compared to all the other approaches. There are several factors which contribute to this,

a clear one being that with over a thousand parameters all the derivative matrices in the variational

algorithm are considerably larger than the corresponding matrices in the other approaches. NIGP

shows an order of magnitude decrease in speed compared to the standard GP, although this is slightly

artificial as it was run with more optimisation iterations than it required and this figure could be re-

duced by perhaps a factor of two, depending on the speed-accuracy trade-off required. The variational

approach is already being heavily restricted in only using one hundred optimisation steps when there

are over a thousand parameters and so it is hard to see extra speed-ups being found in that manner,

although there are no doubt savings to be found in the actual implementation.

Table 2.2: Training times in seconds for the various input noise methods on the 1D sigmoid data set
with 500 training points. The variational method used 20 inducing points and 100 optimisation steps,
the other methods trained until convergence. The times are from running on a quad-core i7 processor
at 2.67GHz.

GP NIGPm NIGPu Variational MLHGP

0.7 6.4 6.7 441.0 18.9

2.5.3 The sunny field test set

We now compare performance on a two dimensional real data set. We collected readings on light

intensity levels at various points in a sunny field using an Android phone, as shown in figure 2.10. The

phone measured the location using GPS and the light level using its camera as we walked through

sunny and shaded areas. The light levels are spatially correlated and so a Gaussian Process is a

desirable model for the data. However, both the GPS and light sensor are noisy and so we would

expect standard GP regression to struggle. The noise on the GPS locator is non-Gaussian, which

adds an extra complexity to the problem. Figure 2.11 shows a heat-map of the posterior means learnt

using a standard GP, NIGPu, the variational approach, and the MLHGP. These posterior means all

look qualitatively similar, however the variational approach was extremely difficult to train. This is
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Figure 2.10: The ‘sunny field’ data set. An Android phone was used to measure light intensity levels
and GPS co-ordinates at various points in the area shown in the photo on the left (note that the
photo is taken from a point around the bottom left corner of the data set shown on the right). The
right hand plot shows the data points collected where the colour indicates the logarithm of the light
intensity measurements.

due to the number of parameters it has to optimise, 1830, compared to the six which the standard

GP and NIGP must fit. The extra 1826 parameters in the variational approach are the means and

variances of the variational distribution on Xin. It is thus strongly desirable to find an alternative

method for selecting q(Xin) as the current approach is only workable for small data sets. Having said

that, there is recent work on parallelising the variational approach for the GP-LVM (Gal et al., 2014),

which may also be applicable here and provide a sufficient speed increase, providing there is enough

computational power available. We can quantify the models’ performance by computing negative

log test likelihoods, which are shown in table 2.3. This table shows that NIGPm achieves the best

performance, followed by the NIGP variant which includes the derivative uncertainty — in this case

the extra uncertainty leads to slightly worse test performance. The heteroscedastic GP lags behind

the other methods and is comparable to a standard GP, this appears to be due to issues with training,

quite possibly overfitting, due to the MAP approach.

Table 2.3: Negative log test likelihoods per test data point for the ‘sunny field’ data set. Lower
numbers indicate better performance.

GP NIGPm NIGPu Variational MLHGP

-0.403 -0.425 -0.422 -0.413 -0.401

2.5.4 The cart and pendulum test set

As previously mentioned, NIGP can be adapted to work effectively with time series data, where the

outputs become subsequent inputs, and with data which has multiple outputs sharing the same input.

In the time series situation the input and output noise variance will be the same and so we combine

these two parameters into one. In the case of multiple outputs, each output will share the same input

noise levels, thus multiple outputs can greatly help NIGP infer the input noise variance. Our final

experiment therefore is to test NIGP on a four dimensional output, time series dataset generated

from the cart and pendulum dynamical system (see section 1.7.1 for more details). We also ran the
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Figure 2.11: Trained posterior means for the ‘sunny field’ data set using a standard GP (top left),
NIGPm (top right), the variational approach (bottom left) and MLHGP (bottom right). The colour
shows the amount of light at each point with the test points values circled in white.

standard GP and the heteroscedastic GP on this data, but not the variational approach, firstly because

of computational issues, and secondly because a more suitable variational approach to this problem

is discussed in section 3.4.4. Figure 2.12 shows the comparative box plots for the cart and pendulum

data set. NIGP outperformed the standard GP and MLHGP on all trials, with the two variants of

NIGP having very similar results. The heteroscedastic GP performed worst of all on all trials, again

likely due to a training issue. Also as it does not directly model input noise it is unable to exploit the

structure in the time series data set nor can it use multiple outputs to improve performance.

2.6 Conclusion

Systems from which we can only make noisy observations are all around us, thus it is critically

important that modelling strategies can cope with noise. From a Bayesian point-of-view, the ‘correct’

way of training on input points corrupted by noise is to consider every input point as a latent variable

and to integrate them out. However, we started this chapter by demonstrating how this is intractable

for standard GP regression as the training inputs appear inside the covariance matrix. We then
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Figure 2.12: Pairwise differences in test log likelihood per test data point for a data set from the cart
and pendulum dynamical system. The data set consists of 1500 points, which were split randomly,
half-and-half into a training set and test set, over ten different trials. The input is five dimensional and
the output four (there is one control variable which appears in the input). The pairwise differences
were formed by taking the test log likelihood score of the method on the row and subtracting the score
for the method on the column, thus values above zero imply the row is outperforming the column.
The boxes are coloured green if the method on the row outperformed the method on the column in
at least 75% of the data sets. Note that for the comparisons with MLHGP there are five outliers not
shown where MLHGP performs very poorly.

presented and discussed a number of different approaches to Gaussian Process regression with noisy

input data, including: taking expectations, a variational approach, and by referring the input noise to

the output, viewing the problem as a specific type of heteroscedastic output noise. In the variational

approach we use a carefully selected variational distribution to ‘delete’ the problematic term from

the marginal likelihood and thus derive a tractable lower bound, whist treating the noisy inputs

probabilistically. Although this method can be very effective it tends to underestimate the noise

levels and is nearly two orders of magnitude slower than the NIGP method, as we must optimise the

variational distribution on the latent inputs. If this bottleneck could be overcome or avoided then we

would expect the variational approach to improve.

In NIGP, we refer the input noise to the output by passing it through a local linear expansion. This

adds a term to the likelihood which is proportional to the squared posterior mean gradient, plus a

term accounting for the uncertainty in the gradient. Not only does this lead to tractable computations
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but it makes intuitive sense — input noise has a larger effect in areas where the function is changing

its output rapidly. The model, although simple in its approach, has been shown to be very effective,

often outperforming the variational approach, and the more general heteroscedastic GP, as well as the

standard GP model in a variety of different regression tasks. Both NIGP and the variational method

can make use of multiple outputs, if they are available, to better infer the noise on the shared inputs.

Both can also recover a noise variance parameter for each input dimension, which is often useful for

analysis of the data set. It is simple to apply NIGP to data sets with multiple outputs and use the

shared information to improve performance. Likewise we can exploit properties of time series data,

where the output noise is the same as (or a known scaling of) the input noise, to further improve

performance on those types of data set.

It is important to state that NIGP has been designed to tackle a particular situation, that of constant-

variance input noise, and would not perform so well on a general heteroscedastic problem. It could

not be expected to improve over a standard GP on problems where noise levels are proportional to the

function or input value for example. We do not see this limitation as too restricting however, as we

maintain that constant input noise situations (including those where this is a sufficient approximation)

are reasonably common.

In this chapter we limited ourselves to only considering NIGP with a first order Taylor expansion of

the GP functions. We would expect this to be a good approximation for any function providing the

input noise levels are not too large (i.e. small perturbations around the point we linearised about). In

practice, we could require that the input noise level is not larger than the input characteristic length

scale. A more accurate model could use a second order Taylor series, which would still be analytic

although computationally slower, as we pointed out in the discussion of the method in Girard and

Murray-Smith (2003).

2.7 Derivatives of a Gaussian Process

The NIGP method requires differentiating functions distributed according to a Gaussian Process. In

this section we derive the distribution on these derivatives in terms of the covariance function. For

the derivatives of the squared exponential covariance function see appendix A.

2.7.1 Posterior Distribution on the Derivatives

Let the posterior distribution at a particular (noise-free) test point x∗ (we drop the ‘in’ subscript

to keep the notation brief) induced by a GP with training inputs Xin, training targets Yout, and

hyperparameters θ be,

p(f∗ | x∗, Xin, Yout, θ) = N
(
f∗; f̄∗, Σ∗

)
(2.95)

We can write the unknown GP function value f∗ as the sum of its mean and an auxiliary latent variable

z∗ such that,

f(x∗) = f̄(x∗) + z∗

f(x∗ + δi) = f̄(x∗ + δi) + zδi

(2.96)
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where,

p(z∗, zδi) = N
(
0,

[
k∗∗ − kT∗K−1k∗ k∗δi − k

T
∗K
−1kδi

kδi∗ − k
T
δi
K−1k∗ kδiδi − k

T
δi
K−1kδi

])
(2.97)

and δi is a perturbation on x∗, with all zero entries apart from the ith, which is δ,

δi = [01, . . . , 0i−1, δ, 0i+1, . . . , 0D]
T (2.98)

Given that f(x∗) is a scalar, its derivative ∂f(x∗)
∂x∗ is a D-dimensional vector, where the ith element is

the derivative of f w.r.t. the ith element of x, x(i)
∗ . From the definition of a derivative,

∂f∗

∂x
(i)
∗

= lim
δ→0

f(x∗ + δi)− f(x∗)

x
(i)
∗ + δ − x(i)

∗

= lim
δ→0

f̄(x∗ + δi) + zδi − f̄(x∗) − z∗

δi

= lim
δ→0

f̄(x∗ + δi) − f̄(x∗)

δ
+ lim

δ→0

zδi − z∗

δ

=
∂f̄∗

∂x
(i)
∗

+ lim
δ→0

zδi − z∗

δi
(2.99)

The first term is the derivative of the posterior mean and the second term is a Gaussian distributed

variable with a zero mean (as both zδ and z∗ are zero mean, Gaussian variables). Thus the mean of the

derivative of f∗ is just the derivative of the mean — this can be seen immediately after recalling that

both differentiation and expectation are linear operators and thus are commutative. The posterior

mean of a GP is given by,

f̄∗ = k(x∗, Xin)K(Xin, Xin)−1 Yout

⇒ Ef∗
[
∂f∗
∂x∗

]T
=

∂k(x∗, Xin)

∂x∗
K(Xin, Xin)−1 Yout (2.100)

where the derivative of k(x∗, Xin) is a D×N matrix. To find the variance of the derivative we need to

consider the second term in equation 2.99. We will use the shorthand that,

kaa , k(a,a), ka , k(Xin,a), K , K(Xin, Xin) (2.101)

Vf∗
[
∂f∗

∂x
(i)
∗

]
= V

[
lim
δ→0

zδi − z∗

δ

]
= lim

δ→0

1

δ2

(
V
[
zδi
]

+ V [z∗] − C
[
zδi , z∗

]
− C

[
z∗, zδi

])
= lim

δ→0

1

δ2

(
kδiδi − k

T
δi
K−1kδi + k∗∗ − kT∗K−1k∗ − (k∗δi − k

T
∗K
−1kδi)− (kδi∗ − k

T
δi
K−1k∗)

)
= lim

δ→0

1

δ2

(
kδiδi − k∗δi − kδi∗ + k∗∗ − (kδi − k∗)

TK−1(kδi − k∗)
)

=
∂2k(x∗, x∗)

∂x
(i)
∗ ∂x

(i)
∗

− ∂k(x∗, Xin)

∂x
(i)
∗

K−1 ∂k(Xin, x∗)

∂x
(i)
∗

(2.102)

It is straightforward to extend this to find,

Cf∗
[
∂f∗

∂x
(i)
∗
,
∂f∗

∂x
(j)
∗

]
=

∂2k(x∗, x∗)

∂x
(i)
∗ ∂x

(j)
∗

− ∂k(x∗, Xin)

∂x
(i)
∗

K−1 ∂k(Xin, x∗)

∂x
(j)
∗

(2.103)
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from which we can construct the full D ×D covariance matrix. Thus,

p

(
∂f∗
∂x∗

| x∗, Xin, Yout, θ

)
= N

(
∂k(x∗, Xin)

∂x∗
K(Xin, Xin)−1 Yout,

∂2k(x∗, x∗)

∂x∗ ∂xT∗
− ∂k(x∗, Xin)

∂x∗
K−1 ∂k(Xin, x∗)

∂x∗

)
(2.104)

2.7.2 Expected Squared Derivative

If we pass a Gaussian random variable through a linear function then we know that the output variance

is proportional to the square of the gradient of the function,

Vx[ g(x) ] =
∂g

∂x
Σx

∂g

∂x

T

where g(x) = wTx, and x ∼ N (µx, Σx) (2.105)

If the derivative of g(x) is uncertain then the expected variance is given by,

Eg [Vx[ g(x) ]] = tr

{
Σx Vg

[
∂g

∂x

]}
+ Eg

[
∂g

∂x

]
Σx Eg

[
∂g

∂x

]T
(2.106)

= tr

{
Σx

(
∂2k(x∗, x∗)

∂x∗ ∂xT∗
− ∂k(x∗, Xin)

∂x∗
K−1 ∂k(Xin, x∗)

∂x∗
+

∂f̄∗
∂x∗

∂f̄∗
∂x∗

T
)}

(2.107)

Which we can recognise as the same as Σ̃(x∗) from equation 2.73. This gives us an additional view

on the inclusion of the derivative uncertainty in NIGP: it is equivalent to computing the expected

square derivative rather than the square expected derivative when propagating the input noise to the

output.



Chapter 3

Gaussian Process State Space

Models

3.1 Chapter Overview

Learning from data is a powerful way to gain understanding of dynamical systems, which is a prereq-

uisite for prediction and control. Learning in the ubiquitous linear dynamical system with Gaussian

noise can be treated analytically, without approximation, using either direct gradient descent coupled

with Kalman filtering or the Expectation Maximisation (EM) algorithm with Kalman smoothing.

Unfortunately, linear dynamical systems have limited expressiveness, and are too simplistic for many

applications.

Nonlinear extensions allowing learning from noisy data are not currently very mature, although this

area is receiving a lot of attention. The computations required for nonlinear models are generally

intractable, so approximations are used, based on linearisations (EKF, UKF (Julier and Uhlmann,

1997; Wan and Van Der Merwe, 2000; Ko et al., 2007)), moment matching (Ghahramani and Roweis,

1999; Roweis and Ghahramani; Deisenroth et al., 2009; Turner et al., 2010), or sampling (Kantas

et al., 2009; Cappé et al., 2005). Many of these models rely on specifying a set of basis functions which

implement the nonlinearities, but identifying suitable basis functions is often difficult. Furthermore,

for systems of moderate complexity and non-negligible noise, it is very unlikely that we will be able

to determine the system dynamics with complete (or near complete) certainty. This suggests that it

is desirable to take a Bayesian approach to capture our uncertainty about the dynamics. However, it

is often too complex to integrate out all unknowns and thus some parameters are optimised.

Gaussian Processes (GPs) (Rasmussen and Williams, 2006) have become the method of choice for

principled inference on functions. Recently, several authors have proposed the use of GPs in dynamical

model learning (Wang et al., 2008; Ko et al., 2007; Deisenroth et al., 2009; Turner et al., 2010; Frigola

et al., 2013). The parameter learning approaches adopted in these, and other relevant papers, broadly

fall into three categories: approximate-analytic EM algorithms, gradient descent using a particle filter,

and particle EM approaches. In this chapter, we introduce a new approximate-analytic category,

direct gradient descent, and apply all four categories to the same set of tasks. We then compare these

approaches both theoretically and through rigorous testing. To our knowledge, approximate-analytic

and particle approaches have not been compared in this way before.

53
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3.1.1 Chapter Outline

This chapter is fairly long as it goes into detail for a number of different modelling approaches. This

outline is thus intended to guide the reader to the sections they are most interested in. Sections which

contain novel material are highlighted in green.

3.2 Background: An introduction to dynamical modelling along with some historical context for the

chapter

3.3 State Space Models: Sets out the formal definition of a state space model as used in the rest of

the chapter

3.4 Gaussian Process State Space Models: Describes how Gaussian Processes can be used as tran-

sition models with a state space model and derives the joint probability distribution on the key

variables. This section then proceeds to discuss how learning can be carried out and looks at

some previous approaches under the following sub-sections:

3.4.1 Learning in Gaussian Process State Space Models: Demonstrates how learning in the Gaus-

sian Process state space model is intractable and shows how a conditional independence

approximation can be used to render the calculations tractable. This approximation re-

quires the introduction of ‘pseudo-data’ (a.k.a. inducing points) and this concept is explored

here.

3.4.2 Previous Work with Gaussian Process State Space Models: Discusses a number of models

proposed in the literature:

i. Gaussian Process Latent Variable Model (GP-LVM) (Lawrence and Moore, 2007)

ii. Gaussian Process Dynamical Model (GPDM) (Wang et al., 2008)

iii. GP-BayesFilterLearn (Ko and Fox, 2011)

iv. Variational GP Dynamical System (Damianou et al., 2011)

v. Gaussian Process Inference and Learning (GPIL) (Turner et al., 2010)

3.4.3 The Fully Bayesian Approach: A key piece of recent work (Frigola et al., 2013) shows how

learning can be carried out in the GP state space model using a particle MCMC approach.

3.4.4 The Variational Approach: Introduces a variational approach to learning in GP state space

models, building on work in Frigola et al. (2014). We take their sampling-based approach

and develop an analytic variational approach instead. We test this novel methodology on

some one dimensional problems.

3.5 The Direct Method: Introduces a completely novel approach to learning in GP state space mod-

els, which only uses forward-filtering, based upon Gaussian moment-matching approximations.

Initial analysis of the algorithm is carried out in the corresponding sub-section (3.5.1).

3.6 Analytic Expectation Maximisation: Discusses in depth an alternative approximate-analytic

approach based on the EM algorithm. A number of different methods for solving the E step are

investigated:



3.2. BACKGROUND 55

3.6.1 E step using assumed density smoothing (ADS): a simple approach previously introduced in

the literature (Turner et al., 2010) but which suffers from a key weakness which we identify

and explain.

3.6.2 E step using Expectation Propagation (EP): explores using EP as a more sophisticated

alternative to ADS in the E step. We show how a previously published method (Deisenroth

and Mohamed, 2012) is flawed and introduce some simple sampling steps to avoid this flaw.

3.6.3 Comparison of E Steps: a theoretical and empirical comparison of the discussed E step

methods

3.6.4 M Step: discusses the M step, as presented in Turner et al. (2010)

3.6.5 Analysis: provides a thorough analysis of the different EM algorithms discussed in the

section.

3.7 Particle Filter shows how to apply the sequential Monte Carlo algorithm of Poyiadjis et al. (2011)

to GP state space models, and combines it with a derivative-only, BFGS optimisation algorithm

to produce a viable method. This section also provides some initial analysis of this approach.

3.8 Particle EM: explains the particle EM methodology and shows how to apply the particle Gibbs

algorithm of Lindsten et al. (2012) to the GP state space model problem. A novel comparison of

the particle E step with the previously derived approximate-analytic methods is provided along

with some analysis of the algorithm’s effectiveness for solving problems of the type considered in

this chapter. Finally, there is a brief introduction to to particle stochastic approximation EM,

which may provide benefits, although this algorithm is taken no further here.

3.9 Comparison: a thorough and completely novel comparison of most of the methods discussed in

this chapter in terms of their theory, computational efficiency, parameter estimation performance,

and their predictive performance.

3.10 Conclusion: ties the material of the chapter together and summarises the main results

3.2 Background

The task of determining a system’s dynamics from observed data over time is fundamental to many

fields. This is because obtaining a model of a system is a prerequisite for making predictions about the

system and its evolution and, beyond that, for designing controllers to shape the system’s responses

to our wishes. Thus this is a problem which appears in control engineering, from mechanical to

chemical systems, but also more widely in communications, biology, medicine, economics, astronomy,

climatology, and so on.

As one might expect, given the broad application area, there are many different approaches to building

models of systems. Many of these approaches rely on the application of scientific laws to build a

model. This is most prevalent for mechanical systems, which can often be readily analysed using the

laws of Newtonian physics. However, to do so even for simple mechanical real-world systems mostly

requires making a number of modelling simplifications or approximations. For example, modelling

friction is notoriously hard to do, the most accurate models we have today are very complex and

computationally heavy to run (Olsson et al., 1998). In other fields, such as biology or economics, the
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underlying principles are less well understood and so building models based on them is significantly

harder.

In both of these cases an alternative modelling strategy is to build a model based on observed data

from the system. Typically a class of models is presupposed and the observations are used to select

a model from this class, for example, by estimating some parameters. In this chapter, we denote

such model parameters with θ. This approach, often termed ‘black-box modelling’ allows you to

model complex systems without having to understand the underlying equations first. However, in

many cases this modelling methodology is complicated by not being able to observe all the relevant

quantities with perfect accuracy. Indeed, it may be that one cannot measure a particular quantity at

all. In these situations we need to not only model the system of interest but also our data collection

mechanisms, so that we can take their shortcomings into account. Because of this, modelling strategies

can often be split into a state estimation step and a parameter estimation step. In Bayesian reasoning

this corresponds to finding posteriors on the state and model parameters. Here we define the concept

of the system ‘state’ to mean the collection of variables which contain all the information to define

how the system will respond to the present inputs without reference to previous inputs or behaviour.

We shall denote the system state at a particular time t by the column vector xt. As we have just

mentioned, it is often the case that we only partially observe the system state and/or we observe some

of the variables inaccurately, for example our measurements are corrupted by noise. We will denote

an observation of the system state made at time t by yt.

State estimation involves using the current model of the system to estimate the true states x based

on measurements y, whereas parameter estimation is focussed on using the current estimate of the

unobserved states to fit model parameters. These steps together are typically referred to as the dual

estimation problem (Nelson, 2000).

If we restrict ourselves to only considering the class of linear models, then this is a problem for which

a very large body of work exists (Kalman, 1963; Ghahramani and Hinton, 1996; Zhou et al., 1996). If

we further assume that the state is observed with additive Gaussian noise corruptions, then the state

estimation problem for linear models is solved optimally (in the maximum likelihood sense) by the

Kalman filter. Filtering is the term given to the task of estimating the system state at a particular

time point using current and previous measurements. In the language of probability theory this can be

written as finding p(xt | y1:t, θ), where y1:t implies all the measurements up to and including time t. In

offline settings, where we can use the information from future measurements to update our estimate of

the state at a particular time point, the Kalman filter can be combined with a backwards-in-time step

to obtain an improved estimate of the state—this is referred to as smoothing. From a probabilistic

point of view we can write smoothing as the task of finding p(xt | y1:T , θ), where T is the time of

the final measurement. Once we have obtained the smoothing estimate of the unknown states it is

straightforward to fit a linear model to this data, for example one method is to use linear least squares

(Ljung, 1998).

Unfortunately, whilst linear models are extremely attractive due to their mathematical properties they

are far too simplistic to explain most real-world systems: they can only capture exponential decay/rise

responses and constant-period oscillatory behaviour. On the other hand, most nonlinear systems

are too complex to have analytic solutions to the dual estimation problem. Therefore, we mostly

seek approximate solutions to state and parameter estimation in nonlinear systems. For example, by

appealing to the Taylor series expansion of a nonlinear function it can be argued that a linear model can
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still be a sufficiently accurate local model of a nonlinear system. This is the principle of the Extended

Kalman Filter (EKF), which is perhaps the simplest method of state estimation in nonlinear systems.

In the EKF, the current nonlinear model is linearised about the current estimate of the state. This

linearisation is then used to estimate the next state and subsequently the model parameters. Whereas

for the linear Gaussian case the Kalman filter gave the optimal estimate, in the nonlinear case the

EKF gives a suboptimal approximation to the true smoothing distribution. However, the EKF has

a number of unappealing properties (Wan et al., 1999), which led to the development of alternative

methods of approximate nonlinear state and parameter estimation, such as the Unscented Kalman

Filter (UKF) (Julier and Uhlmann, 1997; Wan et al., 1999) and the assumed density filter (ADF). In

addition to these approximate-analytic methods there is a large body of work tackling this problem

using sampling methods. Central to these approaches is the Sequential Monte Carlo (SMC) algorithm,

commonly referred to as Particle Filtering (Lindsten, 2013c; Schön et al., 2011).

A further key difficulty with data-driven modelling approaches for nonlinear systems is how to choose

the class of models to fit to the data. If the model class is too simplistic then the resulting model

will be a poor approximation to the real system; if the class is too complex then estimating the model

parameters will be significantly more difficult and we are prone to overfitting. Previously studied model

classes include Hammerstein-Wiener systems (Bai, 1998; Hunter and Korenberg, 1986), artificial neural

networks (Narendra and Parthasarathy, 1990), and radial basis functions (Ghahramani and Roweis,

1999), amongst others. For a complete overview of this field see, for example, Ljung (1998); Sjöberg

et al. (1995).

A possible answer to the problem of model class selection can be found in the area of Bayesian

nonparametric models. These are a class of models which are parameterised directly by the data and

so can adapt their complexity to the observations. The assumptions made by these models are typically

on a different level to those made by parametric model classes, for example assumptions of smoothness

or periodicity rather than of model shape or order. Perhaps the most famous Bayesian nonparametric

model is the Gaussian Process, discussed in section 1.4. There are many advantages of using a GP

for modelling nonlinear dynamical systems, for example, their flexibility and tractability. They are

also firmly built upon a full probabilistic interpretation of the data, which allows uncertainty to be

explicitly accounted for and modelled. This is particularly important in the situation where there is a

limited amount of data available to model the system. In this case there are likely to be a large number

of possible models, which fit the data. A probabilistic model can capture this uncertainty, whereas a

deterministic model, which only provides one possible explanation for the data, cannot. Furthermore,

it can often be the case that the model is asked to make a prediction at an input location where it has

very little (or even no) data in the vicinity. A deterministic model would make a prediction without

any indication that it is extremely untrustworthy. Even some probabilistic models, such as Bayesian

radial basis functions (see section 1.4.5), cannot represent this uncertainty without nearby data points.

A GP, however, does capture the uncertainty, which makes it a very attractive choice. Unfortunately,

we cannot immediately apply a GP model to this problem: as discussed in chapter 2, we must take

care in situations where we cannot observe the data directly.

This chapter discusses and analyses a number of different methods and algorithms for fitting Gaussian

Process dynamical models to observed data. We start by defining what we mean by a state space

model and a GP state space model (GP-SSM).
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3.3 State Space Models

We consider a continuous-state, discrete-time dynamical system which is in the unobserved state xt

at time t. We make a sequence of noisy measurements, {y1, . . . ,yT } (shorthand y1:T ), and from these

we wish to build a model of the system. We may also apply controls ut which can be functions of

the noisy measurement yt (they may also depend on previous measurements). This setup is shown

in figure 3.1. This task is central to many areas of engineering, statistics, econometrics, and biology,

which all contain problems of this form.

xt−1 xt xt+1

yt−1 yt yt+1

ut−1 ut ut+1

f

g

π

Figure 3.1: Graphical model of the dynamical system problem. A system transitions between hidden
states x according to an unknown nonlinear transition function f . We make observations y which are
related to the latent state via g which is also unknown. We can influence the system trajectory by
applying controls u which can depend on the observations via a policy π. For simplicity, the controls
are shown as depending on only the observation at the current time step.

Figure 3.1 is an example of a state space model (SSM), which assumes that the system dynamics and

the observation are fully determined by the current state xt. We assume time invariant transition and

observation functions, f and g, such that the dynamics can be written as

xt = f(xt−1, ut−1, θ) + εt

yt = g(xt, θ) + νt

ut = π(y1:t, θ)

(3.1)

where ε and ν are both noise vectors, (ε is typically called the process noise and ν the observation

noise), and θ is a parameter vector. For brevity we will mostly drop the explicit conditioning on the

controls. In chapter 2 we looked at regression models, mapping a set of inputs to an output. Here each

transition can be considered as a similar mapping, however the output at one time step then becomes

the input at the next. Hence we replace the ‘in’ and ‘out’ subscript notation from that chapter with

the time index.

The analytic methods we discuss later are only tractable with a Gaussian noise model,

ε ∼ N (0,Σε), ν ∼ N (0,Σν) (3.2)

Given that we are free to define the state x as we wish, it is always possible to set it such that the

observation function is linear by augmenting the state space to include the measurement nonlinearities.

For example, suppose we have a state, x̃t, defined such that there is a nonlinear relationship between
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the state and the observations. We can redefine the state as follows,

xt =
[
x̃t, g(x̃t)

]T
yt =

[
0 0

0 I

]
xt + νt

(3.3)

which results in a new, linear observation function. We will take this approach for the rest of this

chapter as it simplifies much of the following analysis. Thus,

g(x) = Cx (3.4)

and we can write the observation probability as,

p(yt | xt, θ) = N (yt; Cxt, Σν) (3.5)

Learning in a state space model involves identifying the transition function and the parameters θ.

These include the variance of the process and observation noise as well as the parameters of the

observation model, C, and the transition function, θtrans, which we look at in the next section.

θ = {θtrans, C, Σε, Σν} (3.6)

3.4 Gaussian Process State Space Models

Gaussian Processes (GPs) (Rasmussen and Williams, 2006) are a highly flexible model class, for exam-

ple allowing us to perform inference on all functions of a certain smoothness. As a stochastic process,

they also capture model uncertainty, returning a predictive probability distribution rather than a point

estimate. We therefore place a Gaussian Process prior on the transition function f(xt−1,ut−1,θ),

f ∼ GP(m, k) (3.7)

where m(x) is the GP mean function, usually either fixed to zero or a linear function, and k(xi,xj)

is the GP covariance function. For tractability, the analytic methods discussed below require the use

of covariance functions which can be integrated against a Gaussian. This restricts our choice of k to

covariance functions such as linear, polynomial, and Gaussian (also known as squared exponential or

‘exponentiated quadratic’). For the rest of this chapter we will use the Gaussian kernel,

k(xi,xj) = σ2
f exp

[
−1

2
(xi − xj)TΛ−1(xi − xj)

]
(3.8)

where σf and Λ are hyperparameters to be optimised: we add them to the parameter vector θ. For

simplicity we will also set the GP mean function to zero, although this is not a requirement. We

introduce the random variable f t to represent the GP function value evaluated at xt−1,

f t = f(xt−1, ut−1,θ)

xt = f t + εt ⇒ p(xt | f t) = N (f t, Σε)
(3.9)
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By using a GP we have placed a very flexible prior on the space of dynamical models, which can

capture a very broad range of behaviours. Figure 3.2 shows, on the top left, an example GP prior with

a number of sampled transition functions. State trajectories resulting from these transition functions

are shown in the other three plots. The top right plot shows a trajectory undergoing exponential

decay as one might expect from a linear function and, indeed, looking at the part of the transition

function being used in the top left plot shows that it is close to linear. The bottom left plot shows a

trajectory with oscillations growing over time but then saturating, which is a nonlinear feature. The

final trajectory shows something resembling a limit cycle, although the cycles are not exact repeats of

each other. All of these behaviours, and more, can be modelled with a GP state space model, which

makes them a very powerful class of models.
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Figure 3.2: Example transition functions and state trajectories generated from a noise-free, 1D GP
state space model with a particular fixed set of hyperparameters. The top left plot shows a simple
GP prior on transition functions, with a mean of zero and a standard deviation of 1. The blue, red,
and grey lines are sampled transition functions from this prior. The other three plots show state
trajectories which are generated from the correspondingly coloured transition functions. The dots on
the top left plot show where each transition lies.

For a D dimensional state vector we use D independent GPs to model the mapping from the current

state and controls to each of the state variables at the next time step. Each of these GPs has a

separate set of hyperparameters. Thus, a priori, the GP function value f t is distributed according to
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a D dimensional Gaussian with diagonal covariance,

p(f t | xt−1,ut−1,θ) = N

f t;


0
...

0

 ,

k1(x̂t−1, x̂t−1)

. . .

kD(x̂t−1, x̂t−1)


 (3.10)

where,

x̂t−1 = [xt−1 ut−1]T (3.11)

and the subscripts on the covariance functions indicates the different GPs for each output dimension.

To keep the notation as clear as possible we will mostly drop the controls from the expressions.

Whenever the latent state x is considered as an input to the GP it is implied that the controls are

concatenated with the state.

If we wish we can introduce correlation between the different dimensions of the state variable transition,

a problem often termed multi-task learning. Two examples of how to do this are by placing a separate

covariance function on the GP outputs (i.e. on the columns of the GP training targets matrix)

(Rakitsch et al., 2013) or by using a multiple-output kernel (Melkumyan and Ramos, 2011). In our

experience, using these extra covariance terms gave little benefit on the problems we considered, and

added extra complexity. We shall therefore maintain the independent GP model in this chapter.

We can draw a more detailed graphical model to represent a Gaussian Process state space model

(GP-SSM) as shown in figure 3.3. The thick line connecting the GP function values indicates that

these variables are fully connected.

xt−1 xt xt+1

yt−1 yt yt+1

ft−1 ft ft+1 ft+2

+ εt−1 GP + εt GP + εt+1 GP

g g g

Figure 3.3: Graphical model of a Gaussian Process state space model. The random variables f

represent the GP function values, which are fully connected to each other, as represented by the thick
line. The transition of xt−1 to xt is modelled by the GP followed by the addition of process noise εt

If we start with a prior distribution on the first latent state x1 then we can form the joint distribution

between x and f over a complete trajectory of length T by proceeding up the chain of latent variables,

xt−1 → f t → xt,

p(x1:T , f2:T | θ) = p(x1) p(f2 | x1) p(x2 | f2) p(f3 | x1, x2,f2) p(x3 | f3) p(f4 | x1, x2, x3, f2, f3) . . .

(3.12)

= p(x1)

T∏
t=2

p(f t | x1:t−1, f2:t−1) p(xt | f t) (3.13)
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where we have dropped θ from each of the distributions on the right hand side. Note that,

T∏
t=2

p(f t | x1:t−1, f2:t−1, θ) 6= p(f2:T | x1:T , θ) (3.14)

This is because p(f2:T | x1:T , θ) implies Gaussian Process regression where x1:T−1 are inputs and x2:T

are outputs, whereas the product term in equation 3.14 implies GP regression where f2:T are the

outputs (the inputs are still x1:T−1). In the first case (right hand side of equation 3.14) the outputs

are corrupted by process noise but in the second case (left hand side) they are noiseless — we are

conditioning directly on the GP latent function value. Thus we can write,

p(f t | x1:t−1, f2:t−1, θ) = N
(
f t; µft , Σft

)
(3.15)

where

µft =


k1(xt−1,x1:t−2)K1(x1:t−2,x1:t−2)−1

...

kD(xt−1,x1:t−2)KD(x1:t−2,x1:t−2)−1

 f2:t−1 (3.16)

Σft = diag
{
kd(xt−1,xt−1) − kd(xt−1,x1:t−2)Kd(x1:t−2,x1:t−2)−1kd(x1:t−2,xt−1)

}D
d=1

(3.17)

We can now find a representation for the product term in equation 3.13. We can see from equations

3.15 to 3.17, and considering just one output dimension, that the first two terms in the product

are,

p(f2 | x1, θ) = N (f2; 0, k(x1,x1)) (3.18)

p(f3 | x1:2, f2, θ) = N
(
f3; k(x2,x1) k(x1,x1)−1f2, k(x2,x2)− k(x2,x1) k(x1,x1)−1k(x1,x2)

)
(3.19)

from which it is clear that the distributions are linked by previous fs appearing in the mean of the

distribution for the current f . If,

a ∼ N (a; µa, Σa) and b ∼ N (b; c a, Σb) (3.20)

then,

Ea,b[b] = c µa, Va,b[b] = Σb + c2 Σa, Ca,b[a, b] = cΣa (3.21)

from which we can immediately realise,

Ef2:t

[
f t | x1:t−1, f2:t−1, θ

]
= 0 (3.22)

We can also see that,

Vf2:3
[f3 | x1:2, f2, θ] = k(x2,x2)− k(x2,x1) k(x1,x1)−1k(x1,x2)

+ k(x2,x1) k(x1,x1)−1k(x1,x1) k(x1,x1)−1k(x1,x2)

= k(x2,x2) (3.23)
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and

Cf2:3
[f3 | x1:2, f2, θ; f2 | x1, θ] = k(x2,x1) k(x1,x1)−1k(x1,x1)

= k(x2,x1) (3.24)

which shows that,

T∏
t=2

p(f t | x1:t−1, f2:t−1, θ) = N (f2:T ; 0, K(x1:T−1,x1:T−1)) (3.25)

where we’ve assumed that each element of K(x1:T−1,x1:T−1) is actually a diagonal matrix with one

entry for each output dimension. Thus,

p(x1:T , f2:T | θ) = p(x1)N (x2:T ; f2:T , ID ⊗ Σε) N (f2:T , 0, K(x1:T−1,x1:T−1)) (3.26)

where ID ⊗ Σε produces a block diagonal matrix with each block being a copy of the process noise

covariance matrix. We can integrate out the GP latent variables f2:T to get,

p(x1:T | θ) = p(x1) “N” (x2:T ; 0, K(x1:T−1,x1:T−1) + ID ⊗ Σε) (3.27)

Although this appears to have a Gaussian form p(x1:T | θ) is not Gaussian (hence the quotes) due

to the presence of x inside the kernel which makes up the covariance matrix of equation 3.27. For

example, although for a stationary covariance function such as the Gaussian kernel,

p(x2 | x1, θ) = N (x2; 0, k(x1,x1))

= N
(
x2; 0, σ2

f

)
(3.28)

p(x3 | x2, x1, θ) = N
(
x3; 0, k(x1,x1)− k(x2,x1) k(x1,x1)−1k(x1,x2)

)
= N

(
x3; 0, σ2

f − σ−2
f k(x1,x2)2

)
(3.29)

are both Gaussian, it is clear that the marginal p(x3 | θ) is not due to the position of x2 and x1 in

equation 3.29. Therefore, for the moment, we will refrain from integrating out f . We can write the

joint probability of all the variables in our model,

p(y1:T ,x1:T , f2:T | θ) = p(y1:T | x1:T , θ) p(x1:T , f2:T | θ)

= N
(
y1:T ; Ĉ x1:T , ID ⊗ Σν

)
p(x1 | θ)N (x2:T ; f2:T , ID ⊗ Σε) N (f2:T , 0, K(x1:T−1,x1:T−1))

(3.30)

where Ĉ is a TE ×D matrix of the linear weights of the observation function (g(x) = Cx) replicated

T times.

3.4.1 Learning in Gaussian Process State Space Models

In a Bayesian setting, learning in the Gaussian Process state space model (GP-SSM) means finding

a posterior on the parameters given the observed data, p(θ | y1:T ). Unfortunately, but somewhat

unsurprisingly, this is intractable, although a sampling based method to do this does exist (Frigola

et al., 2013), which is discussed in section 3.4.3. An alternative is to apply maximum marginal
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likelihood optimisation to find a set of parameters. To do this analytically we need an expression

for the marginal likelihood, p(y1:T | θ), which involves integrating out f2:T and x1:T from the joint

distribution in equation 3.30. As we stated in the previous section, we can integrate out f2:T , however,

the resulting non-Gaussian distribution on x1:T means that we cannot integrate out x analytically. This

means we cannot find a closed form expression for the marginal likelihood and thus cannot perform

exact maximum marginal likelihood optimisation for the parameters either. This suggests that if we

want to find an analytic method to fit the model we need to make some approximations.

Taking a step back for a moment, a very basic approach to the problem is to dispense with the

time series structure and cast the task of learning the GP transition function as a regression problem

between pairs of sequential states xt−1 and xt. Of course we don’t have access to the latent states

but we could approximate xt with yt, and find the mapping from yt−1 (and controls) to yt. This

can be seen as a type of nonlinear, first order autoregressive model. The difficulty is that there is

noise in both the inputs and the outputs, a problem sometimes called errors-in-the-variables. This is

the situation discussed in chapter 2 and we could use the methods presented in that chapter in this

context. These methods are much simpler than the approaches discussed in the rest of this section and

are very wasteful of the information inherent in the structure shown in the graphical model. Still, in

some cases they may work well and are likely to be much quicker to train than the methods discussed

here. We test this out by including NIGP (see chapter 2), in our comparisons at the end of this

chapter.

Perhaps the simplest method for tractable learning in the GP-SSM which does take into account the

structure in the state space model, is to treat the latent states as extra parameters to be optimised.

This is the basis for a number of methods based on the GP-LVM, as discussed in section 3.4.2. However,

this approach is very undesirable as there are as many latent states as observed data points and so the

number of parameters will always be larger than size of the training data set (once we factor in the

other parameters such as those in the GP covariance function). Without careful regularisation these

models are highly likely to overfit and lead to poor modelling performance.

Rather than trying to gain tractability by applying non-Bayesian methods to the exact model, a better

set of solutions can be found by instead considering an approximate version of the state space model:

by introducing some conditional independencies we can make the model tractable. To do this, we must

first make a rather unintuitive step and augment the GP training data with some auxiliary variables

or pseudo-points, {X̃, F̃}, in a similar manner to the FITC sparse GP approximation of Snelson and

Ghahramani (2006a). We term the pseudo-targets F̃ to indicate that we do not consider them to be

corrupted by process noise. The graphical model for this setup is shown in figure 3.4.

As an augmentation of the GP training set, the pseudo-data shares the same GP prior as the latent

transitions,

p(f t, F̃ | xt−1, X̃, θ) = N
([

0

0

]
,

[
k(xt−1, xt−1) k(xt−1, X̃)

k(X̃, xt−1) k(X̃, X̃)

])
(3.31)

and thus the distribution on a latent transition variable, ft, given the pseudo-data has the form of a

GP posterior. Combining this with the results from the previous section (e.g. equation 3.15) we can
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xt−1 xt xt+1

yt−1 yt yt+1

f t−1 f t f t+1 f t+2

F̃X̃

+ εt−1 GP + εt GP + εt+1 GP

g g g

Figure 3.4: Graphical model of a Gaussian Process state space model with a set of pseudo points
{X̃, F̃}. If we know the latent transitions, f2:T then the latent states, x2:T are independent of each
other and the pseudo-data as they are just process noise corrupted versions of the transition variables
f . The pseudo-data, {X̃, Ỹ }, induces a distribution over the latent transitions by means of the joint
GP prior.

see that,

p(f t | x1:t−1, f2:t−1, F̃ , X̃, θ) = N (m(xt−1), s(xt−1)) (3.32)

where m and s are the GP posterior moments and we set the training set to be {[X̃, x1:t−2], [F̃ , f2:t−1]}.
We now write the joint distribution, conditioned on the pseudo-inputs,

p(y1:T ,x1:T , f2:T , F̃ | X̃, θ) = p(y1:T | x1:T , θ) p(x1:T , f2:T | F̃ , X̃, θ) p(F̃ | X̃, θ) (3.33)

with,

p(x1:T , f2:T | F̃ , X̃, θ) = p(x1)

T∏
t=2

p(f t | x1:t−1, f2:t−1, F̃ , X̃, θ) p(xt | f t)

= p(x1)N (x2:T ; f2:T , ID ⊗ Σε) N
(
f2:T ; µf |F̃ , Σf |F̃

)
(3.34)

and,

µf |F̃ = K(x1:T−1, X̃)K(X̃, X̃)−1F̃ (3.35)

Σf |F̃ = K(x1:T−1,x1:T−1)−K(x1:T−1, X̃)K(X̃, X̃)−1K(X̃,x1:T−1) (3.36)

The form of the moments in equations 3.35 and 3.36 shows how the pseudo-points play the role of

extra training points, which induce a GP posterior on f2:T when conditioned upon. Unfortunately,

it is still intractable to integrate out x1:T from equation 3.34, although we could take a variational

approach to form a lower bound on the marginal likelihood from which we can integrate out all the

latent variables. This approach is discussed in section 3.4.4. The difficulty for learning in equation

3.34 is that the transitions from x1:t−2 to f2:t−1 form part of the GP training set for the prediction

on the transition from xt−1 to f t, as shown in figure 3.5. It is intractable to integrate out the latent
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states once they are acting as training data for a GP. However, the pseudo-points we have introduced

are also acting as training data and can be used to specify the GP. Therefore, we could choose to

approximate the GP prediction on the transition at xt−1 by only using the distribution induced by

the pseudo-points,

p(f t | x1:t−1, f2:t−2, F̃ , X̃, θ) ≈ p(f t | xt−1, F̃ , X̃, θ) (3.37)

= N (f t; m(xt−1), s(xt−1)) (3.38)

where m and s are the GP posterior predictive mean and variance functions (see equations 1.15 and

1.16), with {X̃, F̃} as the training set. The approximate distribution only depends on the latent

state xt−1, which, crucially, only acts as a test input and not as training data. This means that we

have a Gaussian (approximate) marginal distribution for f t. By using this approximate predictive

distribution we are making a conditional independence approximation,

p(f2:T | F̃ , X̃, θ) ≈
T∏
t=2

p(f t | F̃ , X̃, θ) (3.39)

this ‘cuts’ the thick lines in figure 3.4. That is, given the pseudo training set the individual GP latent

variables f t are independent of each other. This is equivalent to saying that previous state transitions

no longer affect the belief over future state transitions. From a learning point of view we can say that

the GP transition function is now only determined by the values of the pseudo data set — after all, if

previous transitions have no effect on the future then we cannot learn from them. Figure 3.6 shows an

example of the effect of this approximation and figure 3.7 shows the new graphical model. With this

approximation in place the Gaussian distribution on f2:T in equation 3.34 becomes diagonal. This

means that when we integrate out the fs, although the resulting joint distribution on x1:T is still

non-Gaussian, we can factorise it into a product of conditionals where xt only depends on xt−1 and

so on,

p(x1:T | F̃ , X̃, θ) ≈ p(x1)

∫ T∏
t=2

p(xt | f t, θ)︸ ︷︷ ︸
Process noise

p(f t | xt−1, F̃ , X̃, θ)︸ ︷︷ ︸
GP prediction eq. 3.38

df2:T

= p(x1)

T∏
t=2

∫
p(xt | f t, θ) p(f t | xt−1, F̃ , X̃, θ) df t

= p(x1)

T∏
t=2

N
(
xt; k(xt−1, X̃)K(X̃, X̃)−1F̃ ,

k(xt−1,xt−1)− k(xt−1, X̃)K(X̃, X̃)−1k(X̃,xt−1) + Σε

)
(3.40)

= p(x1)

T∏
t=2

p(xt | xt−1, F̃ , X̃, θ) (3.41)

Considering the conditional in equation 3.40, we can recognise that this is a standard GP prediction

with the process noise variance added to the predictive variance,

p(xt | xt−1, y1:T ) ≈ p
(
xt | xt−1, X̃, F̃ , θ

)
= N (xt; m(xt−1), s(xt−1) + Σε) (3.42)

This leads to the following approximation for the joint distribution having integrated out the GP
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p(f3 | x1:2, f2, F̃ , X̃, θ) p(f4 | x1:3, f2:3, F̃ , X̃, θ) p(f t | xt−1, F̃ , X̃, θ)

X̃ F̃

x1 f2

X̃ F̃

x1 f2

x2 f3
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Figure 3.5: Illustration of the training set for the GP transition function prediction as we move forward
in time in an online manner. Predictions are conditioned on previous transitions x1:t−2 to f2:t−1, as
well as the pseudo-points {X̃, F̃}. It is intractable to integrate out the x and f variables from the
training set, which poses a problem for learning in the GP-SSM. One solution is to only use the
pseudo-points to specify the GP transition function, as shown on the right of the figure.

latent function values,

p(y1:T , x1:T , F̃ | X̃, θ) ≈ p(F̃ | X̃, θ) p(x1)

T∏
t=2

p(yt | xt, θ) p(xt | xt−1, F̃ , X̃, θ) (3.43)

There are still two sets of unknown variables in the joint of equation 3.43, the latent states x1:T and

the pseudo-targets F̃ (we are treating the pseudo-inputs as parameters here), which we would like to

integrate out. We cannot immediately see how to marginalise over the latent states as both xt and

xt−1 appear inside each term of the product in equation 3.43, with xt−1 appearing in a complex way:

inside the GP covariance function.

In FITC (Snelson and Ghahramani, 2006a), the pseudo-targets are integrated out against the prior

p(F̃ | X̃, θ) which is set to be the same GP prior as was placed on f (the intuition being that the

pseudo-points should behave like the latent points). This is the same situation as we have in equation

3.43. However we cannot do that here as the pseudo-targets are required to specify the transition

function as the x variables are unknown (whereas they are known in FITC): if we integrate F̃ out then

we are only left with X̃ to specify the transition model. The ideal situation is to find the posterior

on the pseudo-targets given the observed data, p(F̃ | y1:T , θ), however this is intractable. The most

obvious solution is to treat the pseudo-points as parameters to be optimised. Note that this situation

is much more preferable to the case where we treat x1:T as parameters as here we can set the number

of pseudo-points to be much less than the number of data points. Not only does this greatly help with

overfitting but it also reduces the computational burden as well.

Treating the pseudo-points as parameters effectively creates a ‘parametric GP’. However, it is impor-

tant to note that despite using a pseudo-training set, the GP is not degenerate and this is a different

model to a Bayesian RBF. This is most clearly seen by considering the variance far away from the

pseudo-inputs: for a Bayesian RBF the variance drops away to zero (assuming we are not integrating
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Figure 3.6: The effect past transitions can have on future transitions in a GP state space model with
fully connected latent function values (figure 3.3). The green plot shows the posterior over a transition
function given by the pseudo-data set. Starting in the top left plot, we sample a transition as shown by
the blue cross. The red function in the top right plot shows the new GP posterior if we also condition
on this sampled transition, now shown in black. We now sample a second transition from this new
posterior, again shown by the blue cross, before also conditioning on it. These steps are repeated in
the bottom left plot. The bottom right plot shows the two different posteriors over transitions, the
green posterior does not take into account the sampled transitions, whereas the red posterior does.

xt−1 xt xt+1

yt−1 yt yt+1

f t−1 f t f t+1 f t+2

F̃X̃

+ εt−1 GP + εt GP + εt+1 GP

g g g

Figure 3.7: Graphical model of a Gaussian Process state space model with independent transitions
and with a set of pseudo points {X̃, F̃}.
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over the basis function locations), with a GP, parametric or otherwise, the predictive variance returns

to the prior variance. There are some significant drawbacks to using a parametric GP approach: the

largest of which is the possibility of overfitting. Given that we cannot marginalise out the pseudo

training set analytically (for the same reasons as why we introduced it in the first place) we must

consider X̃ and F̃ as extra parameters to be optimised. Although we lose many of the desirable prop-

erties of a Bayesian, nonparametric model, using a parametric GP allows us to build models which

retain analytic tractability. We will show that such models can be very useful for modelling nonlinear

dynamical systems.

If g(xt) = xt, we can pre-select the pseudo-inputs to be a subset of the observed data via the variational

metric of Titsias (2009) applied to a GP fitted to the observed data. This is much more efficient than

training the pseudo-inputs alongside the other parameters. The GP posterior over f will be most

certain around the pseudo-inputs, hence restricting these to be observed data reduces overfitting. The

pseudo-targets are added to the parameter set, giving,

θ =
[
σ2
f , Λ, F̃ , Σε, Σν

]
(3.44)

Unless we can observe a very long trajectory in one go, a single observed trajectory is unlikely to be

sufficient to train the model. We therefore need to be able to make use of several separate trajectories,

of potentially different lengths, to fit the parameters θ. All the methods discussed in the rest of this

chapter can handle this situation.

3.4.2 Previous Work with Gaussian Process State Space Models

Early GP state space models were focussed around extending the GP-LVM Lawrence (2004) to dy-

namical systems Lawrence and Moore (2007); Ferris et al. (2007); Wang et al. (2008); Ko and Fox

(2011). The graphical model for the GP-LVM is shown in figure 3.8. There is no concept of time or

state dynamics in the GP-LVM, hence the only connection between the x variables is via the joint

distribution on the observations. In the original GP-LVM the latent states x are optimised along with

the hyperparameters of the GP.

g1 g2 g3

y1 y2 y3

x1 x2 x3

GP GP GP

+ν +ν +ν

Figure 3.8: The graphical model for the Gaussian Process Latent Variable Model (Lawrence, 2004). A
Gaussian Process is placed on the observations yi given a set of hidden variables xi. The gi represent
the GP latent function values, termed g as the GP plays the role of an observation model.

Ferris et al. (2007) extended the GP-LVM to handle state dynamics for the application of WiFi-SLAM,

by introducing a set of constraints on the latent variables, for example that adjacent measurements
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should have latent states which are ‘close’ to one another. In this setup the GP is still modelling

the observation function rather than the transition function. One of the first attempts at including a

GP transition function in the GP-LVM was the Gaussian Process Dynamical Model (GPDM) (Wang

et al., 2008). Figure 3.9 shows the graphical model of the GPDM, which is identical similar to the

GP state space model of figure 3.3 except that the GPDM specifies a GP observation model. This

is because of the specific application the authors were aiming for (motion capture data), where the

observed space is very large and they desired a dimensionality reducing observation model. Both the

WiFi-SLAM GP-LVM model and the GPDM set the latent states x to directly be parameters of the

model. This is similar to the proposed GP-SSM setup described in section 3.4.1 except that here

there are as many pseudo-points as observed points. This model is thus only really appropriate for

the case where the size of the observation dimension is significantly greater than the size of the latent

dimension, otherwise it will strongly overfit. This model is likely to also be very slow to train for larger

data sets due to the large number of parameters to fit. By way of comparison, the framework of the

models discussed in the following sections of this chapter specifies a small number of pseudo-points

for optimisation and then (approximately) integrates out the latent states conditioned on these. To

counter some of these problems Wang et al. (2008) suggest a sampling algorithm based on Monte

Carlo EM and Hamiltonian Monte Carlo. In practice this has proved to be very difficult to implement

and slow to run.

g1 g2 g3

y1 y2 y3

x1 x2 x3

f1 f2 f3 f4

GPg GPg GPg

+ν1 +ν2 +ν3

GPf GPf GPf+ ε1 + ε2 + ε3

Figure 3.9: The graphical model for the Gaussian Process Dynamical Model (Wang et al., 2008).
Building on the GP-LVM, a second Gaussian Process is placed on the transitions between latent
states, xt−1 to xt.

An extension to the GPDM to overcome some of these problems is seen in the GP-BayesFilterLearn

set of algorithms (Ko and Fox, 2011). This method first uses a nearly identical setup to the GPDM

(the authors extend the setup to allow partial latent state labels and controls) to find a point estimate

of the latent states x. These latent states are then used to train one of the authors’ BayesFilter

algorithms (Ko and Fox, 2009). These filter models differ from the latent variable model trained by

the GPDM in that they make the same first order Markov assumption on the transitions as we do (as

depicted in figure 3.7). Thus this method can be seen as solving a similar problem to those considered

here except that they use a GP-LVM variant to first provide a point estimate of the latent states.

Using point estimates of the latent states is very undesirable as it completely ignores the uncertainty

in latent states which will lead to overfitting and overconfident predictions. One attempt to avoid
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making point estimates of x is the ‘variational GP dynamical system’ (Damianou et al., 2011). In

this model the authors use two GPs again, one for the observation model as before, and one for the

latent state dynamics. However, instead of using the GP to model the transitions xt−1 to xt, the

authors use the GP to model the latent states as a function of time. This setup is shown in figure

3.10. By using a GP with time as the input rather than the previous state the latent states can be

approximately integrated out using a variational approach. This is a big advantage of the approach

and significantly reduces overfitting. However, implementing the latent state dynamics using a GP

based on time makes this a considerably different model to the ones we have so far considered. On

the one hand it can handle time-varying state dynamics, on the other if the transition dynamics are

time-invariant then this will be a much less powerful approach than using a GP transition model. This

is because it is not uncommon for a system to return to the same or a similar state to one it visited

a number of time steps before. If the time gap between visits is large enough then there will be no

correlation between the subsequent latent state transitions. This problem is magnified if we consider

taking several observed trajectories from a system with time-invariant dynamics. The approach of

Damianou et al. (2011) is to use a separate GP to model the temporal dynamics of the latent states of

each observed trajectory: that is, no information is shared about the latent state transitions between

trajectories.

g1 g2 g3

y1 y2 y3

x1 x2 x3

t1 t2 t3

GPg GPg GPg

+ν1 +ν2 +ν3

GPt GPt GPt

Figure 3.10: The graphical model for the Variational Gaussian Process Dynamical System (Damianou
et al., 2011). A Gaussian Process is placed on the observations yi given a set of hidden variables xi.
The gi represent the GP latent function values, termed g as the GP plays the role of an observation
model.

A different approach introduced by Turner et al. (2010) and termed ‘GPIL’ allowed learning GP

transition and observation models based on full posterior distributions of the latent states via the EM

algorithm. They use exactly the same model structure as we presented in the previous section (shown

in figure 3.7), choosing a small set of pseudo-points as parameters and approximately integrating out

the latent states based on these. They use the GP assumed density filter in the E step to compute

approximate smoothing posteriors and then optimise an approximation to the log likelihood bound in

the M step. Their E step is presented in section 3.6.1 and their M step, which we extend by solving for

the pseudo-targets and observation noise rather than optimising, in section 3.6.4. As we shall show in

those sections, the E step of Turner et al. (2010) is potentially problematic. Deisenroth and Mohamed

(2012) introduced a different method for computing approximate smoothing posteriors in the same

model by using Expectation Propagation. We present their method in section 3.6.2
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The methods discussed so far are all based on analytic approaches, although Wang et al. (2008)

discuss a sampling extension to their model. The analytic methods discussed in sections 3.5 and 3.6

are forced to make a number of approximations in order to make the required computations tractable.

The most common approximation is to model the latent state smoothing posteriors with Gaussian

distributions as these readily lend themselves to tractable computations. For many applications these

approximate distributions capture well the true distribution on the latent states and thus the models

built using the approximations perform well. However, it is not hard to construct a system where

a Gaussian distribution would be a poor approximation to the latent state distribution. In these

cases a sample based method may well outperform the analytic method as they typically require

far fewer approximations—in fact usually only the approximation of representing a distribution with

samples. There is an extremely large body of work discussing nonlinear dynamical models from a

sampling based approach. Most of these are based around Sequential Monte Carlo (SMC) methods,

often termed ‘Particle Filters’. There are many excellent review articles and books covering these

methods, for example Doucet (2001); Kantas et al. (2009); Cappé et al. (2005); Doucet and Johansen

(2009). Somewhat surprisingly there has been little attention in the SMC community to applying

these methods to Gaussian Process state space models, although this is beginning to change: a key

approach is discussed in the next section and further SMC approaches are presented in sections 3.7

and 3.8.

3.4.3 The Fully Bayesian Approach

Section 3.4.1 introduced the maximum likelihood approach to learning a GP-SSM based on observed

data. This approach lends itself to approximate-analytic algorithms as well as sampling based ones,

and some of these methods are discussed in this chapter. However, these approaches are still using

maximum likelihood and are thus vulnerable to overfitting; in particular, optimising the pseudo-

targets is fraught with danger. We can attempt to reduce the problem by keeping the number of

pseudo-points low, however, this limits the flexibility of the GP transition function; furthermore, as

the pseudo-points are local in nature (they only affect the GP posterior around the pseudo-input

locations) we need to ensure we have sufficient points to cover the required area of the state space.

We can also introduce regularisation although this can be hard to do in a principled manner and

introduces further parameters to set.

All of these problems can be avoided by using a fully Bayesian approach to the task, where we average

over many parameter settings. Although we cannot do this analytically, it can be done by using

a sampling method, as introduced by Frigola et al. (2013). Their approach uses a Particle MCMC

(PMCMC) algorithm (see Andrieu et al. (2010) and section 3.8) to draw complete sampled trajectories

from the joint latent state smoothing posteriors as well as drawing GP hyperparameters from their

smoothing posteriors,

xi1:T , θ
i ∼ p(x1:T , θ

i | y1:T ) (3.45)

where i indexes the samples. In fact, these samples are drawn from the fully connected transition

model, shown in figure 3.3, rather than the independent transition model of figure 3.7. Each set of

samples {xi1:T , θ
i} defines a Gaussian Process and thus if we draw N samples we have a mixture of N
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GPs. This mixture model can be used to make predictions at new inputs,

p(f∗ | x∗, y1:T ) ≈
N∑
i=1

p(f∗ | x∗, xi1:T , θ
i) (3.46)

where,

p(f∗ | x∗, xi1:T , θ
i) = N

(
f∗; m(x∗,xi1:T ,θ

i), s(x∗,xi1:T ,θ
i)
)

(3.47)

By coupling the sampling algorithm with an inducing point method the complexity of drawing a single

sampled trajectory and corresponding hyperparameters is O(M2 T ), where M is the number of inducing

points being used and T is the length of the observed trajectory. Thus if we draw Ns samples then

the complexity is O(NsM
2 T ). As noted previously, we may need to use several observed trajectories

in order to gain sufficient data to accurately model the system. This can be done by applying the

method described above to each observed trajectory individually. If we have Ntraj observed trajectories

then the total computational complexity will be O(NtrajNsM
2 T ). Making predictions with this model

is also considerably more expensive than in the parametric GP model discussed earlier: predictions

cost O(NtrajNsM
2) in comparison to O(M2) for the parametric GP approach. For a complex system

the fully Bayesian approach could get very computationally heavy, although samples from different

observed trajectories can be drawn in parallel.

3.4.4 The Variational Approach

The parametric GP approach outlined in section 3.4.1 has the undesirable requirement of requiring

training of the pseudo targets, which can lead to overfitting. Although we cannot treat the pseudo

targets probabilistically with direct approximations to the marginal likelihood, we can if we use a

variational method to lower bound the marginal likelihood. Variational methods are recapped in

section 1.5. Current variational methods in Gaussian Processes are largely built upon Titsias (2009)

and Titsias and Lawrence (2010). The second of these papers demonstrated how the combination of a

variational approach with the introduction of pseudo-points allowed the latent inputs in the GPLVM to

be integrated out. Frigola et al. (2014) applied the same principles to derive a variational lower bound

on the marginal likelihood for a GP state space model. We will look at their approach here.

The graphical model with the pseudo points and fully connected GP latent variables was shown in

figure 3.4. In order to integrate out the pseudo targets we include them in the same GP prior as is

used for the latent function values f (as is done in FITC (Snelson and Ghahramani, 2006a)). We

will continue to treat the pseudo inputs as parameters, although the variational approach gives us

a slightly different viewpoint on them. In order to keep the equations as clear as possible we will

drop the explicit conditioning on X̃ and θ. In section 3.4.1 we found the complete joint probability

distribution to be,

p(y1:T ,x1:T , f2:T , F̃ ) = p(y1:T | x1:T ) p(x1) p(F̃ ) p(x1:T | f1:T )

T∏
t=2

p(f t | x1:t−1, f2:t−1, F̃ ) (3.48)

To find the marginal likelihood therefore we need to integrate the joint density over all the latent
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variables,

p(y1:T ) =

∫
p(y1:T | x1:T ) p(x1) p(F̃ ) p(x1:T | f1:T )

T∏
t=2

p(f t | x1:t−1, f2:t−1, F̃ ) df1:T dx1:T dF̃ (3.49)

As we have stated previously, we can solve the integral over f1:T , however this leads to a non-Gaussian

joint distribution on x1:T , and we can proceed no further with the integration. The problematic term

in equation 3.49 is p(f t | f2:t−1, x1:t−1, F̃ ) and so Frigola et al. (2014) take the same strategy as Titsias

and Lawrence (2010) and choose a variational distribution on the latent variables which removes this

difficult term. Let,

q(x1:T ,f2:T , F̃ ) = q(x1:T ) q(F̃ )

T∏
t=2

p(f t | x1:t−1, f2:t−1, F̃ ) (3.50)

which factorises so that xt has no dependence on f t. The approximating family is the same model as

that shown in figure 3.4 except that the link between f t and xt is removed. This leads to a simpler

distribution q, which will serve as a surrogate for the true distribution. We will then attempt to find

the q within the approximating family which provides the closest match (in the KL sense) to the true

posterior p(x1:T , f2:T , F̃ | y1:T ). Recall from equation 1.40 that the variational lower bound is given

by,

log p(y1:T )

≥
∫
q(x1:T ,f1:T , F̃ ) log

p(y1:T , x1:T , f2:T , F̃ )

q(x1:T ,f1:T , F̃ )
df1:T dx1:T dF̃

=

∫
q(x1:T ,f1:T , F̃ ) log

p(y1:T | x1:T ) p(x1) p(F̃ ) p(x1:T | f1:T )
T∏
t=2

p(f t | x1:t−1, f2:t−1, F̃ )

q(x1:T ) q(F̃ )
T∏
t=2

p(f t | x1:t−1, f2:t−1, F̃ )

df1:T dx1:T dF̃

=

∫
q(x1:T ,f1:T , F̃ ) log

p(y1:T | x1:T ) p(x1) p(F̃ ) p(x1:T | f1:T )

q(x1:T ) q(F̃ )
df1:T dx1:T dF̃

=

∫
q(x1:T ,f1:T , F̃ )

[
log

p(F̃ )

q(F̃ )
− log q(x1:T ) + log p(y1:T | x1:T ) p(x1) p(x1:T | f1:T )

]
df1:T dx1:T dF̃

= −KL
(
q(F̃ ) || p(F̃ )

)
+ H(q(x)) +

∫
q(xt) log p(x1) dx1 +

T∑
t=1

∫
q(xt) log p(yt | xt) dxt

+

T∑
t=1

∫
q(xt) q(F̃ ) p(f t | xt−1, F̃ ) log p(xt | f t) df t dxt dF̃

(3.51)

, L
(
q(x1:T ), q(F̃ )

)
(3.52)

Note how by deleting the term which chains the GP latent variables together we once again only have

the probability distribution on the transition at time t depending on xt−1 and not on all previous

latent states. This is exactly the same position as we were in when we introduced the conditional

independence of the GP latent variables given the pseudo-points. Indeed, Frigola et al. (2014) have

shown that the same marginal likelihood lower bound is found if you start from the independent
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transition model. We can solve the final integral over f t in equation 3.51 to find,

q(xt) q(F̃ )

∫
p(f t | xt−1, F̃ ) log p(xt | f t) df t = logN (xt; A(xt−1), Σε) −

1

2
tr
{

Σ−1
ε B(xt−1)

}
(3.53)

with A(xt−1) being a M × D matrix (where M is the number of pseudo-points we are using) with

columns {ai}Di=1 and B(xt−1) being a D ×D diagonal matrix with diagonal entries {bi}Di=1:

ai(xt−1) = ki(xt−1, X̃)Ki(X̃, X̃)−1 F̃i (3.54)

bi(xt−1) = ki(xt−1,xt−1) − ki(xt−1, X̃)Ki(X̃, X̃)−1 ki(X̃,xt−1) (3.55)

where F̃i are the pseudo targets for the ith output dimension and the subscript on the covariance func-

tion indicates that we are using the hyperparameters for the ith output dimension. The forthcoming

derivations are difficult to represent for multidimensional states, although the mathematics works out

the same, and so for clarity of exposition we will restrict ourself to a one dimensional state. We also

introduce the shorthand,

K(X̃, X̃) = KX̃,X̃ (3.56)

The advantage of the variational approach is that we do not need to optimise the pseudo-targets as

we can find an approximate posterior over them. Frigola et al. (2014) show that using variational

calculus one can find that the optimal variational distribution for the inducing points is a multivariate

Gaussian,

q∗
(
F̃
)

= arg max
q(F̃ )

L
(
q(x1:T ), q(F̃ ))

= N
(
F̃ ; −1

2
η−1

2 η1, −
1

2
η−1

2

)
= N

(
F̃ ; µF̃ , ΣF̃

)
(3.57)

η1 = Σ−1
ε

T∑
t=1

Eq(xt−1, xt)
[xt A(xt−1)] (M × 1) (3.58)

η2 = −1

2
K−1

X̃, X̃
− 1

2
Σ−1
ε

T∑
t=1

Eq(xt−1)

[
A(xt−1)A(xt−1)T

]
(M ×M) (3.59)

Optimal here means that this is the distribution which minimizes the KL divergence between q(x1:T , f2:T , F̃ )

and the true posterior p(x1:T , f2:T , F̃ | y1:T ). We can also find the optimal distribution for q(x1:T ), how-

ever there is no closed form for this, instead it takes the form of another dynamical system, albeit a

more simple one,

q∗(x1:T ) = arg max
q(x1:T )

L
(
q(x1:T ), q(F̃ ))

∝ p(x1)

T∏
t=2

p(yt | xt) exp

(
−1

2
Σ−1
ε B(xt−1)

)
N
(
xt; A(xt−1)TµF̃

)
(3.60)

One could use sampling methods or other approximations to find a close fit to q∗(x1:T ) although this

adds extra complexity and makes training the GP hyperparameters more difficult (especially with a

sampling approach). As q(x1:T ) is a variational distribution we are free to choose it as we wish and

optimise any parameters it has without fear of overfitting. We therefore take a simple approach and



76 CHAPTER 3. GAUSSIAN PROCESS STATE SPACE MODELS

choose q(x1:T ) to have a Markov decomposition,

q(x1:T ) = q(x1)

T∏
t=2

q(xt | xt−1) (3.61)

and choose each conditional distribution be Gaussian. It turns out that with this choice of variational

distribution we only need to define the pairwise joint distributions, as these contain the only variables

which affect the variational bound — note that in the lower bound (equation 3.51) q(x) only appears

in either a marginal form, q(xt) or inside the entropy term H(q(x1:T )) for which there is a special

formulation (see equation 3.71). Thus we define,

q(xt−1, xt) = N
([

xt−1

xt

]
;

[
µt−1

µt

]
,

[
Σt−1 Ct−1,t

Ct,t−1 Σt

])
(3.62)

for t = 2 to T . Ct−1,t is the pairwise covariance between xt−1 and xt, which makes it a D ×D matrix

(although here we are just considering D = 1) and it should not be confused with the observation

function, yt = C xt + νt from equation 3.4. This Markov formulation leads to a tri-diagonal

precision matrix for q(x1:T ). The means, variances, and pairwise covariances are treated as variational

parameters and are added to the parameter set to be optimised. We will need to make a number

of expectations over the GP covariance function when its inputs are Gaussian. As discussed before,

this limits the choice of covariance function we can use. As with the other methods discussed in this

chapter, here we will use the Gaussian covariance function (a.k.a. squared exponential/exponentiated

quadratic), shown in equation 3.8. We have derived a number of results with this covariance function:

expectations, variances, and derivatives, and present them in Appendix A. Rather than repeating all

those results here, the reader is directed to the appendix to find the various results needed. With a

Gaussian q(x) we can solve the required expectations over x for both q∗(F̃ ) and the lower bound:

The expectation of A(xt−1), a M × 1 vector,

Eq(xt−1) [A(xt−1)] = Eq(xt−1)

[
k(xt−1, X̃)

]
K−1

X̃,X̃
(3.63)

The variance of A(xt−1), a M ×M matrix,

Vq(xt−1) [A(xt−1)] = K−1

X̃,X̃
Vq(xt−1)

[
k(xt−1, X̃)

]
K−1

X̃,X̃
(3.64)

The covariance of xt with A(xt−1), a 1×M vector,

Cq(xt−1,xt)
[xt, A(xt−1)] = Cq(xt−1,xt)

[xt, k(xt−1, X̃)]K−1

X̃,X̃
(3.65)

The expectation of B(xt−1), a scalar,

Eq(xt−1) [B(xt−1)] = Eq(xt−1)

[
k(xt−1, xt−1) − k(xt−1, X̃)K−1

X̃,X̃
k(X̃, xt−1)

]
= σ2

f − E
[
k(xt−1, X̃)

]
K−1

X̃,X̃
E
[
k(X̃, xt−1)

]
− tr

{
K−1

X̃,X̃
V
[
k(xt−1, X̃)

]}
(3.66)
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The expectation of xt times A(xt−1), a 1×M vector,

Eq(xt−1,xt)
[xtA(xt−1)] = Eq(xt−1,xt)

[
xt k(xt−1, X̃)

]
K−1

X̃,X̃

=
(
µt Eq(xt−1)

[
k(xt−1, X̃)

]
+ Cq(xt−1,xt)

[
xt, k(xt−1, X̃)

])
K−1

X̃,X̃
(3.67)

The expectation of the outer product of A(xt−1) with itself, a M ×M matrix,

Eq(xt−1)

[
A(xt−1)A(xt−1)T

]
= K−1

X̃,X̃
Eq(xt−1,xt)

[
k(X̃, xt−1)k(xt−1, X̃)

]
K−1

X̃,X̃
(3.68)

Using these results we can write out the various terms in the lower bound from equation 3.51: firstly,

the Kullback-Leibler divergence term,

−KL
(
q(F̃ ) || p(F̃ )

)
= −KL

(
N (µF̃ , ΣF̃ ) || N (0, KX̃,X̃)

)
= −1

2

(
tr
{
K−1

X̃,X̃
ΣF̃

}
+ µT

F̃
K−1

X̃,X̃
µF̃ − D − log |ΣF̃ | + log |KX̃,X̃ |

)
(3.69)

Next, the likelihood term,

T∑
t=1

∫
q(xt) log p(yt | xt) dxt =

T∑
t=1

∫
q(xt)

(
−D

2
log 2π − 1

2
log |Σν | −

1

2
(yt − xt)TΣ−1

ν (yt − xt)
)
dxt

= −TD
2

log 2π − T

2
log |Σν | −

1

2

T∑
t=1

[
(yt − µt)TΣ−1

ν (yt − µt) + tr
{

Σ−1
ν Σt

}]
(3.70)

The entropy term, where we make use of the fact that the precision matrix Σ1:T of our variational

distribution q(x1:T ) is tri-diagonal, and thus has a particular decomposition for its determinant:

H (q(x1:T )) =
1

2
log |2π eΣ1:T |

=
1

2
DT log(2πe) +

1

2

T∑
t=2

log |Σt−1:t| −
1

2

T−1∑
t=2

log |Σt| (3.71)

where,

Σt−1:t =

[
Σt−1 Ct−1,t

Ct−1,t Σt

]
(3.72)

the 2D × 2D pairwise covariance matrix.

The next term measures how well the transition function predicts the transitions from xt−1 to xt based
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on the current posterior on the pseudo-points, this is the first term in equation 3.53:

T∑
t=2

∫
q(xt−1:t) q(F̃ ) logN (xt; F̃

TA(xt−1), Σε) dxt dxt−1 dF̃

= −D
2

log 2π − 1

2
log |Σε| −

1

2

∫
q(xt−1:t) q(F̃ )

(
(xt −A(xt−1)T F̃ )T Σ−1

ε (xt −A(xt−1)T F̃ )
)
dF̃ dxt−1:t

= −D
2

log 2π − 1

2
log |Σε| −

1

2
Σε Ext−1

[
A(xt−1)TΣF̃ A(xt−1)

]
− 1

2
Ext−1,xt

[
(xt −A(xt−1)T µF̃ )T Σ−1

ε (xt −A(xt−1)T µF̃ )
]

= −D
2

log 2π − 1

2
log |Σε| −

1

2
Σε Ext−1

[A(xt−1)]
T

ΣF̃ Ext−1
[A(xt−1)] − 1

2
tr {Σε ΣF̃ V[A(xt−1)]}

− 1

2
(µt − Ext−1

[A(xt−1)] µF̃ )T Σ−1

F̃
(µt − Ext−1

[A(xt−1)] µF̃ ) − 1

2
tr
{

Σ−1
ε Σt

}
− 1

2
tr
{

Σ−1
ε µ

T
F̃
V[A(xt−1)]µF̃

}
+ tr

{
Σ−1
ε C[xt, µ

T
F̃
A(xt−1)]

}
(3.73)

The second term in equation 3.53 penalises uncertainty in the GP posterior,

−1

2

T∑
t=1

∫
q(xt) q(F̃ ) tr

{
Σ−1
ε B(xt−1)

}
dxt dxt−1 dF̃ = −1

2

T∑
t=1

tr
{

Σ−1
ε Ext−1

[B(xt−1)]
}

(3.74)

All these terms are computable in closed form. Furthermore, we can take the derivative of the lower

bound w.r.t. the GP hyperparameters and the moments of the variational distribution on the latent

states, thus we can optimise the lower bound via gradient ascent. To test the variational approach we

trained it on a 1D ‘kink’ transition function, as shown in figure 3.11. Ten trajectories were generated

from the transition function for training, with a further twenty used for the test set. Figure 3.11 also

shows the resulting GP posterior; whilst the posterior mean matches the true transition function well

up to around xt−1 = 4.5, the variational method has greatly overestimated the amount of process noise.

We found this to be a common occurrence — the variational method required, on average, a lot more

data to produce a similar fit to other methods with fewer data points. Figure 3.12 shows how the

bound on the NLML decreases over optimisation along with how the test likelihood changes. The test

performance is measured by computing the (negative log) probability (NLP) of the true observation

under the predicted distribution. For each test trajectory we have access to the sequence of latent

states, therefore, rather than computing the probability of a single observed point we integrate over

the true distribution on the observed point given the latent point. We can compute this test statistic

easily for a D-dimensional state and so we write it in terms of this generality,

Test NLP = − log

∫
p(y∗t | µ∗t , Σ∗t ) p(y

∗
t | x∗t , θ) dy∗t

= − log

∫
N (y∗t ; µ

∗
t , Σ∗t )N (y∗t ; x

∗
t , Σν) dy∗t

=
D

2
log 2π +

1

2
log |Σ∗t + Σν | +

1

2
(µ∗t − x∗t )

T
(Σ∗t + Σν)

−1
(µ∗t − x∗t ) (3.75)

where µ∗t and Σ∗t are the predictive mean and variance calculated by the trained GP model evaluated

at the latent point x∗t−1. Both training and test metrics show a very rapid convergence, which is

somewhat surprising given that there are 627 parameters to fit.
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Figure 3.11: The true 1D test transition function is shown in green, where the shaded region shows
two standard deviations of process noise. The red distribution is the transition function learnt by
the variational approach along with the two standard deviations of process noise. The blue crosses
represent the observed transitions, yt−1 to yt, and so should not be within the transition function
posterior.
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Figure 3.12: The training and test performance for the 1D function as the GP and variational param-
eters are optimised. The training plot is of the upper bound value and the test plot uses the metric
in equation 3.75.

3.5 The Direct Method

We now look at a number of different approaches based on the optimisation of the pseudo-targets

F̃ , which are included in the parameter vector θ. In this section we present an approximate-analytic

approach to learning in GP-SSMs, which only makes use of filtering and attempts to directly optimise

the marginal likelihood. The variational approach discussed in the previous section maintained an
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explicit distribution over the latent states x1:T , which was an approximation to the smoothing pos-

terior p(x1:T | y1:T ). In the following approach we do not need to construct such a distribution, in

contrast to the variational approach and to the expectation maximisation algorithms encountered in

sections 3.6 and 3.8. Our approach will proceed by making a single forward filtering sweep, continually

projecting intractable distributions onto the Gaussian family using moment matching. This is often

termed assumed density filtering (ADF), although here we extend this to computing the marginal

likelihood.

The marginal likelihood can be factored as follows,

p(y1:T | θ) = p(y1 | θ)

T∏
t=2

p(yt | y1:t−1,θ) (3.76)

We can expand the term inside the product in equation 3.76, by using the structure inherent in the

state space model,

p(yt | y1:t−1,θ) =

∫∫
p(yt | xt,θ)︸ ︷︷ ︸

Observation

p(xt | xt−1,θ)︸ ︷︷ ︸
Transition

p(xt−1 | y1:t−1,θ)︸ ︷︷ ︸
Filtered state

dxt−1 dxt (3.77)

where we recognise the three terms as the observation probability, the transition probability, and the

filtered state distribution at t−1. Here we have already integrated out the GP latent function variable

f t from the transition probability,

p(xt | xt−1, θ) =

∫
p(xt | f t, θ)︸ ︷︷ ︸
Gaussian noise

p(f t | xt−1, θ)︸ ︷︷ ︸
GP prediction

df t

= N (xt; m(xt−1), s(xt−1) + Σε) (3.78)

To compute equation 3.77 analytically we must approximate the filtered state distribution with a

Gaussian.

p(xt−1 | y1:t−1,θ) ≈ qfilter(xt−1 | y1:t−1,θ)

qfilter(xt−1 | y1:t−1,θ) = N
(
xt−1; µt−1|t−1, Σt−1|t−1

) (3.79)

We use the subscript notation ‘t − 1 | t − 1’ to indicate that these are moments for the state at time

t − 1 using the information (observations) up to, and including, time t − 1. We can either solve the

integral over xt−1 or xt first. If we could compute all the integrals analytically, clearly it would

make no difference which order we solved them in. However, in this case we are solving the integrals

approximately, and the approximations we make will differ depending on the order in which we consider

the integrals. For now we choose to solve the integral over xt−1 first, followed by the integral over xt.

The alternative approach, integrating over xt then over xt−1, can be done using importance sampling

for the second integral; this is more accurate but computationally slower, especially as we also require

derivatives w.r.t. θ in order to optimise θ. Using the moment-matching approximation of equation

3.79 for the integral over xt−1 in equation 3.77 gives,

p(xt | y1:t−1,θ) ≈
∫

p(xt | xt−1,θ)︸ ︷︷ ︸
GP prediction + noise; eq. 3.78

qfilter(xt−1 | y1:t−1,θ)︸ ︷︷ ︸
Moment-matched Gaussian; eq 3.79

dxt−1 (3.80)
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This integral corresponds to averaging a GP prediction when its test input xt−1 is Gaussian. The

resulting distribution is generally non-Gaussian (using a GP with a linear kernel is an exception),

however, the first two moments can be computed analytically for the SE covariance function (amongst

a few others) (Girard et al., 2003), and so we approximate p(xt | y1:t−1,θ) with a moment-matched

Gaussian distribution,

p(xt | y1:t−1,θ) ≈ qtime(xt | y1:t−1,θ)

qtime(xt | y1:t−1,θ) = N
(
xt; µt|t−1, Σt|t−1

) (3.81)

where,

µt|t−1 =

∫∫
xt p(xt | xt−1,θ) qfilter(xt−1 | y1:t−1,θ) dxt−1 dxt (3.82)

Σt|t−1 =

∫∫
xt x

T
t p(xt | xt−1,θ) qfilter(xt−1 | y1:t−1,θ) dxt−1 dxt − µt|t−1 µ

T
t|t−1 (3.83)

See Girard et al. (2003) or Deisenroth (2009) for the solutions to these moment integrals. Note, we

have now used the subscript ‘t | t− 1’ as these are the moments of xt but still only using observations

up to time t − 1. Substituting the approximate result of the integral over xt−1 (equation 3.81) into

equation 3.77 gives the integral over xt as

p(yt | y1:t−1,θ) ≈
∫

p(yt | xt)︸ ︷︷ ︸
Observation probability = Gaussian

qtime(xt | y1:t−1)︸ ︷︷ ︸
Gaussian; eqs: 3.80,3.81

dxt (3.84)

The restrictions we placed on the observation model mean that yt and xt have a linear relationship

(yt = Cxt+νt — equation 3.4). Thus the integrand in equation 3.84 equates to a joint Gaussian,

p(yt | xt) qtime(xt | y1:t−1) = N
([

xt

yt

]
;

[
µt|t−1

Cµt|t−1

]
,

[
Σt|t−1 Σt|t−1C

T

CΣt|t−1 CΣt|t−1C
T + Σν

])
(3.85)

which we can integrate exactly to yield an approximation to the marginal likelihood term,

p(yt | y1:t−1) ≈ N
(
yt; Cµt|t−1, CΣt|t−1C

T + Σν

)
(3.86)

and, using conditioning, an expression for the filtered state at time t,

qfilter(xt | y1:t, θ) = N
(
xt; µt|t, Σt|t

)
µt|t = µt|t−1 + Σt|t−1C

T
(
C Σt|t−1C

T + Σν
)−1

(yt − Cµt|t−1)

Σt|t = Σt|t−1 − Σt|t−1C
T
(
C Σt|t−1C

T + Σν
)−1

CΣt|t−1

(3.87)

This gives us a complete method for computing an approximation to the marginal likelihood by using a

single forward sweep over the data. The method, as outlined above, uses the GP assumed density filter

(GP-ADF) (Deisenroth et al., 2009) to infer an approximation to the filter distribution on the latent

states. We then make use of the linear observation model to compute the marginal likelihood without

further approximation. Furthermore, we can find the derivatives of each of the steps outlined above

w.r.t. the parameters θ and the previous moments; thus we can fit the whole model using gradient

descent on the approximate marginal likelihood. The key required derivatives are presented at the



82 CHAPTER 3. GAUSSIAN PROCESS STATE SPACE MODELS

end of the chapter. A summary of the algorithm, in the future referred to as ‘the direct method’, is

shown in algorithm 1.

Algorithm 1 Direct Optimisation with Moment Matching

• Pre-select pseudo-inputs X̃ to span data and initialise parameters, θ

• Run gradient descent optimisation until termination criteria are met

O
n

e
o
p

ti
m

is
a
ti

on
st

ep



– Compute negative log marginal likelihood contribution for t = 1

– For t = 2 : T :

∗ Compute moments of GP prediction at t given Gaussian on t− 1, µt|t−1, Σt|t−1

∗ Compute negative log marginal likelihood contribution (equation 3.86),

− logN
(
yt; Cµt|t−1, CΣt|t−1C

T + Σν

)
∗ Compute approximate filter distribution (equation 3.87),

qfilter(xt | y1:t, θ) = N
(
xt; µt|t, Σt|t

)
∗ Compute derivatives of both terms w.r.t. θ and previous filter moments
µt−1|t−1, Σt−1|t−1

∗ Using the chain rule combine derivatives from previous steps to obtain
∂ − log p(y1:t | θ)

∂θ

• Return optimised parameters

3.5.1 Analysis

Figure 3.13 shows optimisation performance for the Direct algorithm on three systems: the 1D kink

function, the 4D cart & pendulum system, and the 10 unicycle system. In all cases the dynamics

model was initialised using the hyperparameters from an initial GP trained on the observed data in

the standard (non-latent variable) manner. The figure shows how both training and test performance

changes with optimisation iteration. The measure of training performance is the approximation to

the negative log marginal likelihood calculated by the Direct algorithm (equations 3.76 and 3.86).

The test performance is measured using the same statistic as described in the variational approach

section.

The figure shows the optimisation converging for around 750 function evaluations or fewer based on the

test performance. The number of minimisation steps required for optimisation is strongly dependent

on the system being modelled; not just dependent on its dimension but on other features capturing the

complexity of the transition function. The one dimensional system shows a section of the optimisation

where the test metric experiences some ‘turbulence’ which does not appear in the training NLML,

although the training NLML has not yet converged. The optimisation progress breaks through this

phase but this behaviour warns of the dangers of early stopping. On the other hand, the test metric

is still mostly decreasing in this section and so perhaps one would not read too much into it. More

importantly, none of the systems show any signs of long term over-fitting as we might expect from a

maximum (marginal) likelihood method.



3.5. THE DIRECT METHOD 83

0 500 1000 1500
260

280

300

320

340

Function Evaluation

T
ra

in
in

g 
N

LM
L

0 500 1000 1500

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Function Evaluation

T
es

t N
LP

0 500 1000 1500
−1100

−1000

−900

−800

−700

−600

Function Evaluation

T
ra

in
in

g 
N

LM
L

0 500 1000 1500
−0.9

−0.85

−0.8

−0.75

−0.7

−0.65

−0.6

−0.55

Function Evaluation

T
es

t N
LP

0 500 1000 1500
−5000

−4000

−3000

−2000

−1000

0

Function Evaluation

T
ra

in
in

g 
N

LM
L

0 500 1000 1500
−1.7

−1.6

−1.5

−1.4

−1.3

−1.2

−1.1

−1

Function Evaluation

T
es

t N
LP

Figure 3.13: Training and test performance for the 1D kink function (top), 4D cart & pendulum
system (middle), and the 10D unicycle system (bottom). The y -axis of the left hand plots shows the
Direct algorithm’s approximation to the training negative log marginal likelihood; the y-axis on the
right hand plots shows the negative log probability of a test set under the model. The red dashed line
shows the final value reached after 1500 minimisation steps, the green cross shows the point where 99%
of the total function value decrease is reached. Note that the training and test scores are measuring
different probabilities and thus are not comparable.

Figure 3.14 shows wall clock timings in seconds for the computation of the approximate negative log

marginal likelihood and its derivatives w.r.t. the parameters for systems with dimensionality from one

to ten. The times are shown for a system of ten pseudo-points and a single observed trajectory of

twenty time steps. The figure shows a nearly perfect quadratic dependence on dimension, which is

to be expected: at the heart of the algorithm we must make D GP predictions (one for each state

dimension) each of which is linear in state dimension. The timings shown in the figure are for a single

evaluation of the derivatives but we can estimate the time to train a full model by using around 750

iterations, as seen from figure 3.13. On top of this we would typically require more than a single

observed trajectory of twenty time steps to accurately learn the model. If we assume we have twenty
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separate observed trajectories, each of twenty steps long, and run training for 750 iterations then

total training time runs from around fifty minutes to ten hours for one to ten dimensional systems.

These times are also quadratically dependent on the number of pseudo points used; the times shown

are based on a model using ten points. It is likely that more than ten points would be required

for complex systems, particularly for higher dimensional systems where more points are needed to

sufficiently cover the state space.
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Figure 3.14: Wall clock timings in seconds for the Direct algorithm on systems with varying dimen-
sionality. The timings are how long it takes the algorithm to compute the approximate NLML and its
derivatives for an observed trajectory of 20 time steps and with 10 pseudo-points.

3.6 Analytic Expectation Maximisation

In this section we look at another approximate-analytic approach, this time based on the expectation

maximisation (EM) algorithm. The EM approach splits the problem into two parts: in the E step we

find an approximate posterior distribution over the latent states, q(x1:T | y1:T ,θ) ≈ p(x1:T | y1:T ,θ), and

in the M step we optimise an approximate bound on the marginal likelihood, using the distribution

found in the E step. In contrast to the Direct method discussed in the previous section, in the E

step here we (approximately) compute the full smoothing posterior, which requires both forward and

backward sweeps. This is much more complicated than the filtering-only Direct approach, however,

it has an advantage when it comes to optimising the parameters, as a number of them can be solved

for rather than optimised by gradient descent.

3.6.1 E step using assumed density smoothing

The E step of Turner et al. (2010) used the GP-ADF (Deisenroth et al., 2009) to run forward-filtering,

as we did in algorithm 1, but they then follow this with a new backward-smoothing step. On the

forward sweep, joint Gaussian distributions are moment matched to each pair of sequential states,

which effectively linearises the transition function about each filtered state. This linearisation is then
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reused in the backward sweep to update the state location, despite the fact that the smoothed state

might be significantly far away from the filtered state, where the linearisation was made. This weakness

also appears in the extended Kalman filter (EKF) and can lead to disastrous results in both cases as

we will show.

First we will derive the E step of Turner et al. (2010), which uses the GP-ADF (Deisenroth et al.,

2009). The goal of the E step is to find an approximation to the latent state posterior,

q(x1:T | y1:T ,θ) ≈ p(x1:T | y1:T ,θ) (3.88)

This can be achieved using a forward-backward algorithm. In the forward sweep we recursively

compute the filter distributions p(xt | y1:t) by using the following relation,

p(xt | y1:t, θ) ∝ p(yt | xt,θ)︸ ︷︷ ︸
Observation

∫
p(xt | xt−1,θ)︸ ︷︷ ︸
GP Transition

p(xt−1 | y1:t−1,θ)︸ ︷︷ ︸
Filtered state at t−1

dxt−1 (3.89)

where the normalisation term is p(yt | y1:T−1, θ). Equation 3.89 is typically split into two parts: the

time update,

p(xt | y1:t−1,θ) =

∫
p(xt | xt−1,θ)︸ ︷︷ ︸
GP Transition

p(xt−1 | y1:t−1,θ)︸ ︷︷ ︸
Filtered state at t−1

dxt−1 (3.90)

and the measurement correction,

p(xt | y1:t, θ) ∝ p(xt | y1:t−1,θ) p(yt | xt, θ) (3.91)

Equation 3.89 is the same as the marginal likelihood equation (3.77) without the integral over xt.

Thus we can solve equation 3.89 by using the same set of approximations as we did in the direct

approach, equations 3.79 to 3.84: first we approximate the filter distribution at t− 1 with a Gaussian,

qfilter(xt−1 | y1:t−1,θ) (equation 3.79), secondly we find the moments of the time update distribution

using the uncertain test-input GP equations. Thirdly, using these moments we approximate the time

update p(xt | y1:t−1,θ) with a Gaussian, qtime(xt | y1:t−1,θ) (equation 3.81). Finally, we combine

the time-update distribution with the observation at time t and use conditioning to find a Gaussian

approximation to the filter distribution at t, qfilter(xt | y1:t,θ).

The forward sweep only conditions on observed data from the current and previous time steps. Forming

a posterior over a latent state which conditions on all observations, i.e. also on future measurements, is

known as smoothing. The filter posteriors are updated to smoothing posteriors during the backward

step. This backward sweep is much more complicated than the forward sweep as it involves the

inversion of the GP dynamics:

p(xt−1 | y1:T , θ)︸ ︷︷ ︸
Smoothing distribution at t−1

=

∫
p(xt−1 | xt, y1:t−1, θ)︸ ︷︷ ︸

Inverse GP transition

p(xt | y1:T , θ)︸ ︷︷ ︸
Smoothing distribution at t

dxt (3.92)

Note, due to the Markov structure of the state space model (figure 3.3) p(xt−1 | xt, y1:t−1, θ) = p(xt−1 |
xt, y1:T , θ). Unfortunately there are no analytic results for the distribution on the test input to a GP

for a particular test output. Thus, even if the smoothing distribution at time t is Gaussian, we cannot

solve the integral in equation 3.92.
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So far we have approximated the marginal filter distributions p(xt | y1:t, θ) with Gaussians qfilter(xt |
y1:t, θ), however, we could extend the approximation and fit joint Gaussian distributions to pairs of

adjacent states, xt−1 and xt. In step two of the filter step outlined above, we compute the moments

of a GP predictive posterior when the test input is Gaussian distributed. We can further compute

the input-output covariance term between the filter distribution at time t − 1 and the time-update

distribution qtime(xt | y1:t−1,θ), giving an approximate joint distribution,

p(xt−1, xt | y1:t−1, θ) ≈ qjoint(xt−1, xt | y1:t−1, θ)

qjoint(xt−1, xt | y1:t−1, θ) = N
([

xt−1

xt

]
;

[
µt−1|t−1

µt|t−1

]
,

[
Σt−1|t−1 Ct−1,t|t−1

CTt−1,t|t−1 Σt|t−1

])
(3.93)

where Ct−1,t|t−1 is the input-output covariance term for a GP with a Gaussian distributed test point

(see equation 1.30 and Deisenroth (2009)). Given that we have a joint Gaussian distribution in

equation 3.93 we can condition on xt which gives us an approximation to the inverse transition term

in equation 3.92,

p(xt−1 |xt, y1:t−1, θ) ≈ qbkwd(xt−1 | xt, y1:t−1, θ)

qbkwd(xt−1 |xt, y1:t−1, θ)

= N
(
xt−1; µt−1|t−1 + Ct−1,t|t−1 Σ−1

t|t−1(xt − µt|t), Σt−1|t−1 − Ct−1,t|t−1 Σ−1
t|t−1 C

T
t−1,t|t−1

)
(3.94)

The latent state xt appears linearly in the mean of equation 3.94 and thus can be integrated against

a Gaussian as required in equation 3.92. Therefore, by substituting qbkwd(xt−1 | xt, y1:t−1, θ) for

p(xt−1 | xt, y1:t−1, θ) in equation 3.92 we can solve the integral and find an approximation to the

smoothed state distribution,

p(xt−1 | y1:T ,θ) ≈ qsmooth(xt−1 | y1:T ,θ)

qsmooth(xt−1 | y1:T ,θ) = N
(
xt−1; µADS

t−1|T , ΣADS
t−1|T

) (3.95)

with,

µADS
t−1|T = µt−1|t−1 + Jt−1 (µADS

t|T − µt|t−1)

ΣADS
t−1|T = Σt−1|t−1 + Jt−1 (ΣADS

t|T − Σt|t−1) JTt−1

Jt−1 = Ct−1,t|t−1 Σ−1
t|t−1

(3.96)

Equations 3.95 and 3.96 provide a method for finding an approximation to the smoothing posteriors

on the latent states. We will look at a number of other methods for computing an approximation to

the smoothing posteriors and so we use the superscript to differentiate them: here, ‘ADS’ refers to

assumed density smoothing.

We can also compute the covariance between pairs of adjacent states, xt−1 and xt, under the smoothing

distributions,

C
[
xt−1, xt | y1T

, θ
]

= Ct−1,t|t−1 Σt|T (3.97)

Equations 3.89 to 3.97 describe the ‘assumed density smoothing’ (ADS) method for finding an ap-

proximation to the latent state posterior; this method is summarised in algorithm 2.
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Algorithm 2 Assumed Density Smoothing E Step
F

il
te

ri
n

g



• Compute first filter posterior p(x1 | y1, θ)

• For t = 2 : T :

– Time update: Compute moments (µt|t−1, Σt|t−1, Ct−1,t|t−1) for the pairwise joint Gaussian
approximation, equation 3.93, qjoint(xt−1, xt | y1:t−1, θ), using equations 1.28 to 1.30

– Measurement correction: Compute approximate filter distribution (equation 3.87),

qfilter(xt | y1:t, θ) = N
(
xt; µt|t, Σt|t

)

S
m

o
ot

h
in

g


• Last smoothing posterior p(xT | y1:T , θ) is given by last filter posterior

• For t = T − 1 : 1:

– Compute moments (µt|T , Σt|T , Ct,t+1|T ) for joint smoothing Gaussian approximation, using
equations 3.96 and 3.97

It was stated earlier that this method suffers from a serious weakness and we will now demonstrate

this. The weakness arises from the use of the joint Gaussian distribution calculated during the forward

filtering pass (equation 3.93) in the backward sweep (recall that we cannot compute the distribution

on a GP input for a given output distribution, hence we had to reuse the joint distribution). The

approximation of a joint Gaussian distribution implies an implicit linearisation of the GP transition

function: a linear relationship exists between xt−1 and xt under the filter distribution and the time-

update distribution. It is straightforward to find the parameters of this linear relationship: let,

xt−1 = Axt + b + ε′t−1

ε′t−1 ∼ N (0, Σε′)
(3.98)

then,

p(xt−1, xt) = N
([

xt−1

xt

]
;

[
Aµt|t−1 + b

µt|t−1

]
,

[
AΣt|t−1A

T + Σε′ AΣt|t−1

Σt|t−1A
T Σt|t−1

])
(3.99)

By comparing the covariance terms in equations 3.93 and 3.99 we can find A,

A = Ct−1,t|t−1 Σ−1
t|t−1 = Jt−1 (3.100)

from the means,

b = µt−1|t−1 − Jt−1 µt|t−1 (3.101)

and finally,

Σε′ = Σt−1|t−1 − Jt−1 Σt|t−1 J
T
t−1 (3.102)

This linearisation is more complex than that used by the EKF, as it takes into account the whole

distribution qfilter(xt−1 | y1:t−1, θ) rather than just the mean. However, it is still a linearisation about

the filter distribution qfilter(xt−1 | y1:t−1, θ). In the backward sweep we use this linearisation to compute

the approximate smoothing distribution qsmooth(xt−1 | y1:T ,θ) from the smoothing distribution at the
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subsequent time step, despite the fact that qsmooth(xt−1 | y1:T ,θ) maybe very far away from qfilter(xt−1 |
y1:t−1, θ), the site of the linearisation.

Figure 3.15 shows how this reuse of the linearisation can lead to poor results. The top plot shows the

time update in a particular filter step; the bottom plot shows the corresponding smoothing step. Reuse

of the linearisation (shown by the magenta line) pushes the smoothing distribution at t − 1 beyond

the peak in the transition function. Furthermore, the covariance between the two adjacent smoothing

states, C [xt−1,xt | y1:T , θ], is also based on the linearisation. In the case of figure 3.15 this results in

the covariance having the wrong sign. Note that it is the presence of process noise which is causing the

backward linearisation to be steeper than one would expect from the shape of the transition function.

If the process noise level is reduced then the smoothing distribution is pushed even further along the

x-axis.

One simple adaptation we could make to reduce the problem is to iterate the filtering/smoothing

sweeps multiple times and to introduce a damping factor. For many cases these steps will mitigate

the effect of the problem described above; however, this is not guaranteed and equally, there will be

many cases where the problem persists.

3.6.2 E Step using Expectation Propagation

We can completely remove the weakness described in the previous section, and hence greatly improve

the GPIL (Gaussian Process Inference and Learning (Turner et al., 2010)) algorithm, by using Expec-

tation Propagation (EP) (Minka, 2001) to compute the approximate posterior. EP has been applied for

inference in nonlinear dynamical systems previously, for example (Ypma and Heskes, 2005; Yu et al.,

2006). Recent work by Deisenroth and Mohamed (2012) applied EP to Gaussian Processes transition

functions, although the authors focus purely on inference and do not tackle parameter learning. Here

we modify their EP approach and combine it with the M step from GPIL.

We start by first applying belief propagation to the state space model but show that we cannot

compute the required messages exactly. We then explain how EP can be used as an approximation.

Belief propagation (BP) (Pearl, 1988) is a message passing algorithm which can be used for inference in

Bayesian networks. The messages themselves are (potentially unnormalised) probability distributions

and are computed according to a particular formula, explained below. The messages are passed

between factors and variables in a factor graph until convergence is reached. For trees, such as the

state space model we are considering in this chapter, BP is an exact algorithm, which makes it very

attractive. Unfortunately, we cannot compute the true messages (which will be denoted α∗ and β∗

here) and hence we must use an approximation: expectation propagation.

We can factorise the complete likelihood as,

p(x1:T , y1:T | θ) =

T∏
t=1

ht (3.103)

ht =

 p(x1, y1 | θ) for t = 1

p(xt, yt | xt−1,θ) otherwise
(3.104)

which can be represented as a factor graph, as shown in figure 3.16.
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Figure 3.15: Example of poor performance in the GP-ADF based E step due to the reuse of the
linearisation from the filtering sweep in the smoothing sweep. The green GP posterior shows the
current belief over transition functions for a 1D system. The top plot shows, in blue, the filter
distribution at t − 1, the corresponding predictive distribution at time t, and, in red, their joint
distribution. In the bottom plot the red Gaussian shows the smoothed distribution at time t and the
cyan Gaussian the smoothed distribution at t−1 calculated by equation 3.96. The magenta line shows
the backward implicit linearisation.

In belief propagation the message sent from a variable to a factor is the product of messages the

variable has received from all the factors except the factor to which the message will be sent. For

the case where a variable is connected to two factors it is therefore ‘transparent’, merely passing a

message received from one factor on to the other factor. Thus, for simplicity, we can define messages
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h1

x1 xt−1

ht
xt

ht+1

xt+1

hT
xT

y1 yt−1 yt yT

Figure 3.16: Factor graph representation of the state space model. Note, we could equivalently define
the factor graph such that the factors are on the right hand side of the corresponding variable node,
or even define a symmetric version; in all cases the results are the same.

directly between factors, as shown in figure 3.17. We have termed forward messages, that is those

being sent forward in time, α and backward messages β. As the observations are fixed and Gaussian

we do not need to consider messages between the observation nodes and the factors: we can treat the

observations as constants in the factors where they appear.

ht−1 ht ht+1

yt

α(xt−1)

β(xt−1)

α(xt)

β(xt)

Figure 3.17: Messages in the state space model factor graph. The forward messages are specified by
α and the backward by β.

In this setup, the current estimate of the marginal over a hidden state is given by the product of the

two messages at a particular time step,

q(xt | y1:T ) ∝ α(xt)β(xt) (3.105)

The two-slice marginal,

q(xt−1, xt | y1:T ) ∝ α(xt−1)ht(xt−1, yt, xt)β(xt) (3.106)

∝ α(xt−1) p(xt, yt | xt−1)β(xt) (3.107)

∝ α(xt−1) p(xt | xt−1) p(yt | xt)β(xt) (3.108)

As we stated earlier, for trees these estimates will converge to the true posteriors if we can compute

the correct messages. We will now attempt to derive the form of these messages. We will introduce a

superscript asterisk to the message notation to indicate that these are the true messages, as opposed to

the approximate version we will introduce shortly. The rules of belief propagation state that the true

forward message from ht to ht+1, denoted α∗t (xt), is calculated by taking the product of the message
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from ht−1 with the factor potential ht(xt−1, yt, xt), and integrating out xt−1,

α∗t (xt) =

∫
α∗t−1(xt−1)︸ ︷︷ ︸

message ht−1→ht

ht(xt−1, yt, xt)︸ ︷︷ ︸
ht factor potential

dxt−1 (3.109)

= p(yt | xt, θ)

∫
p(xt | xt−1, θ)︸ ︷︷ ︸
GP prediction

α∗t−1(xt−1)︸ ︷︷ ︸
message ht−1→ht

(3.110)

Equation 3.110 once again involves finding the average GP predictive posterior when the test input

is uncertain. As has been stated previously, even if the message α∗t−1(xt−1) is Gaussian distributed

the integral in equation 3.110 will result in a complex distribution over xt, which is certainly not

Gaussian (barring a few exceptional cases, e.g. a linear kernel). This is due to the nonlinearity of the

GP transition function. The corresponding message update equation for βt−1 is

β∗t−1(xt−1) =

∫
β∗t (xt)︸ ︷︷ ︸

message ht+1→ht

ht(xt−1, yt, xt)︸ ︷︷ ︸
ht factor potential

dxt (3.111)

=

∫
β∗t (xt) p(xt | xt−1, θ)︸ ︷︷ ︸

GP prediction

p(yt | xt, θ) dxt (3.112)

If β∗t is Gaussian distributed then equation 3.112 can be solved due to the linear observation model:

first we combine the transition and observation using their joint Gaussianity,

p(xt | xt−1, yt, θ) = N
(
xt; µt|xy, Σt|xy

)
µt|xy = m(xt−1) + (s(xt−1) + Σε)C

T
(
C (s(xt−1) + Σε)C

T + Σν
)−1

(yt − Cm(xt−1))

Σt|xy = s(xt−1) + Σε − (s(xt−1) + Σε)C
T
(
C (s(xt−1) + Σε)C

T + Σν
)−1

C (s(xt−1) + Σε)

=
(

(s(xt−1) + Σε)
−1

+ CTΣ−1
ν C

)−1

(3.113)

then equation 3.112 is just the normalisation constant of the product of two Gaussians,

β∗t−1(xt−1) = |Σt|xy + Σβ |−1/2 exp

(
−1

2
(µt|xy − µβ)T (Σt|xy + Σβ)−1(µt|xy − µβ)

)
(3.114)

However, once again, this is a complex distribution (this time in xt−1) and is certainly not Gaussian –

note the presence of xt−1 inside the inverse in equation 3.114. Therefore, we cannot solve the required

update equations for the α and β messages, even if we start with Gaussian messages; thus we need to

use an approximate inference scheme. Here we look at using expectation propagation (EP).

In EP, each of the messages are approximated by an exponential family distribution, here a Gaus-

sian.

αt(xt) ∝ N
(
xt; µαt , Σαt

)
≈ α∗t (xt)

βt(xt) ∝ N
(
xt; µβt , Σβt

)
≈ β∗t (xt)

(3.115)

Note that the messages do not need to normalise, hence the proportionality in equation 3.115. Fur-

thermore, they do not even need to be ‘proper’ Gaussians in that they can have non-positive defi-

nite covariance matrices so long as any expressions which are distributions (for example the product

αt(xt)βt(xt)) do have valid covariance matrices.
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Suppose message mi is a function of xi. Under expectation propagation, we update message mi using

the following steps,

1. Compute the ‘cavity distribution’ q(xi | y1:T )\mi . This is the distribution at the receiving variable

node without using message mi

2. Compute the first and second moments of the true message, m∗i , multiplied by the cavity distri-

bution

µ̃i = E
[
m∗i q(xt | y1:T , θ)\mi

]
, Σ̃i = V

[
m∗i q(xt | y1:T , θ)\mi

]
(3.116)

3. Using the computed moments, project the distribution onto the exponential family, here as

Gaussian. This is done by setting the moments of the approximating Gaussian to the computed

values, ignoring the presence of any higher order moments in the true distribution. We will

denote this operation using ‘proj{.}’

4. Find the updated message by dividing out the cavity distribution

A fundamental step in EP is that we do not project the true message m∗i directly to an approximating

distribution but rather the product of the true message and the cavity distribution. This usually leads

to a more accurate approximation as the message is approximated in the context in which it will be

used.

Recall that the latent state posteriors are given by,

q(xt | y1:T , θ) ∝ αt(xt)βt(xt) (3.117)

thus the cavity distribution for message αt is just βt and vice versa for βt,

q\αt(xt | y1:T , θ) = βt; q\βt(xt | y1:T , θ) = αt (3.118)

We can therefore write the EP message update equations as,

αt(xt) ∝
proj

{
α∗t (xt) q

\αt(xt | y1:T , θ)
}

q\αt(xt | y1:T , θ)
(3.119)

∝ proj
{
p(yt | xt, θ)

∫
p(xt | xt−1, θ)αt−1(xt−1) dxt−1 βt(xt)

}
βt(xt)

(3.120)

βt−1(xt−1) ∝
proj

{
β∗t−1 q

\βt−1(xt−1 | y1:T , θ)
}

q\βt−1(xt−1)
(3.121)

∝ proj
{∫

p(xt | xt−1, θ) p(yt | xt, θ)βt(xt) dxt αt−1(xt−1)
}

αt(xt−1)
(3.122)

where we substituted in equations 3.110 and 3.112 for the true messages. For the projection step

we need the moments of p(yt | xt, θ) β(xt)
∫
p(xt | xt−1, θ)αt−1(xt−1) dxt−1 and αt−1(xt−1)

∫
p(xt |

xt−1, θ) p(yt | xt, θ)βt(xt) dxt. From the rules of belief propagation we can recognise these equations

as the EP approximations to the smoothing marginals,

Zt q
EP
smooth(xt | y1:T , θ) = p(yt | xt, θ) β(xt)

∫
p(xt | xt−1, θ)αt−1(xt−1) dxt−1 (3.123)
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Zt−1 q
EP
smooth(xt−1 | y1:T , θ) = αt−1(xt−1)

∫
p(xt | xt−1, θ) p(yt | xt, θ)βt(xt) dxt (3.124)

where Z is the normalising constant, see equation 3.137. Thus,

αt(xt) ∝
proj

{
qEP
smooth(xt | y1:T , θ)

}
βt(xt)

(3.125)

βt−1(xt−1) ∝ proj
{
qEP
smooth(xt−1 | y1:T , θ)

}
αt(xt−1)

(3.126)

We will write the desired, first and second moments of equations 3.123 and 3.124 as µEP
t|T , ΣEP

t|T , µEP
t−1|T ,

and ΣEP
t−1|T respectively. Unfortunately, none of these moments can be computed analytically. We can

approximate the required moments by either using further Gaussian moment-matching, as was done

in Deisenroth and Mohamed (2012), or by using sampling. These approaches are discussed in the

following sections.

The final step in equations 3.120 and 3.122 is to divide out the other message. As we have projected

the numerator onto a Gaussian distribution this is the ratio of two Gaussians, which is another

(unnormalised) Gaussian, the moments of which can be computed in closed form,

Σαt =
(

(ΣEP
t|T )−1 − Σ−1

βt

)−1

, µαt = Σαt

(
(ΣEP

t|T )−1 µEP
t|T − Σ−1

βt
µβt

)
(3.127)

Σβt−1
=
(

(ΣEP
t−1|T )−1 − Σ−1

αt−1

)−1

, µβt−1
= Σβt−1

(
(ΣEP

t−1|T )−1 µEP
t−1|T − Σ−1

αt−1
µαt−1

)
(3.128)

It is possible that the resulting Gaussian messages can have negative variance. This is not necessarily

a problem as the messages need not be proper distributions, but we must ensure that the expressions

which are proper distributions, e.g. the smoothing marginal α(xt)β(xt), have positive variance. If an

update would violate this condition, common options are to truncate the message in such a way as to

remove the negative variance, to skip the update entirely, or to use a partial update (damping). We

generally found the last of these options to be preferable and so use it for our experiments.

EP with moment-matching

In this section we look at solving the EP updates approximately by making further moment-matching

approximations, as per Deisenroth and Mohamed (2012). We shall use the letters ‘mm’ in superscripts

to label specific distributions/moments under this framework. The integral in the update for αt,

equation 3.120, is the familiar average of a GP prediction over a Gaussian distributed test input. As

we know how to compute the moments of the result of this integral, we could project the integral to

a Gaussian as we have done previously (e.g. equation 3.81),

qα(xt | αt−1, θ) ≈
∫
p(xt | xt−1, θ)αt−1(xt−1) dxt−1 (3.129)

where,

qα(xt | αt−1, θ) = N (xt; µt|αt−1
, Σt|αt−1

) (3.130)
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We then just need to find the moments of our new EP smoothing approximation,

Z̃ qEPmm
smooth(xt | y1:T , θ) = p(yt | xt, θ)︸ ︷︷ ︸

Gaussian observation

βt(xt)︸ ︷︷ ︸
Gaussian message

qα(xt | αt−1, θ)︸ ︷︷ ︸
Moment-matched Gaussian

(3.131)

which has an identical form to the integrand in equation 3.112, and thus is analytically tractable

(Z̃ is the new normalisation constant – see equation 3.143). The result of equation 3.131 is another

Gaussian,

qEPmm
smooth(xt | y1:T , θ) = N

(
xt; µ

EPmm
t|T , ΣEPmm

t|T

)
(3.132)

which means the projection step doesn’t have any effect. This has an unfortunate consequence when we

use the approximation, equation 3.131, in the equation for the forward message (equation 3.120),

αt(xt) ∝
proj {p(yt | xt, θ)βt(xt) qα(xt | αt−1, θ)}

βt(xt)
=

βt(xt) q(xt, yt | αt−1, θ)

βt(xt)

⇒ αt(xt) = q(xt | yt, αt−1, θ) (3.133)

the backward message βt cancels out. We can find an expression for the new forward message,

αt(xt) = N
(
xt; µαt , Σαt

)
µαt = µt|αt−1

+ Σt|αt−1
CT
(
C Σt|αt−1

CT + Σν

)−1 (
yt − Cµt|αt−1

)
Σαt = Σt|αt−1

− Σt|αt−1
CT
(
C Σt|αt−1

CT + Σν

)−1

CΣt|αt−1

(3.134)

however, we are no longer approximating the message in the context of the cavity distribution as

required by EP. In fact the forward message has no dependence at all on the backward message,

which means that the approximation cannot be improved by running several EP steps - the posterior

approximation is complete after a single forward and backward pass.

Given that, under this approximation, the forward messages are independent of the backward mes-

sages they can be interpreted as the same approximate filter distributions as in the GP-ADF based

approach,

αt(xt) = qfilter(xt | y1:t, θ) (3.135)

This also leads to an equality between the time update distribution and the approximate distribution

from equation 3.129,

qα(xt | αt−1, θ) = qtime(xt | y1:t−1,θ) (3.136)

It is hard to see from equation 3.122 what approximation to make in order to compute the backward

message update. An alternative method for computing the required moments is to consider the

derivatives of the ‘log partition function’ - the normalising constant of the term we are trying to

project. For the backward message this means integrating the term inside the projection in equation

3.122 over xt−1 as well as over xt,

Z =

∫
αt−1(xt−1)

∫
p(xt | xt−1, θ) p(yt | xt, θ)βt(xt) dxt dxt−1 (3.137)

We can find the moments that we need for the projection step in the backward message update by
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taking the derivative of the log partition function, logZ, which acts as a moment generating function,

w.r.t. the moments of the relevant cavity distribution — in this case αt−1. To see this, consider the

derivative of Z w.r.t. the mean of αt−1,

∂Z

∂µαt−1

=

∫
p(yt | xt, θ)βt(xt)

∫
p(xt | xt−1, θ)

∂αt−1(xt−1)

∂µαt−1

dxt−1 dxt

=

∫
p(yt | xt, θ)βt(xt)

∫
p(xt | xt−1, θ) Σ−1

αt−1

(
xt−1 − µαt−1

)
αt−1(xt−1) dxt−1 dxt

= Σ−1
αt−1

∫
p(yt | xt, θ)βt(xt)

∫
xt−1 p(xt | xt−1, θ) αt−1(xt−1) dxt−1 dxt

− Σ−1
αt−1

µαt−1

∫
p(yt | xt, θ)βt(xt)

∫
p(xt | xt−1, θ) αt−1(xt−1) dxt−1 dxt

= Z Σ−1
αt−1

(
E [xt−1] − µαt−1

)
(3.138)

⇒ E [xt−1] =
1

Z
Σαt−1

∂Z

∂µαt−1

+ µαt−1

= Σαt−1

∂ logZ

∂µαt−1

+ µαt−1
(3.139)

and similarly for the variance,

∂2Z

∂µαt−1
∂µTαt−1

=

∫
p(yt | xt, θ)βt(xt)

∫
p(xt | xt−1, θ)

∂2αt−1(xt−1)

∂µαt−1
∂µTαt−1

dxt−1 dxt

=

∫
p(yt | xt, θ)βt(xt)

∫
p(xt | xt−1, θ)

Σ−1
αt−1

(xt−1 − µαt−1
) (xt−1 − µαt−1

)T Σ−1
αt−1

αt−1(xt−1) dxt−1 dxt

− Σ−1
αt−1

∫
p(yt | xt, θ)βt(xt)

∫
p(xt | xt−1, θ) αt−1(xt−1) dxt−1 dxt

= Z
(

Σ−1
αt−1

(
V [xt−1] +

(
E[xt−1] − µαt−1

) (
E[xt−1] − µαt−1

)T)
Σ−1
αt−1

− Σ−1
αt−1

)
(3.140)

⇒ V [xt−1] =
1

Z
Σαt−1

∂2Z

∂µαt−1
∂µTαt−1

Σαt−1
−
(
E[xt−1] − µαt−1

) (
E[xt−1] − µαt−1

)T
+ Σαt−1

= Σαt−1

∂2 logZ

∂µαt−1
∂µTαt−1

Σαt−1
+ Σαt−1

(3.141)

as,

∂2 logZ

∂µαt−1
∂µTαt−1

=
1

Z

∂2Z

∂µαt−1
∂µTαt−1

− ∂Z

∂µαt−1

∂Z

∂µαt−1

T

=
1

Z

∂2Z

∂µαt−1
∂µTαt−1

− Σ−1
αt−1

(
E[xt−1] − µαt−1

) (
E[xt−1] − µαt−1

)T
Σ−1
αt−1

(3.142)

Thus we need to be able to find the derivatives of logZ. Unfortunately, equation 3.137 is intractable.

However, by swapping the order of integration we can make the same moment-matching approximation

as before (equation 3.129),

Z =

∫
p(yt | xt, θ)βt(xt)

∫
p(xt | xt−1, θ)αt−1(xt−1) dxt−1 dxt

≈
∫
p(yt | xt, θ)βt(xt) qα(xt | αt−1, θ)︸ ︷︷ ︸

Moment-matched Gaussian

dxt , Z̃ (3.143)
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Z̃ is the same normalising constant as in equation 3.131 and it is tractable to compute: first we use

Bayes rule,

Z̃ =

∫
p(yt | xt, θ)βt(xt) qα(xt | αt−1, θ) dxt = p(yt | βt, θ)

∫
p(xt | yt, βt, θ) qα(xt | αt−1, θ) dxt

(3.144)

where,

p(yt | βt, θ) = N
(
yt; C µβt , C ΣβtC

T + Σν

)
(3.145)

p(xt | yt, βt, θ) = N
(
yt; µt|yβ , Σt|yβ

)
(3.146)

µt|yβ = µβt + ΣβtC
T (C ΣβtC

T + Σν)−1(yt − C µβt) (3.147)

Σt|yβ = Σβt − ΣβtC
T
(
C ΣβtC

T + Σν
)−1

C Σβt (3.148)

Z̃ is then given by the product of p(yt | βt, θ) with the normalising constant of the product of the two

Gaussians in the integral. This gives,

logZ ≈ log Z̃ = − log 2π − 1

2
log
∣∣C ΣβtC

T + Σν
∣∣ − 1

2
(y − C µβt)

T
(
C ΣβtC

T + Σν
)−1

(y − C µβt)

− 1

2
log
∣∣∣Σt|yβ + Σt|αt−1

∣∣∣ − 1

2
(µt|yβ − µt|αt−1

)T
(

Σt|yβ + Σt|αt−1

)−1

(µt|yβ − µt|αt−1
)

(3.149)

Before we can proceed with taking the derivatives of log Z̃, we repeat the observation from Deisenroth

and Mohamed (2012),

When computing EP updates using the derivatives [equations 3.139 and 3.141], it is crucial

to explicitly account for the implicit linearization assumption in the derivatives – otherwise,

the EP updates are inconsistent.

This is in reference to the relationship between the αt−1 message and the matched Gaussian qα(xt |
αt−1, θ). Specifically,

W ,
∂µt|αt−1

∂µαt−1

,
∂Σt|αt−1

∂µαt−1

= 0 (3.150)

We can now take the required derivatives of the approximate log partition function,

∂ log Z̃

∂µαt−1

= WT
(

Σt|yβ + Σt|αt−1

)−1

(µt|yβ − µt|αt−1
) (3.151)

∂2 log Z̃

∂µαt−1
∂µTαt−1

= −WT
(

Σt|yβ + Σt|αt−1

)−1

W (3.152)

Substituting these derivatives into equation 3.139 gives,

µEPmm
t−1|T = µαt−1

− Σαt−1
WT

(
Σt|yβ + Σt|αt−1

)−1

(µt|αt−1
− µt|yβ) (3.153)

and into equation 3.141

ΣEPmm
t−1|T = Σαt−1

− Σαt−1
WT

(
Σt|yβ + Σt|αt−1

)−1

W Σαt−1
(3.154)
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These equations look very similar to the smoothing equations for the GP-ADF based algorithm (equa-

tion 3.96). We can explore this further: if we use the equalities from equations 3.135 and 3.136,

µαt−1
= µt−1|t−1, Σαt−1

= Σt−1|t−1 (3.155)

µt|αt−1
= µt|t−1, Σt|αt−1

= Σt|t−1 (3.156)

Further, if x is Gaussian, x ∼ N (µ,Σ), then when taking the derivative of an expectation over x w.r.t.

µ,

∂Ex[f(x)]

∂µ
= Σ−1 C[x, f(x)] (3.157)

⇒W = Σ−1
αt−1

Ct−1,t|t−1 (3.158)

Finally, note that from the EP approximation to the smoothed marginal in equation 3.131,

ΣEPmm
t|T =

(
Σ−1
t|yβ + Σ−1

t|αt−1

)−1

⇒
(

Σt|yβ + Σt|αt−1

)−1

= Σ−1
t|t−1

(
Σt|t−1 − ΣEPmm

t|T

)
Σ−1
t|t−1

µEPmm
t|T = ΣEPmm

t|T

(
Σ−1
t|yβ µt|yβ + Σ−1

t|αt−1
µt|αt−1

) (3.159)

This gives,

ΣEPmm
t−1|T = Σαt−1

− Σαt−1
WT

(
Σyβ + Σt|αt−1

)−1

W Σαt−1

= Σt−1|t−1 + Ct−1,t|t−1 Σ−1
t|t−1

(
ΣEPmm
t|T − Σt|t−1

)
Σ−1
t|t−1C

T
t−1,t|t−1

= Σt−1|t−1 + Jt−1

(
ΣEPmm
t|T − Σt|t−1

)
JTt−1 (3.160)

µEPmm
t−1|T = µαt−1

− Σαt−1
WT

(
Σt|yβ + Σt|αt−1

)−1

(µt|αt−1
− µt|yβ)

= µt−1|t−1 + Ct−1,t|t−1Σ−1
t|t−1 Σt|t−1

(
Σt|yβ + Σt|αt−1

)−1

(Σt|yβ Σ−1
t|yβ µt|yβ − Σt|t−1 Σ−1

t|t−1 µt|αt−1
)

= µt−1|t−1 + Jt−1

[
Σt|t−1

(
Σt|yβ + Σt|t−1

)−1
Σt|yβ Σ−1

t|yβ µt|yβ

+
(

Σt|t−1 − Σt|t−1

(
Σt|yβ + Σt|t−1

)−1
Σt|t−1

)
Σ−1
t|t−1µt|t−1 − µt|t−1)

]
= µt−1|t−1 + Jt−1

[
ΣEPmm
t|T

(
Σ−1
t|yβ µt|yβ + Σ−1

t|t−1 µt|t−1

)
− µt|t−1)

]
= µt−1|t−1 + Jt−1

(
µEPmm
t|T − µt|t−1

)
(3.161)

We showed earlier that the forward sweep of the ‘EP’ algorithm of Deisenroth and Mohamed (2012)

led to an identical filter distribution as the GP-ADF based filter of Turner et al. (2010). We have now

shown that the smoothing updates are also identical to the the GP-ADF based smoothing equations.

Thus we have shown that the two seemingly different algorithms actually give rise to an identical

approximation to the latent state posterior. This means that use of the algorithm in Deisenroth and

Mohamed (2012) does not mitigate the problems with the linearisation described earlier. However,

this is not a property of EP but rather the moment-matching approximation that was used to solve

the EP updates. If we used a different method for updating the messages this problem could be
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avoided.

EP using sampling

Rather than use moment-matching to find approximate moments of the smoothing distributions re-

quired for EP, we could use sampling approaches instead. These are likely to give a much more accurate

approximation to the required moments, although they may be computationally slower. That said, in

the E step of the EM algorithm we do not require any derivatives and so sampling is much more com-

putationally feasible here than it was in the direct approach. In this section we present three different

sampling schemes for finding the moments: simple Monte Carlo (designated by ‘mc’ in superscripts),

importance sampling (‘is’), and Markov Chain Monte Carlo (‘mcmc’).

Recall from equations 3.125 and 3.126 that, to update the EP messages, we need to find the first two

moments of the smoothing marginals, which we can write,

Zt q
EP
smooth(xt | y1:T , θ) = p(yt | βt, θ)︸ ︷︷ ︸

Gaussian; eq. 3.145

p(xt | yt, βt, θ)︸ ︷︷ ︸
Gaussian; eq. 3.146

∫
p(xt | xt−1, θ)︸ ︷︷ ︸
GP prediction

αt−1(xt−1)︸ ︷︷ ︸
Gaussian message

dxt−1 (3.162)

Zt−1 q
EP
smooth(xt−1 | y1:T , θ) = p(yt | βt, θ)αt−1(xt−1)

∫
p(xt | xt−1, θ) p(xt | yt, βt, θ) dxt (3.163)

Once we have these moments we can run EP by plugging them straight into equations 3.127 and 3.128.

We can’t find the moments of the distributions in equations 3.162 and 3.163 analytically due to the

GP prediction term and so we use sampling. We start with a simple Monte Carlo scheme.

Simple Monte Carlo

To compute the moments of the first smoothing distribution, equation 3.162, note that for a given xt−1

every term is either a constant or (exactly) a Gaussian in xt, excluding αt−1, which is a Gaussian in

xt−1. As moments of products of Gaussians can be computed analytically, a straightforward sampling

approach is to sample multiple values of xt−1 from αt−1(xt−1) and then average together the resulting

moments. That is, first we sample from αt−1,

xit−1 ∼ αt−1(xt−1) = N
(
xt−1; µαt−1

, Σαt−1

)
for i = 1, . . . , N (3.164)

then we define,

p(yt | βt, θ) p(xt | yt, β) p(xt | xit−1, θ) = zi p(xt | yt, xit−1, βt, θ) = ziN
(
xt; µ

i
t, Σit

)
(3.165)

with,

µit =
(

Σ−1
t|yβ + s(xit−1)−1

)−1 (
Σ−1
t|yβ µt|yβ + s(xit−1)−1 m(xit−1)

)
(3.166)

Σit =
(

Σ−1
t|yβ + s(xit−1)−1

)−1

(3.167)
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and zi as the normalising constant (integrating equation 3.165 over xt for a given xit−1 rather than

integrating over both xt and xt−1 as for Z),

zi = p(yt | βt, θ)

∫
p(xt | yt, β) p(xt | xit−1, θ) dxt

= p(yt | βt, θ) (2π)−D/2
∣∣Σt|yβ + s(xit−1)

∣∣−1/2

exp

(
−1

2

(
µt|yβ − m(xit−1)

)T (
Σt|yβ + s(xit−1)

)−1
(
µt|yβ − m(xit−1

))
(3.168)

where p(yt | βt, θ), µt|yβ, and Σt|yβ are defined in equations 3.145-3.148. We can interpret zi as the

value of p(xit−1 | yt, β, θ), which is a measure of how well xit−1 ‘agrees’ with the observed data points

from times t to T . In other words, we sample a value of xt−1 based on the information from time 1 to

t−1, and then weight these samples using the information from the remaining observations. With this

setup we can compute a sample-based approximation to the first moment of the smoothing marginal

in equation 3.162 using,

µEP
t|T = p(yt | βt, θ)

∫
xt p(xt | yt, β)

∫
p(xt | xt−1, θ)αt−1(xt−1) dxt−1 dxt

= p(yt | βt, θ)

∫
αt−1(xt−1)

∫
xt p(xt | yt, β) p(xt | xt−1, θ) dxt dxt−1

≈ 1

N

N∑
i=1

∫
xt z

i p(xt | yt, xit−1, θ) dxt

=
1

N

N∑
i=1

zi µit , µEPmc
t|T (3.169)

For the variance,

ΣEP
t|T = p(yt | βt, θ)

∫ (
xt − µEP

t|T

) (
xt − µEP

t|T

)T
p(xt | yt, βt, θ)

∫
p(xt | xt−1, θ)αt−1(xt−1) dxt−1 dxt

≈ 1

N

N∑
i=1

zi
∫ (

xt − µEPmc
t|T

) (
xt − µEPmc

t|T

)T
p(xt | yt, xit−1, θ) dxt

=
1

N

N∑
i=1

zi
∫
xt x

T
t p(xt | yt, xit−1, θ) dxt −

1

N

N∑
i=1

zi
∫
xt p(xt | yt, xit−1, θ) dxt (µEPmc

t|T )T

− µEPmc
t|T

1

N

N∑
i=1

zi
∫
xTt p(xt | yt, xit−1, θ) dxt + µEPmc

t|T (µEPmc
t|T )T

1

N

N∑
i=1

zi
∫

p(xt | yt, xit−1, θ) dxt

=
1

N

N∑
i=1

zi
(
Σit + µit (µit)

T
)
− µEPmc

t|T (µEPmc
t|T )T , ΣEPmc

t|T (3.170)

Similarly for the moments at t− 1

µEP
t−1|T = p(yt | βt, θ)

∫
xt−1 αt−1(xt−1)

∫
p(xt | xt−1, θ) p(xt | yt, β) dxt dxt−1

≈ 1

N

N∑
i=1

zi xit−1 , µEPmc
t−1|T (3.171)
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ΣEP
t−1|T = p(yt | βt, θ)

∫ (
xt−1 − µEP

t−1|T

) (
xt−1 − µEP

t−1|T

)T
αt−1(xt−1)

∫
p(xt | xt−1, θ) p(xt | yt, β) dxt dxt−1

≈ 1

N

N∑
i=1

zi
(
xit−1 − µEPmc

t−1|T

) (
xit−1 − µEPmc

t−1|T

)T
, ΣEPmc

t−1|T (3.172)

Using these moments we can compute the message updates as before: by plugging the computed

moments straight into equations 3.127 and 3.128. These Monte Carlo moments will be good approxi-

mations so long as the sampling distribution αt−1(xt−1) is a good approximation to the true smoothing

marginal on xt−1, p(xt−1 | y1:T , θ), which is the region where z will take on large values. In other words,

if αt−1(xt−1) is far from p(xt−1 | y1:T , θ) then the majority of {zi} will have negligible values and the

moment approximations will be dominated by only a handful of samples, which will lead to a poor

approximation.

Importance sampling

Recall that the approximate single-slice smoothing marginals are given by the product of the messages,

qEP
smooth(xt−1 | y1:T , θ) ∝ αt−1(xt−1)βt−1(xt−1). Therefore, rather than sampling xt−1 directly from αt−1,

a better sample approximation to the smoothing moments is given by using the current values of both

αt−1 and βt−1 to compute the sampling distribution. In this way we draw samples from the current

estimate of the true smoothing marginal, rather than just from the estimated filter marginal. As

this new sampling distribution does not naturally appear in equations 3.162 and 3.163 we must use

a corrective weight to ensure we still compute an unbiased estimate of the true moments. This is an

application of importance sampling. Of course, this approach is only different from the previous simple

Monte Carlo method if we already have a setting for both the forward α and backward β messages. This

usually means that we must have already completed at least one forward and backward sweep.

Redefining the samples xit−1 (and ‘recomputing’ zi, µit, and Σit equivalently),

xit−1 ∼ N
(
xt−1; µαβt−1

, Σαβt−1

)
∝ αt−1(xt−1)βt−1(xt−1) for i = 1, . . . , N (3.173)

µαβt−1
= Σβt−1

(
Σαt−1

+ Σβt−1

)−1

µαt−1
+ Σαt−1

(
Σαt−1

+ Σβt−1

)−1

µβt−1
(3.174)

Σαβt−1
= Σβt−1

(
Σαt−1

+ Σβt−1

)−1

Σαt−1
(3.175)

we have that,

µEP
t|T = p(yt | βt, θ)

∫ Sampling distribution︷ ︸︸ ︷
αt−1(xt−1)βt−1(xt−1)

βt−1(xt−1)︸ ︷︷ ︸
Correction factor

∫
xt p(xt | yt, β) p(xt | xt−1, θ) dxt dxt−1

≈ 1

N

N∑
i=1

zi

βt−1(xit−1)
µit , µEPis

t|T (3.176)
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Notice that we have effectively multiplied by
βt−1(xt−1)

βt−1(xt−1) . Similarly, for the other moments,

ΣEPis
t|T ,

1

N

N∑
i=1

zi

βt−1(xit−1)

(
Σit + µit (µit)

T
)
− µEPis

t|T (µEPis
t|T )T (3.177)

µEPis
t−1|T ,

1

N

N∑
i=1

zi

βt−1(xit−1)
xit−1 (3.178)

ΣEPis
t−1|T ,

1

N

N∑
i=1

zi

βt−1(xit−1)

(
xit−1 − µEPis

t−1|T

) (
xit−1 − µEPis

t−1|T

)T
(3.179)

Note that as both the messages are Gaussian the moments of the importance sampling distribution,

µαβt−1
, Σαβt−1

, are given by the standard equations for the moments of a product of Gaussians. This

importance sampling scheme requires a previous forward and backward sweep to set the values of the

messages; in the first sweep we must still use the simple Monte Carlo scheme outline previously. If this

sweep leads to messages which poorly approximate the smoothing marginal then using importance

sampling may not provide a significant benefit. To combat this we could use a MCMC sampling

scheme, which will actively seek areas of high probability.

Markov Chain Monte Carlo

In MCMC we do not have a fixed sampling distribution, rather we draw the samples one-by-one, using

the last sample drawn to determine where to sample from next — hence forming a Markov chain. At

each step a new sample is first proposed and then either accepted or rejected based on its relative

probability under the distribution we are sampling from compared to the probability of the previously

accepted point. In this way the Markov chain seeks out areas of high probability, which can be very far

away from the initial distribution. Thus we can use MCMC to draw samples which cover the support

of a distribution, even if we have a very poor initial estimate of where the relevant probability mass

is. To define a MCMC sampler we need to choose how to draw the first sample and also what the

proposal distribution is, that is, the distribution from which potential new samples are drawn, and

which is parametrised by the last sample. A sensible choice for the first sample is the mean of the

current approximation to the smoothing marginal,

x1
t−1 = µαβt−1

(3.180)

We can further use the current smoothing approximation by setting the proposal density to be a

Gaussian centred on the current sample and with a variance equal to a scaled version of Σαβt−1
,

p(xi+1
t−1 | xit−1) = N

(
xi+1
t−1; xit−1, cΣαβt−1

)
(3.181)

this can help the MCMC algorithm by using the current estimate of the covariance structure in the

proposal density. The acceptance probability is given by,

p(accept | xi+1
t−1, x

i
t−1) =

p(xi+1
t−1 | xit−1, yt, θ)

p(xit−1 | xi−1
t−1, yt, θ)

=
αt−1(xi+1

t−1) zi+1

αt−1(xit−1) zi
(3.182)
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This leads to an MCMC approximation to the moments,

µEPmcmc
t|T ,

1

N

N∑
i=1

µit (3.183)

ΣEPmcmc
t|T ,

1

N

N∑
i=1

(
Σit + µit (µit)

T
)
− µEPmcmc

t|T (µEPmcmc
t|T )T (3.184)

µEPmcmc
t−1|T ,

1

N

N∑
i=1

xit−1 (3.185)

ΣEPmcmc
t−1|T ,

1

N

N∑
i=1

(
xit−1 − µEPmcmc

t−1|T

) (
xit−1 − µEPmcmc

t−1|T

)T
(3.186)

Both the simple Monte Carlo scheme and the importance sampling scheme allow all the samples to

be drawn at once. In MCMC however the samples are drawn sequentially. As we must make a GP

prediction for each sample drawn the MCMC scheme is likely to be a lot slower than the other two

schemes as it cannot make use of parallel computation as the other schemes can. On the other hand,

it should be able to find a good approximation to the moments even if the current approximation to

the marginals is poor.

Algorithm 3 Expectation Propagation with Sampling E Step

• Iterate EP until convergence or for a fixed number of steps

F
or

w
ar

d
s



– For t = 1 : T :

∗ Compute moments of current EP approximation to smoothing posterior at time t

using either simple MC (equations 3.169 & 3.170), IS (equations 3.176 & 3.177), or
MCMC (equations 3.183 & 3.184)

qEP
smooth(xt | y1:T , θ) = N

(
xt; µt|T , Σt|T

)
∗ Divide out the message αt−1 to find moments of new message αt

αt ∝
qEP
smooth(xt | y1:T , θ)

αt−1

B
ac

k
w

ar
d

s



– For t = T : 2, compute βt−1 messages:

∗ Compute moments of current EP approximation to smoothing posterior at time t− 1

using either simple MC (equations 3.171 & 3.172), IS (equations 3.178 & 3.179), or
MCMC (equations 3.185 & 3.186)

qEP
smooth(xt−1 | y1:T , θ) = N

(
xt−1; µt−1|T , Σt−1|T

)
∗ Divide out the message βt to find moments of new message βt−1

βt−1 ∝
qEP
smooth(xt−1 | y1:T , θ)

βt

∗ On last backward pass also compute moments of qEP
smooth(xt−1 | y1:T , θ) and the cross-

covariances C[xt−1,xt | y1:T , θ] for the M step

3.6.3 Comparison of E Steps

In the previous section we presented five different methods for computing an approximation to the

smoothing posterior distribution on the latent states. In this section we compare the five methods
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Figure 3.18: Example comparison of the approximate-analytic EP E step methods (left plot, both
analytic methods give the same results as predicted earlier) with a sample based EP E step (right
plot). The green line shows the true transition function, the shaded region shows two standard
deviations of process noise. The black crosses are the observed transitions, i.e. from yt−1 to yt, and
the blue dots are the latent transitions. The red circles show the Gaussian latent state posteriors: the
red cross shows the location of the mean and the red circle shows the one standard deviation contour.
The blue, true latent state, dots can be seen to have much higher probability under the red latent
state posteriors in the right hand plot; this agrees with the results in table 3.1.

on a number of data sets. First we look at a one dimensional kink function. Figure 3.18 shows the

true transition function and the latent state posterior distributions found by the analytic methods and

the Monte Carlo sampling method. The posterior distributions from the sampling method are visibly

tighter than the posteriors inferred by the approximate-analytic methods. We can find a quantitative

comparison by computing the log probability of the true latent points (blue dots in figure 3.18) under

each of the inferred latent posteriors. The results for doing so for all methods on this dataset are

shown in table 3.1,

Table 3.1: Log probability per data point of the true latent points under the latent state posteriors
inferred by each method. ADS is the assumed density smoothing E step of Turner et al. (2010),
A-EP is the analytic EP algorithm of Deisenroth and Mohamed (2012). We showed that these two
methods are identical and thus we only list one result for them. The remaining three methods are the
sample-based EP approaches, using a simple Monte Carlo scheme, importance sampling, and MCMC
respectively.

ADS/A-EP MC-EP IS-EP MCMC-EP

0.6765 0.9644 0.9790 0.9651
,

The sampling methods significantly outperform the approximate-analytic methods. All three sampling

schemes have a similar performance, with the importance sampling scheme just out-performing the

other two methods. The margin there is small though, compared to the increase in performance

relative to the analytic methods. However, the sampling methods are much less stable than the

approximate-analytic methods and have a number of failure modes. This is highlighted by figure 3.19.
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Figure 3.19: Boxplots of the performance of the analytic and sampling E step methods over 100 test
trajectories. The y-axis is the log likelihood per data point of the true latent states under the inferred
posterior. In over 75% of the test trajectories the sampling methods outperform the analytic methods,
an example of this was shown in table 3.1. However, the figure clearly shows that there are a significant
number of cases where the sampling methods fail and cause the latent states have extremely low log
likelihood.

The first failure mode, which particularly affects the basic MC approach, is where very few (if any)

of the samples drawn have a high weight, that is, a significant value of zi in equation 3.169. In the

sampling literature this is often referred to as a low effective sample size. In the application we are

considering here, it typically occurs when a data point is corrupted by a large amount of observation

noise and thus is far away from where the latent state lies. For example, consider the observation

(black cross) near the point (0, 2) in figure 3.18. The corresponding latent state is the blue dot near

(0, 1). However, the observed value yt suggests that xt−1 should have a value closer to 1 (cast the

value of yt onto the transition function and then down onto the x-axis). For the sake of this argument

let us assume that at the end of the forward sweep the filter posterior on xt−1 has a mean of 0 and a

standard deviation of 0.1. In the MC smoothing step we will draw samples from this filter posterior

and then compute p(xt−1 | yt, βt, θ). But, as we just stated, this will only have high values around

1, which is ten standard deviations away from the mean of the sampling distribution (how close a

sample must get to the projected observation in order to have a ‘high’ value depends on how large the

observation noise is). In this case, sufficient samples achieve a significant weight but there are many

examples where they do not, as the results in figure 3.19 show. Figure 3.20 quantifies this intuition

and shows that the points which are least well predicted by the inferred latent state posteriors are

typically those with smaller effective sample sizes. We can reduce the effect that this has somewhat

by testing the effective sample size and only proceeding with the EP message update if it exceeds

a certain threshold. However, skipping update steps in this way can slow down EP’s convergence,

although this is preferable to accepting a completely erroneous update.

We introduced the importance sampling method to counter this possibility and figure 3.19 shows that

using importance sampling does indeed improve the performance of the sampling algorithm: there

are fewer outliers and those present are of a smaller magnitude. It does not remove the problem
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Figure 3.20: This plot shows how the E step performance (likelihood of true latent point under inferred
posterior) corresponds to the effective sample size of the MC-EP algorithm. There are thirty data
points off the bottom of the plot, which are not directly shown for the sake of clarity. Instead, the line
of blue circles at the bottom of the plot indicate, by their size, the number of data points not shown,
summarised over equally spaced x-axis intervals of width 50.

completely however: during the first forward and backward pass the importance sampling algorithm

the is the same as the simple Monte Carlo algorithm and thus can get off to a poor start. Furthermore,

the importance sampling EP step will only improve over the basic MC step if the current estimate

of the latent state posterior is a good approximation to the true posterior. There is an inevitable

‘chicken and egg’ problem here, which can lead to poor performance in the importance sampling

algorithm. The third sampling EP algorithm discussed above used MCMC to try and find the areas

of high probability. This algorithm is not beholden to the accuracy of the current estimate of latent

state posterior: the chain can potentially move some distance from its initialisation point. However,

setting the proposal distribution is fraught with difficulty. The method we presented used a scaled

version of the current latent state posterior estimate, centred on the previous sample. Unfortunately,

choosing the scale value is hard and it often requires tuning to specific problems and data sets. If

the proposal distribution is too wide then the MCMC algorithm accepts very few points, on the other

hand if the proposal is too narrow then the MCMC chain does very little exploration. Both of these

cases usually lead to a poor sample estimate of the latent state posterior: in particular the variance

is usually dramatically underestimated due to the poor sample diversity. One could perhaps design a

method to adapt the scale of the proposal distribution over multiple EP iterations, which may help

to alleviate this problem.

We now move to a broader test of the E step algorithms. We simulate a number of different nonlinear

dynamical systems, which allows us to record both the true latent states as well as their ‘observed’

versions. We generate a random D-dimensional nonlinear system by drawing ten D-dimensional input

and output points from a zero-mean Gaussian with variance 2I (I is the D×D identity matrix). The

transition function was then set to be a GP with these input/output points as the training matrix.

Strictly, we use D GPs, each mapping from the full input space to a single output dimension. Each of

these GPs is independent of the others and has a separate set of hyperparameters. We also select the
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variance of the process and observation noise in a random manner. The system parameters, for the

eth output dimension, were set as follows,

process noise variance, σ2
ε,e = exp(−2 − 2U)

observation noise variance, σ2
ν,e = exp(−1 − 2U)

squared kernel lengthscales, l2e = D

kernel signal variance, σ2
f,e = exp(−2)

kernel noise variance, σ2
n,e = exp(−4 − 2U)

where each use of U indicates a separate draw from a uniform distribution on the interval [0, 1]. These

values were chosen to generate nonlinear systems with ‘interesting’ dynamics, i.e. those with strong

nonlinearities and non-trivial trajectories. Figure 3.21 shows some sample one dimensional transition

functions generated in this manner and an observed trajectory generated from each system. As we are

using a GP transition function, the transitions contain uncertainty over-and-above the process noise

— the green shaded region in figure 3.21 shows two standard deviations either side of the transition

function mean. This extra uncertainty makes the E step more difficult.
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Figure 3.21: Example randomly generated GP transition functions (top) and some resulting, noisy
trajectories (bottom). The GP transition functions were constructed according to the steps laid out
above.

Each transition function, along with the corresponding observed trajectory was passed to each of the

E step algorithms to perform inference. The performance of sampling methods is often dependent on

the dimension of the state. To test this we generated systems with dimension ranging from one to
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Figure 3.22: Box plots comparing approximate-analytic E-step algorithms on randomly generated
nonlinear systems. The x-axis of each plot is the dimension of the state, varying from a 1D system to
a 10D system. The y-axis is the difference in the log likelihood per data point of the true latent states
between two different algorithms. The difference is found by subtracting the log likelihood per data
point of the columns from the rows; thus a positive number on the y-axis indicates the algorithm for
the row is outperforming the algorithm for the column. Boxes are coloured green/red when 75% of
the data lies above/below zero.

ten. Further, for each dimension we generated ten different random nonlinear systems on which to

test the algorithms. The performance of each algorithm was tested by computing the log likelihood

of the actual latent trajectory under each of the latent state posteriors. Figure 3.22 shows the results

of this experiment.

As one might expect the sampling methods outperform the moment-matching approximation, particu-

larly for lower dimensional systems. The MCMC sampling version does not in general perform as well

as the other two sampling methods, indicating that the Markov chain might be getting stuck.
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Figure 3.23: The first backwards smoothing step using sampling inside EP for an example 2D system.
The left plot shows the filter distribution on xT−1; the middle plot shows the distribution on xT−1

given by conditioning on yT . The third plot shows the result of the smoothing step: the combination
of the previous two plots. The nonlinear GP causes the second and third plots to be non-Gaussian.

However, there is a fundamental problem with using sampling within EP, which is illustrated in figure

3.23. This figure shows the first backwards smoothing update for a two dimensional system. The first

plot shows the current Gaussian distribution on xT−1 given by αT−1(xT−1). The second plot shows the

probability distribution on xT−1 conditioning on the final observation yT . It is clear to see that this is

a very non-Gaussian distribution, which is a result of the nonlinear GP transition function. The third

plot shows the combination of the first two plots to give the smoothing posterior p(xT−1 | y1:T , θ),

which again is non-Gaussian. In EP we now project the final distribution to a Gaussian by using

moment matching. In the example of figure 3.23, the variance of the first distribution, ΣαT−1
and the

empirical variance of the samples in the smoothing distribution are,

ΣαT−1
=

[
0.0605 −0.0005

−0.0005 0.0580

]
, Σ̃T−1|T

[
0.0384 0.0098

0.0098 0.0622

]
(3.187)

The marginal variance of the first state dimension has decreased due to including the information from

the final observation yT . However, the marginal variance of the second dimension has increased, due

to the non-Gaussianity of the distribution. This is incompatible with Gaussian distributions—new

information must always decrease the variance. This means that when we calculate the next backward

message βT−1(xT−1) there is no real information to send (the message will have a nonsensical covariance

matrix, not positive-definite and with possibly negative variances). Because of the Markov nature of

the state space model this breaks the smoothing chain: information from the final observation yT will

not have any major effect on the posterior distributions for previous time steps, t less than T −1. This

limits the improvement we can gain by using sampling within EP.

It is useful to consider what the approximation the analytic EP method is making looks like in the

context of this example; this is shown in figure 3.24. The top left plot shows the true result of

passing the αT−1 message through the GP transition function. It is striking how close to Gaussian

this is (the top middle plot shows the corresponding moment-matched Gaussian) compared to passing

p(xT | yT , βT , θ) back through the transition function (middle plot of figure 3.23). There are two

reasons for this: the first is that the filter distribution on xT−1 given by the αT−1 message is much

tighter than the distribution on xT given by the observation. This can be seen if we compare the
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Figure 3.24: The first backwards smoothing step using EP with moment matching for an example 2D
system. The top left plot shows the result of the integral

∫
p(xT | xT−1, θ)αT−1(xT−1) dxT−1 using

sampling, the top middle plot shows the moment-matched Gaussian approximation (equation 3.129).
The top right plot shows the Gaussian distribution on xT resulting from the final observation yT . The
bottom left plot shows the α message on xT−1, the middle bottom shows the resulting approximate
smoothing posterior on xT−1, q(xT−1 | y1:T , θ) obtained by combining the top middle and right plots
and passing them back through the linearised transition model. For comparison the bottom right plot
shows the posterior obtained with sampling (before the EP moment-matching).

corresponding variances,

ΣαT−1
=

[
0.0605 −0.0005

−0.0005 0.0580

]
, ΣT |T

[
0.2516 0

0 0.1830

]
(3.188)

Note that the diagonal nature of ΣT |T comes from the linear observation model and independent ob-

servation noise. The smaller variance on ΣαT−1
is to be expected: this is exactly what filtering is

supposed to do — combine many observations to obtain a more certain distribution on the unob-

served state than is possible from using a single observation. The tighter distribution means that the

transition is more accurately captured by a linearisation, which would map an input Gaussian onto

an exact output Gaussian, than would be the case for a larger distribution.

The second reason is that a GP is a distribution over single-valued functions: the standard mathemat-

ical functions, which have a single output for every input. This means that going forward through a

function is much simpler than going backwards, where a single output value can correspond to multiple

input values. The conclusion from this analysis is that using sampling to invert the GP transition
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function can bring little gain compared to the moment-matching/linearisation approaches, due to the

inevitable moment-matching, which is part of the EP algorithm.

3.6.4 M Step

In the previous section we looked at five different ways of finding an approximation, qsmooth, to the

smoothing posterior on the latent states, p(x1:T | y1:T , θ). Doing this is only a stepping stone to our

real goal, however, which is to train the model parameters. This learning is done in the maximisation

(or minimisation) step of the EM algorithm, which we look at in this section. We use the approximate

latent state posterior to find an (approximate) upper bound on the negative log marginal likelihood.

We can then differentiate this bound with respect to the parameters and hence use gradient descent

optimisation. In fact, we show that some of the parameters, including the key pseudo-targets, can be

solved for directly, without the need of an optimisation algorithm.

The approximate upper bound on the negative log likelihood can be written,

Q = −Eqsmooth(x1:T |y1:T ,θ)
[log p(x1:T , y1:T | θ)]

= −
T∑
t=2

Eq(xt−1:t|y1:T ) [log p(xt | xt−1, θ)]︸ ︷︷ ︸
Transition term

−
T∑
t=1

Eq(xt|y1:T ) [log p(yt | xt, θ)]︸ ︷︷ ︸
Observation term

− Eq(x1|y1:T ) [log p(x1 | θ)]︸ ︷︷ ︸
First state

(3.189)

where we are taking the expectations w.r.t the approximate latent state smoothing posteriors found in

the E step. However, the GP in the transition function means that we cannot compute the expectation

in the transition term exactly:

p(xt | xt−1,θ) = N (xt; m(xt−1), s(xt−1) + Σε) =

D∏
e=1

N
(
xt,e; me(xt−1), se(xt−1) + σ2

ε,e

)
(3.190)

where we have used the fact that the GP transition functions for each output dimension are inde-

pendent (recall that we are using D separate GPs to model the transition to each of the D output

dimensions). Thus,

−E [log p(xt | xt−1, θ)] =
1

2

D∑
e=1

E
[

(xt,e − me(xt−1))2

se(xt−1) + σ2
ε,e

]
+

1

2

D∑
e=1

E
[
log(se(xt−1) + σ2

ε,e)
]

+
D

2
log 2π

(3.191)

with the expectations taken over xt−1 and xt, according to their approximate smoothing distribution.

The difficulty in equation 3.191 is that the GP predictive variance (highlighted in red), which appears

as an inverse, depends on xt−1. This makes the first expectation in equation 3.191 intractable to

compute. To solve this expectation Turner et al. (2010) make a simple approximation: they replace

the expectation of the quotient with the ratio of the expectations. The second expectation is also

intractable, however, as we are already working with a bound on the log likelihood, we can use Jensen’s

inequality to swap the expectation and the logarithm without changing the setup dramatically. Using
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these steps the approximate transition term in the negative log likelihood is,

Qtrans ,
1

2

(µt|T,e − Mt,e)
2 + Σt|T,e + Vq(xt−1|y1:T ) [me(xt−1)]− 2Cq(xt,e,xt−1|y1:T )[xt,e, xt−1]Ct,e

Eq(xt−1|y1:T ) [se(xt−1)] + σ2
ε,e

+
1

2

D∑
e=1

log
(
Eq(xt−1|y1:T ) [se(xt−1)] + σ2

ε,e

)
+

D

2
log 2π

(3.192)

where,

Mt,e = Eq(xt,e,xt−1|y1:T ) [me(xt−1)]

Ct,e = Vq(xt−1|y1:T )[xt−1]−1 Cq(xt−1|y1:T ) [xt−1, me(xt−1)]
(3.193)

are the mean and input-output covariance (divided by the input variance) of a GP with a Gaussian test

input, as defined in equations 1.28 and 1.30. Likewise, the ‘variance of the mean’, Vxt−1
[me(xt−1)],

and the ‘mean of the variance’, Ext−1
[se(xt−1)] are also computable and form the two parts of the

variance in equation 1.29. Thus under these approximations the bound on the log likelihood can be

computed and differentiated for use in gradient-based optimisation

The parameter β (the inverse covariance matrix times the pseudo-targets) appears linearly in the

transition model term of the likelihood. It can therefore be solved for directly as a function of the

other parameters,

∂Q

∂βe
= 0

⇒ ∂

∂βe

T∑
t=2

1

2

D∑
e=1

(µt|T,e − Mt,e)
2 + Σt|T,e + Vxt−1

[me(xt−1)]− 2C[xt,e, xt−1]Ct,e

Ext−1
[se(xt−1)] + σ2

ε,e

= 0

⇒
T∑
t=2

∂

∂βe

(µt|T,e − Mt,e)
2 + Σt|T,e + Vxt−1

[me(xt−1)]− 2C[xt,e, xt−1]Ct,e

Ext−1
[se(xt−1)] + σ2

ε,e

= 0

⇒
T∑
t=2

1

s̄(xt−1)

(
2
(
Mt,e − µt|T,e

) ∂Mt,e

∂βe
+

∂Vxt−1
[me(xt−1,θ)]

∂βe
− 2C[xt,e, xt−1]

∂Ct,e

∂βe

)
= 0

(3.194)

Mt,e and Ct,e are linear functions of βe and so their derivatives w.r.t. βe,
∂Mt,e
∂βe

and
∂Ct,e
∂βe

, are not

functions of βe. Vxt−1
[me(xt−1,θ)] is a quadratic function of βe, hence its derivative,

∂Vxt−1 [me(xt−1)]
∂βe

is a linear function of βe. s̄(xt−1) = Ext−1
[se(xt−1)] + σ2

ε,e and is not a function of βe. If the eth

transition GP has a covariance function ke and a linear mean function aTe xt−1 + be,

∂Vxt−1
[me(xt−1)]

∂βe
= 2V

[
ke(X̃,xt−1)

]T
βe + 2C

[
ke(X̃,xt−1), xt−1

]
ae (3.195)

and

Mt,e = Eq(xt−1|y1:T )[ke(X̃,xt−1)]Tβe (3.196)
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Substituting equation 3.195 into equation 3.194 and writing ke(X̃,xt−1) as k∗e,

0 =

T∑
t=2

s̄(xt−1)−1

(
2
(
E[k∗e]

Tβe − µt|T,e
) ∂Mt,e

∂βe
+ 2V [k∗e]

T
βe + 2C [k∗e, xt−1]ae − 2C[xt,e, xt−1]

∂Ct,e

∂βi

)

= 2

[
T∑
t=2

s̄(xt−1)−1
(
E[k∗e]E[k∗e]

T + V [k∗e]
)]
βe

+ 2

T∑
t=2

s̄(xt−1)−1

(
−µt|T,e

∂Mt,e

∂βe
+ C [k∗e, xt−1]ae − C[xt,e, xt−1]

∂Ct,e

∂βe

)
(3.197)

βe =

[
T∑
t=2

s̄(xt−1)−1E
[
k∗e (k∗e)

T
]]−1 T∑

t=2

s̄(xt−1)−1

(
−µt|T,e

∂Mt,e

∂βe
+ C [k∗e, xt−1]ae − C[xt,e, xt−1]

∂Ct,e

∂βe

)
(3.198)

The observation term in equation 3.189 can be computed exactly,

Ext [log p(yt | xt, θ)] = −D
2

log 2π − 1

2
log |Σν | −

1

2
Ext

[
(yt − xt)TΣ−1

ν (yt − xt)
]

= −D
2

log 2π − 1

2
log |Σν | −

1

2
(yt − µt|T )TΣ−1

ν (yt − µt|T )− 1

2
trace

(
Σ−1
ν Σt|T

)
(3.199)

We can solve for the observation noise variance parameter (chosen to be the log of the standard

deviation),

∂Q

∂ log σν,e
= 0

⇒ ∂

∂ log σν,e

{
1

2

D∑
e=1

(yt,e − µt|T,e)
2 + σ2

t|T,e

σ2
ν,e

+

D∑
e=1

log σν,e

}
= 0

⇒ 1

2

(
(yt,e − µt|T,e)

2 + σ2
t|T,e

) ∂σ−2
ν,e

∂ log σν,e
+ 1 = 0

⇒ −
(yt,e − µt|T,e)

2 + σ2
t|T,e

σ2
ν,e

+ 1 = 0

⇒ σ2
ν,e = (yt,e − µt|T,e)

2 + σ2
t|T,e

⇒ log σν,e =
1

2
log
(

(yt,e − µt|T,e)
2 + σ2

t|T,e

)
(3.200)

Solving for the pseudo-targets and the observation noise variance greatly reduces the number of pa-

rameters for which we must optimise. We can compute derivatives w.r.t. the remaining parameters,

which requires no more than the application of simple calculus, and thus optimise them via gradient

descent.

3.6.5 Analysis

We analyse the timing of the various E step algorithms as well as the M step on systems varying from

one dimension to ten dimensions. A single observed trajectory of twenty time steps was used as training

data, and EP was set to only use one iteration. The sample based EP algorithms were set to use ten

thousand samples. Figure 3.25 shows the results of the timing experiment. As expected the analytic E
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step algorithms are considerably faster than the sampling based approaches. The MCMC-EP variant

is excruciatingly slow compared to all other parts of the algorithm, due its sequential nature. The M

step takes longer than the E step (excluding MCMC-EP) although the EP algorithm timings are only

shown for a single EP iteration. The M step shows a quadratic dependence on dimension as we would

expect from the D lots of D-dimensional GP predictions at its heart.
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Figure 3.25: Wall clock timings in seconds for the various E step methods and the M step for the
approximate-analytic EM algorithm.

We next look at the number of EP iterations required as a function of the number of samples drawn

at each step. To test this we ran the EM algorithm with the importance sampling version of EP on

three test data sets: the one dimensional kink function (as described in previous sections), the four

dimensional cart & pendulum system (section 1.7.1), and the ten dimensional unicycle system (section

1.7.2). Figure 3.26 shows how the EP messages converge over ten EP iterations for multiple runs.

After each iteration of EP, the current messages were used to compute the first two moments of the

latent state posteriors, i.e. after the ith EP iteration we compute µit|T and Σit|T where,

qEP,i
smooth(xt | yt, θ) = αit(xt)β

i
t(xt) ∝ N

(
xt; µ

i
t|T , Σit|T

)
(3.201)

for t = 1 to T . We then compute the difference between these moments and the values they obtain

after ten EP iterations, for example,

diµt = µit|T − µ10
t|T (3.202)

Finally we plot how the standard deviation of di varies with EP iteration, where di is the concatenation

of all the differences, for both the mean and variance and for t = 1 to T . Figure 3.26 shows that EP

converges rapidly for 100+ samples in the one dimensional system, only requiring one or two iterations.

Similar results are seen for the cart and pendulum system although we needed 1000+ particles for

quick convergence. In the unicycle system, EP is much slower to converge — it is not clear that we

have observed convergence within the ten EP iterations. That said the average distance that the means

move each iteration is less than one percent of their value (slightly more for the variance estimates)

and so it seems unlikely this has much of an effect on final performance of the model.
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Figure 3.26: How EP’s estimates of the means (left column) and variances (right column) of the
states vary with EP iteration. The x-axis shows the EP iteration number and the y-axis shows the
mean normalised difference between the moment settings at that iteration from their final values at
iteration ten. A flat line close to zero indicates that EP has converged. The different lines show how
convergence is affected by the number of samples drawn.

We want to see how the number of samples drawn inside each EP update effects performance and

compare the sampling EP methods to the moment-matching based approach. To do this we trained

the model on the three data sets for different numbers of samples and report the training and test

performance in figure 3.27. Training performance is measured by the M step approximate upper

bound on the marginal likelihood (equation 3.189) and test performance on the predictive one-step-

ahead metric previously described (equation 3.75). We first look at the test performance where we can

see clear benefits from using sampling in the one dimensional function and the cart and pendulum,

as well as clear evidence of overfitting. For the higher dimensional systems overfitting kicks in early,

after only three or four EM steps. We can note that both the sampling and analytic versions of EP

lead to overfitting and so it is a more general property of the method, rather than the approximations

we made within EP. As one might expect, the largest difference in performance between the analytic
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EP method and the sampling EP methods occurs for the smaller dimensional system. As the system

dimension increases the sampling approaches perform more poorly, despite the fact that we increased

the number of samples being taken.

The figure shows some results which are not so easily explainable and which we do not yet fully

understand. For example, for the kink function and the cart & pendulum, the best performance was

found with the fewest number of samples. Furthermore, for the cart & pendulum in particular, the

training NLP values start to get worse as we make more EM iterations for either 1000+ samples or the

analytic approach. This seems to be linked to numerical instabilities in solving for the pseudo-targets,

which can lead to poor values of pseudo-target being chosen. There are several places where care

needs to be taken with the sampling methods, for example where all the samples can be evaluated

to be in an area with zero probability under the model, or where an estimated covariance matrix is

non-positive-definite. In these cases we need to define how the algorithm proceeds. These choices can

have a large effect on the eventual performance of the method, and it is not always clear what the

best choice should be. However, it is clear from figure 3.27 that these issues need to be solved if this

method is to be fully competitive with the others.

3.7 Particle Filter

The previous two methods we have looked at make approximations such that we can train the GP state

space model using analytic methods (although we introduced some simple sampling within EP). An

alternative approach is to use more sophisticated sampling methods, which require fewer approxima-

tions. In many cases they can also be a lot simpler to implement than analytic approximations. A lot

of research work has been invested into using sampling in dynamical models, with probably the most

popular methods being based on sequential Monte Carlo. Sequential Monte Carlo (SMC) methods

have been used for many years for nonlinear filtering and smoothing (Cappé et al., 2005). They can

also be used for parameter estimation, in either a Bayesian or Maximum Likelihood manner (Kantas

et al., 2009). In keeping with the previous two models we present here a maximum likelihood method,

which computes an estimate of the marginal likelihood and its derivative w.r.t. the parameters. Our

derivation closely follows Algorithm 1 of Poyiadjis et al. (2011).

In SMC we approximate the series of latent state filter posteriors {p(x1:t | y1:t,θ)}Tt=1 by a cloud of

weighted samples, or particles. These particles are sequentially sampled from the posteriors by prop-

agating the particles from the previous time step forward, using importance sampling and resampling

techniques. Gaussian Process state space models readily lend themselves to SMC methods as we can

sample directly from the ‘optimal’ proposal densities (Doucet and Johansen, 2009), given our Gaussian

observation model.

Suppose that a set of particles {xi1:t−1}Ni=1 and their corresponding weights {wit−1}Ni=1, are our approxi-

mation to the joint filter posterior of states up until time t−1, p(x1:t−1 | y1:t−1,θ). This implies that we

are approximating the posterior with a set of weighted delta functions located at each of the sample

points,

p(x1:t−1 | y1:t−1,θ) ≈
N∑
i=1

wit−1 δ(x
i
1:t−1) (3.203)

Given this distribution for times 1 to t− 1, we want to extend it to include the next time step t. We
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Figure 3.27: Training (left) and test (right) performance for the EP-EM algorithms as a function of
EM iteration number. The training performance is measured by the value of the M step objective
function, which is an approximate upper bound on the negative log marginal likelihood. The test
performance is measured by computing the test negative log probability according to equation 3.75.
Note that the test and training metrics are not directly comparable. The top row of plots show results
for the 1D test function, the middle for the 4D cart & pendulum test system, and the bottom the 10D
unicycle.

do this by propagating the particles from time step t − 1 forward in time. The simplest method for

propagating the particles to time t is the ‘bootstrap filter’ which uses the relation,

p(x1:t | y1:t,θ)︸ ︷︷ ︸
Posterior for t=1:t

∝ p(yt | xt,θ)︸ ︷︷ ︸
Observation

p(xt | xt−1,θ)︸ ︷︷ ︸
Transition

p(x1:t−1 | y1:t−1,θ)︸ ︷︷ ︸
Posterior for t=1:t−1

(3.204)

and for each sample xi1:t−1 follows the procedure:

1. Sample from the GP transition density, xit ∼ p(xt | xit−1,θ)
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2. Update weight with observation density, w̃it = p(yt | xit,θ)wit−1

The weights are then normalised,

wit =
w̃it∑N
i=1 w̃

i
t

(3.205)

This completes the propagation step and thus we now have a sample estimate of the joint posterior

up to and including time t,

p(x1:t | y1:t,θ) ≈
N∑
i=1

wit δ(x
i
1:t) (3.206)

The problem with this method is that the transition density and the observation may lead to very

different distributions over xt and so sampling from one and weighting by the other can result in very

few samples with meaningful weights. In our GP state space model setup we can do a lot better: in

fact we can sample from the ‘optimal’ proposal density (minimal variance of the importance weights)

(Doucet and Johansen, 2009), p(xt | xt−1,yt,θ). The key difference with this sampling density is

that it conditions on the observation yt as well as the value of xt−1. That is, we sample from the

distribution on xt given both the transition information (from xt−1) and the observation information,

rather than sampling using just the transition information and then weighting using the observation.

The importance weights corresponding to this ‘optimal’ sampling density are found by evaluating

p(yt | xt−1,θ). This comes from rewriting the relation in equation 3.204 as,

p(x1:t | y1:t,θ)︸ ︷︷ ︸
Posterior for t=1:t

∝ p(yt | xt−1,θ)︸ ︷︷ ︸
Weight function

p(xt | yt, xt−1,θ)︸ ︷︷ ︸
Sampling density

p(x1:t−1 | y1:t−1,θ)︸ ︷︷ ︸
Posterior for t=1:t−1

(3.207)

Both the sampling density and the weighting function for the ith particle follow from the joint Gaussian

distribution,

p(xt, yt | xit−1,θ) = N
([

xt

yt

]
;

[
m(xit−1)

C m(xit−1)

]
,

[
s(xit−1) s(xit−1)CT

C s(xit−1) C s(xit−1)CT + Σν

])
(3.208)

Furthermore, we can use the same terms to compute the approximate contribution at time t to the

marginal likelihood (equation 3.76), which is actually what our goal is,

p(yt | y1:t−1,θ) =

∫
p(yt | xt−1,θ)︸ ︷︷ ︸
Weight function

p(xt−1 | y1:t−1,θ)︸ ︷︷ ︸
Posterior for t−1

dxt−1

≈ 1

N

N∑
i=1

p(yt | xit−1,θ) wit−1 (3.209)

where p(yt | xit−1,θ) is the second marginal distribution in equation 3.208 and the xit−1 are our sample

approximation to the posterior at time t, along with weights wit−1. Given that we observe yt, the

density p(yt | xit−1,θ) evaluates to a number for each value of xit−1.

The sequential importance sampling algorithm outlined above suffers from a systemic weakness how-

ever: weight degeneracy. This is the phenomenon whereby after multiple propagation steps one weight

dominates all the others. This results in the posteriors being represented by effectively fewer and fewer

particles as time increases, which leads to poor approximations. To avoid this problem the sequential

importance resampling (SIR) algorithm was introduced (Rubin, 1987; Gordon et al., 1993). In SIR

particles are resampled such that those with high weight are replicated and those with low weight
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are pruned. As this is a key step in the particle filter it is unsurprising that a number of different

resampling algorithms have been published (Douc and Cappé, 2005). The most basic form of resam-

pling is multinomial: the new set of particles are selected from the old set according to a multinomial

distribution with probabilities given by the normalised set of weights, i.e. p(x̃it = xjt ) = wjt . However,

once again the GP-SSM lends itself to a more advanced method, which gains performance not from

changing the sampling methodology but rather the distribution from which we resample. Following

the auxiliary particle filter (Pitt and Shephard, 1999), we instead resample according to p(yt+1 | xit,θ),

which results in the importance weights all being identically equal to one. The use of the auxiliary

particle filter methodology further improves the particle filter approximation; methods using this step

are referred to as fully adapted, and the methodology itself has even been referred to as ‘optimal’

(Douc et al., 2009).

A downside of the resampling step is that we cannot take derivatives of the marginal likelihood by

differentiating the particle approximation procedure — resampling is non-differentiable because we are

selecting from a set of discrete entities (the previous set of particles). This differs from the previous

sampling steps, where we were sampling from continuous probability densities, which is a process we

can differentiate by fixing random seeds. Therefore, we make use of the Fisher Identity,

∇θ log p(y1:t | θ) =

∫
p(x1:t | y1:t,θ)︸ ︷︷ ︸
Posterior for t=1:t

∇θ log p(x1:t,y1:t | θ) dx1:t (3.210)

This allows us to swap the calculation of the derivative of the log marginal likelihood (marginalising

over x1:T ), log p(y1:t | θ), with the derivative of the complete log likelihood, log p(x1:t,y1:t | θ), which

is much easier to compute. We can see from equation 3.210 that we need to find the expectation of

the derivatives w.r.t. the filter posterior in order to solve the integral. However, we can immediately

recognise that we we already have a particle approximation for the filter posterior: as derived int he

previous paragraphs. We therefore just need to compute the derivative of the complete log likelihood

for each sample of x1:T , which we have already drawn from the filter posterior. The equation for the

complete log likelihood was given previously in the M step section of the approximate-analytic EM

algorithm, equation 3.189; we repeat it here for the particle approximation,

log p(xi1:t,y1:t | θ) =

T∑
t=2

log p(xit | xit−1, θ)︸ ︷︷ ︸
Transition term

+

T∑
t=1

log p(yt | xit, θ)︸ ︷︷ ︸
Observation term

+ log p(xi1 | θ)︸ ︷︷ ︸
First term

(3.211)

Each of the terms in equation 3.211 is the logarithm of a Gaussian probability and thus is computable

in closed form: the transition term is a GP prediction with process noise, we have a linear Gaussian

observation model, and we can place a Gaussian prior on the first state. Furthermore, the sampling

approximation means that we can take derivatives w.r.t. the parameters without needing extra ap-

proximations such as was required in the approximate-analytic M step. It is interesting to note the

difference between using the Fisher identity to find the derivatives and differentiating the particle fil-

ter’s approximation to the marginal likelihood directly (if we could actually do this): in the first case

we are forming an approximation to the true derivatives, in the second we would be differentiating

(exactly) an approximation to the marginal likelihood. We suggest that it is more desirable to use

an approximation to the true derivatives rather than the true derivatives of an approximation (which

is fortunate as we cannot compute the true derivatives of the PF). The derivatives, the marginal
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likelihood, and the required particle approximations to the filter posteriors can all be computed se-

quentially in one forward pass, as in Algorithm 1 of Poyiadjis et al. (2011). Algorithm 4 summarises

the steps for computing the approximate negative log marginal likelihood and its derivatives, using

the ingredients outlined above.

Algorithm 4 Particle Filter estimate of log likelihood and derivatives

For time step t = 1

• Compute first log marginal likelihood approximation term, log qPF(y1 | θ), based on the Gaussian
prior, p(x1 | θ)

• Draw initial particles from prior, xi1 ∼ p(x1 | θ)

• Set the derivative, ∂it = ∇θ log qPF(y1 | θ)

For time step t > 1

• Compute the weights using Auxiliary PF methodology,

→ w̃it = p(yt | xit−1, θ)

→ wit =
w̃it∑N
i=1 w̃

i
t

• Update log marginal likelihood approximation, log qPF(y1:t | θ) = log qPF(y1:t−1 | θ) + log p(yt |
xit−1, θ)

• Resample particle approximation to the latent state posterior and the derivatives at t − 1,

{xit−1, ∂
i
t−1}Ni=1, according to wit to obtain a new set, {x̂it−1, ∂̂

i

t−1}Ni=1

• For i = 1 : N ,

→ Sample particles at time t, xit ∼ p(xt | yt, x̂it−1, θ)

→ Update derivative estimate, ∂it = ∂it−1 + ∇θ log p(xit | xit−1, θ) + ∇θ log p(yt | xit, θ)

After the final time step T return the estimate of the marginal likelihood and its derivatives.

Once we have an estimate of the marginal likelihood and its derivatives we must now decide how to

optimise the parameters. Poyiadjis et al. (2011) suggest using steepest gradient ascent with a fixed

step size, however, we found this to give very slow optimisation performance. The parameter search

space often has high curvature and so steepest descent struggles to make rapid progress. Furthermore,

the evidence from our experiments showed that the marginal likelihood estimate given by the particle

filter was a lot noisier than the corresponding estimate of the derivative, as can be seen in figure

3.28. This meant that standard gradient based optimisers which rely on the function value as well

as the gradient give very poor performance. We therefore use a derivative-only algorithm to fit the

parameters. This algorithm, outlined in algorithm 5, uses the size of the gradient to determine when

the search direction minimum has been found. In addition, we found that the derivative estimates were

sufficiently stable that we could use an approximate Newton algorithm to provide search directions

rather than steepest descent.
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Figure 3.28: Example comparison of the negative log marginal likelihood (NLML) and its derivatives
as estimated by a particle filter with 5000 particles on the 4D cart & pendulum system. The continuous
blue line represents the estimate of the negative log marginal likelihood for various parameter settings,
searching along the direction of steepest gradient descent. The red lines show the derivative of the
NLML evaluated at each point and projected along the gradient direction. It is clear to see that the
derivatives are in good agreement with each other and with the general shape of the likelihood surface.
The individual estimates of the NLML are very noisy however.

Algorithm 5 Direct Optimisation with a Particle Filter

• Use particle filter to estimate derivative of negative log marginal likelihood

• Set initial search direction to steepest descent and step size to a small value

• Loop until optimisation is complete/terminated:

– Perform a linesearch in search direction:

L
in

es
ea

rc
h



∗ Take proposed step and evaluate new derivative with PF

∗ Project new derivative into search direction and test its magnitude: if below threshold
then accept new point and terminate linesearch

∗ Else, fit a quadratic to all evaluated derivatives in current search direction

∗ Set new parameters to be the location of minimum of the quadratic function

– If termination criteria are not met: perform BFGS update to obtain new search direction

• Return optimised parameters

3.7.1 Analysis

When implementing this algorithm we must choose the number of particles to use, which will be

a speed accuracy trade-off. Figure 3.29 shows how the performance of the PF direct optimisation

algorithm varies with the number of particles for the three test systems: the 1D kink function, the

4D cart & pendulum system, and the 10D unicycle system. The figure shows a clear improvement in
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performance as we increase the number of particles; for the one dimensional system the improvement

stops as five thousand, from there increasing to ten thousand particles has very little effect on either

the test or the training probabilities. We can also see that after two hundred function evaluations the

algorithm run with five and ten thousand is close to convergence—there is almost no further gain. For

the cart & pendulum system the performance gap between five and ten thousand particles is more

noticeable, especially in the training NLML, although they converge to a similar value in the test NLP.

We see, though, that we need around four hundred function evaluations for the five and ten thousand

particle runs to converge, and more for the runs with fewer particles.

Figure 3.29: Training (left) and test (right) performance for the particle filter algorithm as a function
of gradient optimisation iteration number. The training performance is measured by the particle
filter’s estimate of the negative log marginal likelihood of the training points. The test performance
is measured by computing the test negative log probability according to equation 3.75. Note that the
test and training metrics are not directly comparable. The top row of plots show results for the 1D
test function, the middle for the 4D cart & pendulum test system, and the bottom the 10D unicycle.

Particle methods can often be slow to run and so we investigated running time on a fairly standard

desktop computer, with the results shown in figure 3.30. We ran the particle filter algorithm once and



122 CHAPTER 3. GAUSSIAN PROCESS STATE SPACE MODELS

measured how long it took to compute a single set of derivatives for a single observed trajectory of

twenty time steps. Clearly, when the algorithm is used to train a model we will need more than one

gradient optimisation step and will likely have more than one observed trajectory. However, the time

taken should scale linearly with these quantities and so the results in the figure can be used to estimate

computation time for a wide range of problems. We looked at time taken for systems with a state

dimension ranging from one to ten. We expect to see a quadratic dependence on system dimension, as

at the heart of the algorithm we make D lots of GP predictions with a D dimensional input each time.

The quadratic shape is clear to see from the plots. We can also see a linear rise in time taken w.r.t. the

number of particles used, apart from the rise between one hundred and five hundred particles. This

is explained by considering the gain we achieve by using parallelisation: much of the computation is

spent on operations such as matrix multiplication, which is automatically parallelised by languages

such as Matlab. However, as the number of particles rises the memory requirements reduce the effect

of parallelisation and we see the linear increase in time that we expect from the theory.
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Figure 3.30: Wall clock times for the Particle Filter algorithm to compute the marginal likelihood
estimate and its gradient using varying numbers of particles on systems with dimension ranging from
1 to 10. The data set consisted of a single observed trajectory of length 20 time steps.

3.8 Particle EM

The largest drawback with the particle filter method discussed in the previous section is its reliance

on estimated derivatives for optimisation—this can make parameter fitting very slow. Study of the

marginal likelihood bound used by the M step, equation 3.189, reveals that it is both computable and

differentiable for samples of x1:T . This suggests a return to the EM algorithm where we use a sampling

method to draw trajectories from the latent state posterior, p(x1:T | y1:T , θ), and then optimise the

parameters θ based on these samples. This is different to the sampling methods discussed in the

previous EM section, where they played a role inside the EP algorithm. There samples were only used
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to find distributions over either the previous time step or the subsequent. Here we wish to sample

entire trajectories from the joint smoothing posterior, p(x1:T | y1:T ,θ). This is a much more demanding

requirement. The use of Monte Carlo methods in the E step of the EM algorithm was introduced

by Wei and Tanner (1990) and has been considered by many authors before, for example Levine and

Casella (2001); Booth and Hobert (1999); Chan and Ledolter (1995). For the specific case of the time

series latent variable model, sequential Monte Carlo approaches have been used to great effect (Cappé

et al., 2005; Olsson et al., 2008; Schön et al., 2011)

3.8.1 Particle E step

The particle filter of the previous section provides an estimate of the required posterior, p(x1:T |
y1:T ,θ), using a single forward sweep through time (filtering, hence the name). However, due to path

degeneracy problems this can be a very poor estimate. Figure 3.31 demonstrates the path degeneracy

problem by running a particle filter with ten particles on the 1D ‘kink’ function shown earlier (see

figure 3.18). Whilst the particle filter has good sample diversity marginally at each time step (left

plot), which was all that was required in the previous section, the right plot shows that the joint

distribution, which we need in this section, is very poorly approximated. A better approximation can

be achieved by using a backward simulation method (Lindsten and Schön, 2013) in addition to the

forward sweep, although these methods tend to have a complexity which is quadratic in the number

of particles, which quickly becomes infeasible. A different set of algorithms come from combining

SMC with MCMC; these are typically known as particle MCMC (PMCMC) methods (Andrieu et al.,

2010). In these algorithms a particle filter is used to provide a proposal distribution for a MCMC

step. PMCMC algorithms have some advantages over traditional particle filters. For example they

do not rely on asymptotics, in terms of the number of particles, to generate samples from the true

posterior density as particle filters do. We therefore choose to use a PMCMC method to approximate

the latent state posterior density in the E step.

We use a recently developed PMCMC method termed particle Gibbs with ancestor sampling (PGAS)

(Lindsten et al., 2012). Given an initial sampled trajectory, PGAS uses a conditional particle filter

to generate a new trajectory as per a particle Gibbs approach; that is, we draw a new trajectory

conditioned on both the observations and on a previous trajectory, p(xi1:T | y1:T , x
i−1
1:T , θ). The con-

ditional particle filter does this by setting one of the particles at each time step to the value of the

conditioned data point: if we wish to use N particles then N − 1 are sampled normally and one is set

deterministically to the value from the conditioned trajectory. Given that we fix one particle path,

which cannot be pruned away, the path degeneracy problem in a conditional particle filter means that

the generated trajectories collapse towards the conditioned trajectory. This means that the newly

generated particle paths are very similar to the conditioned trajectory, thus exploration of the space

is very slow. The ancestor sampling step in PGAS mitigates this problem by resampling the ancestor

of the conditioned particle at each step.

3.8.2 PGAS E Step Comparison

We now test the PGAS method for approximating the latent state posterior and compare it to the

E step methods discussion previously. First we look at the same 1D ‘kink’ function as before (figure
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Figure 3.31: Example of the path degeneracy problem. The left plot shows the state values of 10
particles conditioned on an observed trajectory from the 1D ‘kink’ function described earlier. The
red line shows the true latent trajectory. The sampled trajectories cover the true trajectory and have
good diversity. The right plot shows the ancestry of each of the particles: tracing each particle back
through the resampling steps. Due to the replication and pruning which occurs in resampling the
number of separate paths reduces as we move further back in time. By time step 15 all the paths
have converged and from then until zero the joint latent state posterior is approximated by a single
particle.

3.18). Figure 3.32 shows the inferred latent state posterior using both the importance sampling EP

algorithm and the PGAS algorithm over a trajectory of 20 time steps. For illustration purposes only,

we fitted a mixture of three Gaussians to the samples generated by the PGAS algorithm. The figure

clearly shows the advantage of being able to admit a multimodal distribution for the posterior. This is

particularly the case for this 1D function as probability mass either side of the ‘kink’ is pushed further

apart on the next iteration (as the kink is a sharp change in transition dynamics). The figure shows

the effects of the EP approximation: the EP posteriors closely resemble Gaussians moment-matched

to the PGAS samples. This is particularly noticeable for the first four time steps in figure 3.32, where

the EP posteriors have a mean in the middle of the two PGAS posterior peaks, and a larger variance.

The figure suggests that the PGAS method outperforms the EP method by a considerable amount,

at least for this particular system. We can quantify this by computing the log likelihood for the true

latent state under the inferred posteriors, again using a mixture of 3 Gaussians for PGAS. These

results are shown in table 3.2, where we can see that PGAS does indeed outperform all the other

methods.

Table 3.2: Log likelihoods per data point for the true latent states under the posteriors inferred by
each of the algorithms.

ADS/A-EP MC-EP IS-EP MCMC-EP PGAS

0.31 0.55 0.65 0.75 0.96
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Figure 3.32: Example inferred latent state posteriors using the importance sampling EP algorithm
(section 3.6.2) in blue, and the PGAS algorithm in red over a trajectory of 20 time steps for the 1D
kink function data set. The vertical green line shows the true location of the latent state. The better
performing algorithm is the one with the highest probability at the location of the real latent state.
PGAS used 10000 particles and 1000 samples, many more than is actually required.



126 CHAPTER 3. GAUSSIAN PROCESS STATE SPACE MODELS

Algorithm 6 E step using PGAS

• Initialise conditioned trajectory, x1:T [0]

• For k = 1 : K, run conditional particle filter to sample K trajectories from the joint posterior.
Each time, condition on x1:T [k − 1]
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– For time step t = 1

∗ For i = 1 : N − 1, draw initial particles from prior, xi1 ∼ p(x1 | θ)

∗ Set Nth particle to conditioned value, xN1 = xcond
1

– For time step t = 2 : T

∗ For i = 1 : N , compute transition probabilities, p(xt | xit−1, θ)

∗ Compute and normalise weights

→ w̃it = p(yt | xit−1, θ)

→ wit =
w̃it∑N
i=1 w̃

i
t

∗ For i = 1 : N−1, resample the particles according to the weights P (x̂it−1 = xjt−1) = wjt

∗ Sample the ancestor for the Nth particle (the conditioned particle) according to,
P (aNt = j) = wjt p(x

cond
t | xjt−1, θ). This is the ‘ancestor sampling’ step.

∗ For i = 1 : N − 1, sample new particles xit ∼ p(xt | x̂it−1, yt, θ)

∗ Set Nth particle to conditioned value, xNt = xcond
t

– From the N particles sample one according to the final weights
{
wiT
}N
i=1

and trace back its
ancestry to provide a complete trajectory

– Set x1:T [k] equal to the new sampled complete trajectory

• Return sampled trajectories, x1:T [1 : K]

We extend this test by running the PGAS algorithm on the same one hundred trajectories from the 1D

‘kink’ function as we ran the other E step algorithms on in section 3.6.3. The PGAS E step algorithm,

as described in algorithm 6, has two key parameters to set: the number of particles to use in the

particle filter, and the number of complete trajectories to sample from the joint latent state posterior.

To test the effects of these parameters, we ran the algorithm with five settings of each. The results

are shown in figure 3.33 where we show the relative performance of the PGAS E step algorithm to the

importance sampling EP E step algorithm. It is immediately obvious from the figure that the number

of samples has a much bigger overall effect on performance than the number of particles. This fits

with our expectation: the number of particles affects the autocorrelation of the samples drawn but

Lindsten (Lindsten et al., 2012) showed the gains made by increasing the number of particles quickly

saturated. With on the order of five hundred samples we consistently approximate the latent state

posterior more accurately that the EP method using only 100 particles. The conclusion is that it is

vitally important to use enough samples else the approximation is likely to be poor.

We would expect the number of particles and samples needed for an accurate approximation to change

as the number of dimensions increases from the 1D problem considered so far. We have previously

seen how the sample-based EP algorithms performed well in 1D only to have minimal gain in higher
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Figure 3.33: Comparison of PGAS to IS-EP algorithm on 100 trials of the 1D ‘kink’ function. The y-
axis shows the difference in log likelihood per data point between PGAS and the importance sampling
implementation of EP. The plots show how the performance of PGAS varies as we change the number
of particles and the number of sampled trajectories. The bottom plot shows a zoomed section of the
top plot. The box plots are coloured red/green if at least 75% of the data lies below/above zero.

dimensions over approximate-analytic methods. We therefore apply the PGAS E step algorithm to

the same set of one to ten dimensional systems as before. The results of this experiment are shown in

figure 3.34. The experiment shows how more samples are required for higher dimensional problems as

expected. It should be noted that the importance sampling EP method is using 10,000 samples inside

the EP updates, although these are only one-step samples rather than complete sampled trajectories.

The summary plot in the bottom right corner of figure 3.34 shows that for four dimensional and

higher problems PGAS has no significant gains over any of the previous methods, at least not for up

to a thousand samples. It is interesting to note that once again the number of particles plays a very

insignificant role in the performance of the PGAS algorithm. This means we can make computational

savings by keeping the number of particles low.
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Figure 3.34: Comparison of PGAS to IS-EP algorithm on 50 trials of 1 to 10 dimensional random
GP systems. The y-axis shows the difference in log likelihood per data point between PGAS and the
importance sampling implementation of EP. The plots show how the performance of PGAS varies as
we change the number of particles and the number of sampled trajectories. The vertical green bars
separate trials with the same number of samples but differing numbers of particles. The bottom-
right plot shows the difference in log likelihood per data point between the PGAS E step with 10000
particles and 1000 samples and the other four E step algorithms over the different dimensions. The
box plots are coloured red/green if at least 75% of the data lies below/above zero.
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Table 3.3 shows the wall-clock for a typical run of the PGAS E step. Analysis of relative timings of

the 100 trials confirms that the complexity is linear in both the number of particles and the number

of samples.

Table 3.3: Example wall-clock timings in seconds for a run of the PGAS E step algorithm. These
timings could vary significantly depending on implementation and how much parallelisation is used.

Number of: particles ↓, samples → 10 50 100 500 1000

100 0.6 1.7 3.9 12.7 20.8
500 3.3 6.3 10.7 79.0 141.8
1000 7.4 17.8 41.9 156.0 216.0
5000 28.2 80.9 136.8 618.0 1086.4
10000 54.1 140.5 236.1 1393.5 3036.4

3.8.3 Particle M Step

Once we have a sample approximation to the posterior p(x1:T | y1:T , θ) we can look at optimising

the parameters in the M step. The upper bound on the negative log likelihood is, once again, given

by,

Q = −Ex1:T∼p(x1:T |y1:T , θ) [log p(x1:T , y1:T | θ)]

= −
T∑
t=2

Eq(xt−1:t|y1:T ) [log p(xt | xt−1, θ)]︸ ︷︷ ︸
Transition term

−
T∑
t=1

Eq(xt|y1:T ) [log p(yt | xt, θ)]︸ ︷︷ ︸
Observation term

− Eq(x1|y1:T ) [log p(x1 | θ)]︸ ︷︷ ︸
First term

(3.212)

The Transition Term

The transition model term from the negative log likelihood bound is,

Qtrans =

T∑
t=2

−Eq(xt−1:t|y1:T ) [log p(xt | xt−1, θ)] (3.213)

with,

− log p(xt | xt−1, θ) = − logN (xt; m(xt−1), s(xt−1) + Σε)

= −
D∑
e=1

log N (me(xt−1), se(xt−1) + σ2
ε,e)

=
1

2

D∑
e=1

(xt,e − me(xt−1))2

se(xt−1) + σ2
ε,e

+
1

2

D∑
e=1

log(se(xt−1) + σ2
ε,e) +

D

2
log 2π (3.214)

We need to take the expectation over the latent states xt−1 and xt, which we do by using the K
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sampled trajectories drawn in the E step,

−E [log p(xt | xt−1, θ)] ≈ 1

K

K∑
i=1

[
1

2

D∑
e=1

(xit,e − me(x
i
t−1))2

se(xit−1) + σ2
ε,e

+
1

2

D∑
e=1

log(se(x
i
t−1) + σ2

ε,e)

]
+

D

2
log 2π

(3.215)

This gives the complete expression for the transition model term as,

T∑
t=2

−Ext−1,xt
[log p(xt | xt−1, θ)]

≈ 1

2K

K∑
i=1

T∑
t=2

D∑
e=1

[
(xit,e − me(x

i
t−1))2

se(xit−1) + σ2
ε,e

+ log(se(x
i
t−1) + σ2

ε,e)

]
+

D(T − 1)

2
log 2π , QPEM

trans

(3.216)

Only the transition term depends on β and within this term only the GP mean m is a function of β.

Thus,

arg min
β

{
T∑
t=2

−E [log p(xt | xt−1, θ)]

}
= arg min

β

{
1

2K

K∑
i=1

T∑
t=2

D∑
e=1

(xit,e − me(x
i
t−1))2

se(xit−1) + σ2
ε,e

}

= arg min
β

{
K∑
i=1

T∑
t=2

D∑
e=1

(xit,e − ke(x
i
t−1, X̃)βe)

2

se(xit−1) + σ2
ε,e

}
(3.217)

Each output is independent of the others thus we want to solve,

β∗e = arg min
βe

{
K∑
i=1

T∑
t=2

(xit,e − ke(x
i
t−1, X̃)βe)

2

se(xit−1) + σ2
ε,e

}
= arg min

βe

{
||χe − κe βe||2

}
(3.218)

where we have stacked the states over time and then over samples,

χit,e =
xit,e√

se(xit−1) + σ2
ε,e

, κit,e =
ke(X̃,x

i
t−1)√

se(xit−1) + σ2
ε,e

(3.219)

χe = [χ1
2,e, . . . , χ

1
T,e, χ

2
2,e, . . . , χ

2
T,e, . . . , χ

K
T,e]

T a (T − 1)K × 1 vector (3.220)

κe =
[
κ1

1,e, . . . , κ
1
T−1,e, κ

2
1,e, . . . , κ

2
T−1,e, . . . , κ

K
T−1,e

]T
a (T − 1)K × Ñ matrix (3.221)

Equation 3.218 can be recognised as the linear least squares problem. The solution is therefore,

β∗e =
(
κTe κe

)−1
κTe χe (3.222)
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The Observation Term

The observation model term from the negative log likelihood bound is,

Qobserv = −
T∑
t=1

Eq(xt|y1:T ) [log p(yt | xt, θ)] (3.223)

From the state-space model,

yt | xt,θ = C xt + νt (3.224)

Therefore,

− log p(yt | xt, θ) = − logN (yt; C xt, Σν)

= −
D∑
e=1

log N (yt,e; Ce xt, σ
2
νe)

=
1

2

D∑
e=1

(yt,e − Ce xt)
2

σ2
νe

+
1

2

D∑
e=1

log σ2
νe +

D

2
log 2π (3.225)

We take the expectation over x by using the Monte Carlo estimate,

−Ext [log p(yt | xt, θ)] ≈ 1

K

K∑
i

[
1

2

D∑
e=1

(yt,e − Ce x
i
t)

2

σ2
νe

+
1

2

D∑
e=1

log σ2
νe +

D

2
log 2π

]

=
1

2K

K∑
i=1

D∑
e=1

(yt,e − Ce x
i
t)

2

σ2
νe

+

D∑
e=1

log σνe +
D

2
log 2π (3.226)

This gives the complete expression for the observation term as,

−
T∑
t=1

Ext [log p(yt | xt, θ)] ≈ 1

2K

T∑
t=1

K∑
i=1

D∑
e=1

(yt,e − Ce x
i
t)

2

σ2
νe

+ T

D∑
e=1

log σνe +
TE

2
log 2π , QPEM

observ

(3.227)

The observation noise only appears in the observation term and we can solve for it,

∂QPEM
observ

∂ log σν,e
=

∂

∂ log σν,e

{
1

2K

T∑
t=1

K∑
i=1

D∑
e=1

(yt,e − Ce x
i
t)

2

σ2
νe

+ T
D∑
e=1

log σν,e

}

=
1

2K

T∑
t=1

K∑
i=1

(yt,e − Ce x
i
t)

2 ∂σ−2
νe

∂ log σν,e
+ T

= − 1

K σ2
νe

T∑
t=1

K∑
i=1

(yt,e − Ce x
i
t)

2 + T = 0 (3.228)

⇒ T =
1

K σ2
νe

T∑
t=1

K∑
i=1

(yt,e − Ce x
i
t)

2

⇒ σ2
νe =

1

K T

T∑
t=1

K∑
i=1

(yt,e − Ce x
i
t)

2 (3.229)

We can also take the derivatives w.r.t. the other parameters and optimise these via gradient de-

scent.
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3.8.4 Implementation

As has been previously stated the goal we are trying to achieve is to learn a model for the observed

data which is as accurate as possible in as short an amount of time as possible. In this section we will

analyse some of the speed-accuracy trade-offs present in the particle EM approach.

There are four key algorithm-parameters (as opposed to model parameters) which affect the runtime

and modelling accuracy of the the PGAS-EM algorithm: the number of particles used in the particle

filter, the number of sampled trajectories drawn in each E step, the number of optimisation iterations

in each M step, and the total number of EM iterations used. Figures 3.33 and 3.34 demonstrated that

performance was insensitive to the number of particles used and so we will fix this parameter to a

hundred particles—the smallest number which we tested earlier. We now consider how the number of

samples drawn affects the runtime of the E and M steps.

Figure 3.35 shows how long the E and M steps take when drawing sampled trajectories of length twenty

time steps and with dimension varying from one to ten. The figure shows that the E step time increases

close to linearly with dimension whereas the M step increases closer to quadratically (this despite

the fact that both steps have a D squared operation in them—making D GP predictions with a D-

dimensional state). Both times theoretically will grow linearly with the number of sampled trajectories

drawn (until memory limitations come into play). However, the E step cannot be parallelised over

samples due to the conditional particle filter—each sample is conditioned on the previous and hence

they must be drawn sequentially. In the M step the samples can be considered simultaneously. This

means that when actually implemented the M step computation cost grows sub-linearly. This can be

seen in figure 3.35 by comparing the plots for 1, 10 and 100 samples. The relative time increase is

much greater for the E step than for the M step between these plots. For example, for a 4D system the

E step is considerably faster than the M step when we only draw a single sample, they roughly take

the same time if we draw 10 trajectories, and the E step is slower than the M step for 100 sampled

trajectories. Note that this effect disappears when we compare the plots for 100 and 1000 samples:

here the runtime has increased linearly for both the E and the M step. This is because we have already

exhausted the gains from parallelisation by 100 samples. In general we will be drawing more samples

for larger dimensional systems (due to the results in figure 3.34), therefore it is likely we will always

be in the regime where the M step takes longer than the E step.

We now look at how performance is affected by the number of sampled trajectories drawn. This is make

slightly more complex by the requirement for multiple observed trajectories in order to obtain enough

data to fit the model parameters satisfactorily. If we have multiple observed trajectories and a limited

computational budget to spend on samples then for each E step we could select a small number of

observed trajectories from which to draw many samples, or do the opposite and use all the trajectories

but only draw a very few samples from each. Or we can use a strategy in between, trading-off the

number of observed trajectories against the number of trajectories sampled from each. However, we

hypothesise that it will be better to take this trade-off to the limit and use all the observed trajectories,

even if this means limiting ourselves to very few sampled trajectories per observed trajectory. To test

this we collect multiple observed trajectories from three different systems, the 1D kink function, the

4D cart & pendulum system and the 10 dimensional unicycle system. We first draw a fixed number

of sampled trajectories from every observed trajectories and use these to train the model. Figure 3.36

shows the results.
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Figure 3.35: Wall clock times in seconds for the PGAS EM algorithm for a single observed trajectory
of 20 timesteps, drawing four different numbers of sampled trajectory and using 100 particles. Times
are averaged over 50 runs on a quad-core i7 running at 2.79GHz

Figure 3.36 shows that even when we only draw a few, say ten, sampled trajectories from each observed

trajectory we achieve comparable performance to the times when we draw many more trajectories (e.g.

one hundred). This supports the notion that few samples from more observed trajectories is better

than more samples from fewer trajectories. It is hard to draw conclusions about how fast the EM

algorithm converges from the figure as it varies strongly. For the 1D system we need around twenty

EM steps, for the cart and pendulum we seem to need closer to sixty, but for the unicycle we only

need ten to fifteen. We do not fully understand this discrepancy, but feel that it might be important

to understand the convergence of the algorithm if we wish to develop it further. In particular the

increase in test likelihood between five and ten EM iterations is particularly perplexing. It is pleasing

to see that there is no real evidence of overfitting ocurring.

3.8.5 Particle Stochastic Approximation EM

The particle EM algorithm described in the previous sections is very wasteful of samples — after

each M step update we must discard all previous samples and collect new ones. The stochastic

approximation EM (SAEM) algorithm, introduced in Delyon et al. (1999), was designed to improve

on this shortcoming. Recently, Lindsten combined the SAEM with his previously published PGAS

algorithm, exploiting the strengths of both methods to create a more sample-efficient particle EM

algorithm (Lindsten, 2013a). The basic idea of SAEM is to update an approximation to the Q function

in the M step after only completing a partial E step, that is only drawing a small number of sampled

trajectories (often just a single sample). In other words we do not wait until we have K samples

from the joint latent state distribution before we start optimising the parameters but rather start

optimisation using only a small set of samples. If we employ a damping (step size) schedule with the
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Figure 3.36: Training (left) and test (right) performance for the PGAS-EM algorithm as a function
of EM iteration number. The training performance is measured by the value of the M step objective
function, which is an approximate upper bound on the negative log marginal likelihood. The test
performance is measured by computing the test negative log probability according to equation 3.75.
Note that the test and training metrics are not directly comparable. The top row of plots show results
for the 1D test function, the middle for the 4D cart & pendulum test system, and the bottom the 10D
unicycle.

same conditions as usually applied in methods such as stochastic gradient descent then SAEM can be

shown to converge (under a few appropriate assumptions) (Delyon et al., 1999). In SAEM the M step

objective function, at the jth evaluation, is given by,

Q̂j(θ) = (1− γj) Q̂j−1(θ) + γj

Kj∑
i=1

log p(xi1:T , y1:T | θ) (3.230)
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where γj is a variable step size parameter satisfying,

∑
j

γj = ∞,
∑
j

γ2
j < ∞ (3.231)

and Kj is the number of samples we draw at the jth iteration.

For the application we are studying here, maximum likelihood in GP state space models, the particle

M step is actually more computationally expensive than the E step. Thus we don’t expect much

of a computational saving as a result of using SAEM methods. For this reason we will draw mul-

tiple samples (Kj > 1) at each EM iteration, which limits the number of M steps we perform. The

alternative, as suggested in (Lindsten, 2013a), is to set Kj = 1 and then use the complete weighted

system of particles from the particle filter to compute the new term in Q̂j. This is too computationally

demanding for our M step to compute.

We define γ̂kj to be the discount applied to the Q function evaluated on the sampled trajectory drawn

at the kth EM iteration given that we are currently on the jth EM iteration, with j ≥ k,

γ̂kj = γk

j∏
l=k+1

1− γl (3.232)

With this definition we can rewrite equation 3.230 as,

Q̂j =

j∑
k=1

γ̂kj qk (3.233)

where,

qk = −
Kk∑
i=1

log p(xi1:T , y1:T | θ)

= − log p(xi1 | θ) −
T∑
t=2

log p(xit | xit−1, θ) −
T∑
t=1

log p(yt | xit, θ) (3.234)

The transition term is,

Q̂SAEM
j,trans =

j∑
k=1

γ̂kj

 1

2Kk

Kk∑
i=1

T∑
t=2

E∑
e=1

[
(xit,e − me(x

i
t−1))2

se(xit−1) + σ2
ε,e

+ log(se(x
i
t−1) + σ2

ε,e)

]
+

E(T − 1)

2
log 2π


(3.235)

from which we can find β analogously to before,

β∗e =
(
κ̂Te κ̂e

)−1

κ̂Te χ̂e (3.236)

where we have stacked discounted versions of κ and χ from previous EM iterations,

κ̂e =


√
γ̂1jκ

1
e

...√
γ̂jjκ

j
e

 , χ̂e =


√
γ̂1jχ

1
e

...√
γ̂jjχ

j
e

 (3.237)
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To find the observation noise, consider,

Q̂SAEM
j,observ =

j∑
k=1

γ̂kj

 1

2Kk

Kk∑
i=1

T∑
t=1

E∑
e=1

(yt,e − Ce x
i
t)

2

σ2
νe

+ T

E∑
e=1

log σνe +
TE

2
log 2π

 (3.238)

∂Q̂SAEM
j,observ

∂ log σν,e
= 0

⇒ T

j∑
i=1

γ̂kj =
1

σ2
νe

j∑
k=1

1

Kk

Kk∑
i=1

T∑
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γ̂kj (yt,e − Ce x
i
t)

2

⇒ log σν,e =
1

2
log

∑j
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∑Kk
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∑T
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Kk

(yt,e − Ce x
i
t)

2

T
∑j
i=1 γ̂kj

(3.239)

Due to time restrictions and because the M step is likely to be the most limiting stage in the PGAS-EM

algorithm we do not include this variant in our comparisons. We would like to extend the experiments

in the future though to thoroughly test this proposed method alongside the other approaches.

3.9 Comparison

In this section we compare the methods which we have described previously in this chapter along with

the NIGP method from chapter 2, and a basic, order 1, GP auto-regressive model. This approach,

denoted ‘AR1-GP’, fits a standard GP to the data set {y1:T−1, y2:T }.

3.9.1 Theoretical comparison

NIGP (chapter 2) is not a state space model and so should perform worse than the four methods

outlined in the preceeding sections. However, it is much simpler and faster to run than any of them,

which could make it attractive in some applications. The non-EM approaches, the ‘Direct’ method and

the particle filter, do not have to perform smoothing over the latent state variables. The smoothing

step is considerably more complex than filtering as we only have a forward dynamical model available

— we cannot invert the GP. Thus it is a considerable advantage for the direct method and the particle

filter not to have to perform smoothing. Not only does it saves computation but, for the analytic

approach, it avoids having to make further approximations: the analytic EM algorithm makes pairwise

joint Gaussian approximations to the latent state posterior whereas the analytic direct approach only

makes marginal Gaussian approximations. The EM algorithm also makes an additional approximation

in the M step, where the expectation of a ratio is replaced by the ratio of the expectations. For both

EM algorithms, there is a strong dependency between the noise levels found in the M step and the

posterior distribution found in the E step: a high initial noise level means the posteriors have high

variance, which restricts the M step’s ability to reduce the noise variances. We found they also

struggle to differentiate between the two types of noise: process and observation. The direct gradient

descent methods do not separate out inference and parameter optimisation, and thus they avoid these

difficulties.

The EM approaches have the advantage of being able to solve for the pseudo-targets and observation

noise variance parameters. This greatly reduces the number of parameters that need to be optimised
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and hence improves the optimisation performance. For example, in the unicycle task we used fifty

pseudo-points, which means that the direct and particle filter methods had 780 parameters to optimise

(500 pseudo-targets), whereas the EM methods just had 270 parameters. Having said that, solving for

the pseudo-targets proved difficult to code in a numerically stable manner, which limited the advan-

tages which could be gained from this. The particle Gibbs approach also solves for these parameters

but does not have to make any of the approximations that the analytic EM method does. It does

have a potential scale issue in that one must sample a set of latent trajectories for every observed

trajectory. The M step then makes a GP prediction for every sampled transition (around 8000 in our

experiments), which could get costly. However, these predictions are very easily parallelised if need

be as they only consist of matrix multiplications.

Whilst the derivatives computed by the particle filter were found to be fairly robust, the function values

varied by a significant amount. This meant we couldn’t use the function values for optimisation: our

solution of using a derivative-only optimiser has the potential to go wrong if sufficient checks aren’t

put in place. We also found optimisation was very slow, even with BFGS gradient steps.

3.9.2 Computational Time

Each of the algorithms have a number of parameters which control their performance, for example the

number of particles to use or the number of optimisation steps to run for. We explored the effect of

various settings for these parameters in the relevant preceding sections. Here we select a setting for

each of these parameters based on those results: we set the parameters which give the fastest run time

whilst still being ‘close’ to the best performance possible for that algorithm. This is somewhat of a

subjective choice which will be dependent on how a particular user needs to trade-off computational

time and performance. The resulting settings are shown in table 3.4.

Table 3.4: Settings for various training parameters for each of the methods

1D function Cart & pendulum Unicycle

Direct
750 gradient descent

steps
350 gradient descent

steps
750 gradient descent

steps
ADS-EM 20 EM iterations 3 EM iterations 3 EM iterations

IS-EP-EM
10 samples, 4 EP
iterations, 6 EM

iterations

50 samples, 4 EP
iterations, 3 EM

iterations

1000 samples, 4 EP
iterations, 3 EM

iterations

PF
5000 particles, 250

gradient descent steps
1000 particles, 1000

gradient descent steps
1000 particles, 1000

gradient descent steps

PGAS-EM
10 samples, 20 EM

iterations
25 samples, 60 Em

iterations
25 samples, 15 EM

iterations

Running time is an important metric for these algorithms if they are going to be used in real applica-

tions. It is hard to objectively judge however as it is very dependent on implementation. We report

complete algorithm run times in table 3.5 for comparison, although these results should be treated

carefully as they will vary a lot for different machines and implementations. We used up to six parallel

computation threads where possible to increase speed, although the use of parallelisation could be

greatly expanded if the necessary hardware is available. The times in table 3.5 are disappointingly

slow in comparison to the standard GP. However, our algorithms are by no means optimised and there

could be significant time gains to be made. The EP-EM method has a smaller than expected run time
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due to its tendency to overfit. This meant we greatly reduced the number of EM iterations it used (to

only three for the cart & pendulum, and unicycle tasks). The EM performance results in section 3.6.5

surprisingly showed the best performance came with only a small number of samples, which again

greatly helps its running time. The particle filter is the slowest to run, although potentially could

benefit the most from parallelisation.

Table 3.5: Training times in minutes. For a comparison of the E and M steps see figures 3.25 and 3.35
in the relevant sections.

Method 1D function Cart & pendulum Unicycle

AR1-GP 0.01 0.07 0.26
NIGP 0.04 1.02 3.59
Direct 4.62 26.5 366
ADS-EM 6.21 16.1 80.1
IS-EP-EM 1.95 18.7 81.5
PF 6.37 489 2016
PGAS-EM 0.504 63.4 100

3.9.3 Learnt Noise Levels

The state space models learn values for the process and observation noise variances (or rather the

log of their standard deviations). The standard GP model and NIGP both learn a single set of noise

variances, which can be thought of as observation noise. We can use the learnt values of the noise

parameters to analyse the modelling performance of each method. Accurately deducing the amount

of noise present in the system suggests that the model has accurately captured the true latent signal

within the data, which implies it is a method performing well. If a model overestimates the amount

of noise it is likely to be underfitting the signal, whereas a too small learnt noise variance indicates

probable overfitting. Table 3.6 shows the percentage error in the learnt total noise standard deviations

for each of the methods on the three test data sets. The total noise standard deviation is the square

root of the sum of the process and observation noise variances. We combine the two types of noise for

two reasons: firstly we are interested here in the split between noise and signal rather than between the

two different types of noise. Secondly, the standard GP model and NIGP do not differentiate between

process and observation noise and so it makes for a fairer comparison for these approaches.

In general the worst performing algorithm is the standard GP regression model, mapping directly

from yt−1 to yt without using the state space model. Because of this it dramatically overestimates

the noise levels. NIGP still does not use a state space model but it does take into account noise on

the inputs and thus is able to dramatically improve over the standard GP, it even occasionally finds

the most accurate estimate of the noise levels. The direct gradient descent via moment-matching

algorithm, mostly produces accurate estimates of the noise. It does tend to overfit slightly, however,

more often than not underestimating the amount of noise present. The analytic EM methods tend to

overestimate the noise, sometimes by a considerable amount. The sample-based version of EP does

show improvement over the purely analytic version however; this is particularly noticeable for the cart

and pendulum data set. The particle filter overall performs well, it finds the most accurate estimate

for the 1D function, but tends to be slightly more unreliable for the 10D unicycle – achieving the best

result for the yaw angular velocity but then dramatically overestimating the noise for the wheel angular
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Table 3.6: Percentage errors in learnt total noise standard deviations (combining process and observa-
tion noise where they are learnt separately) for the 1D kink function, the 4D cart & pendulum system,
and the 10D unicycle system. The top row of numbers shows the true noise standard deviations and
the lower rows the percentage error in the learnt value for each of the methods. Negative values
indicate the method underestimated the noise level.

Cart & Pendulum
1D kink

θ̇ ẋ x θ

True 0.5600 0.1000 0.4000 0.1745 0.0175

AR1-GP 164 109 74.8 119 137
NIGP 16.1 3.72 7.57 1.96 -2.40
Direct -8.45 0.232 -6.45 -6.61 -14.0
ADS-EM 16.4 213 28.8 69.3 133
IS-EP-EM 13.8 -4.40 -11.4 -3.34 -3.99
PF 5.10 1.24 -6.55 -7.17 -14.1

%
E

rr
or

PGAS-EM 9.52 -3.70 -10.9 -7.03 -12.5

˙Roll ˙Yaw ˙Wheel ˙Pitch ˙Flywhl x Pos. y Pos. Roll Yaw Pitch

True 0.1164 0.1164 0.1164 0.1164 0.1164 0.0100 0.0100 0.0175 0.0175 0.0175

AR1-GP 39.3 16.1 539 196 45.2 230 122 76.8 52.0 164
NIGP 22.3 25.1 -37.2 1.12 7.31 48.6 31.2 -13.3 0.44 -4.23
Direct 0.879 51.2 -22.9 8.82 -5.71 -0.448 -3.68 -8.12 -41.1 -1.49
ADS-EM 69.5 46.2 416 166 39.1 213 103 55.3 38.6 106
IS-EP-EM 57.9 46.5 382 141 32.4 186 88.8 45.5 30.2 99.3
PF 20.9 7.48 430 104 18.1 166 69.5 57.3 37.3 93.2

%
E

rr
or

PGAS-EM 4.52 39.7 -13.9 -3.40 -0.761 37.3 16.5 0.829 -21.7 9.55

velocity. PGAS provides the most reliable estimates of the noise, always finding values within 40%

of the true values, a small range than the other approaches. It performs, comparatively, particularly

well on the unicycle dataset, which is perhaps unexpected for a sampling based algorithm.

3.9.4 Predictive performance

We test the methods on the three data sets we have been using in this chapter. The 1D function,

consisting of a close-to-linear rise followed by a sharp kink, is very difficult to learn with linearised

methods such as the EKF: the result of a filtering/smoothing step is highly dependent on whether the

system is linearised on one side of the kink or the other. This also causes significant problems for the

E step of GPIL, as discussed in section 3.6. Figure 3.37 shows the learnt latent transition functions

for the four ‘parametric-GP’ methods. The analytic direct optimisation approach is over-confident,

underestimating the process noise. The two EM approaches suffer from the opposite problem, over-

estimating the process noise, particularly the particle EM method. Note however, that the estimated

total noise level, process plus observation noise, as shown in table 3.6 has the analytic EM approaches

overestimating the noise by a larger amount than the particle EM method. This implies that the

analytic EM approaches particularly overestimate the observation noise whereas the particle EM ap-

proach overestimates the process noise. The particle filter gives an excellent estimate for the process
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noise and is the only method to correctly fit the tail of the transition function on the right hand side.
x

t

x
t−1

x
t

x
t−1

Figure 3.37: The learnt latent transition functions for the 1D data set for the four different methods.
Top row: analytic methods, bottom row: sampling; left column: direct optimisation, right: EM.
The narrow green ‘kink’ function is the true latent function, the shaded region showing two standard
deviations of process noise. The red function is the learnt transition function, with the shaded region
showing both uncertainty about the function and process noise. The blue crosses represent the observed
transitions, shown to illustrate the task complexity.

To quantify predictive performance, we first look at one-step-ahead predictions using the same test

metric as before (equation 3.75). Figure 3.38 shows the comparative results over each of the twenty

test trajectories for each system, and over the repeats for each of the stochastic methods. As we would

expect, the standard GP is outperformed in nearly all cases by each of the other methods (the only

exception being the particle filter on the unicycle data set, which suffers from the high dimensionality

of the system — see figure 3.29). Also as predicted, the NIGP method outperforms the classic GP but,

in turn, cannot match the performance of the state space models (again excepting the particle filter

on the unicycle data). Out of the state space models it is the direct, moment-matching, optimisation

approach which most regularly produces the best results. The particle filter’s performance is strongly

dependent on the dimensionality of the system, achieving worse results as the dimension increases. It

particularly struggles with the unicycle data set where it can only achieve comparative performance

with the standard GP regression model. We expected it to perform better on the kink function

dataset, given that it was the only method to correctly deduce the shape of the right side of the

function and it produced the most accurate estimate of the noise variances. The variance in its fit

is too large however, figure 3.38 shows that its comparative performance with the other state space
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models straddles both sides of zero — it has instances of outperforming the other models but also of

under-performing. Figure 3.39 shows the worst (left) and best (right) models learnt using the particle

filter, with identical training data and set up. These models have a log test probability score of -1.06

and -0.638 respectively, with the direct method getting -0.684, which lies in the middle. Increasing

the number of particles may increase the consistency of the particle filter although this method is

already nearly 50% slower than the direct method (table 3.5). The two EM approaches struggle

with consistency for the cart and pendulum data set, both have a large number of outliers where

performance was very poor. It is not completely clear why the EM methods in particular have been

affected in this way.

A typical use of a dynamical system model is to simulate the system over a number of time steps.

Despite this, in the literature dynamical models are rarely tested in this way — mostly they are only

tested using one-step-ahead predictions. Therefore, we also use a more rigorous testing regime by

using each model to iteratively predict an entire system trajectory over a set horizon. To do this we

make use of the GP predictive equations for a Gaussian distributed test input 1.28. Although the

resulting predictive distribution is non-Gaussian we can compute the correct moments analytically.

We thus moment-match a Gaussian to the predictive distribution, which allows us to predict the

next transition with the same Gaussian test point predictive equations. Iterating these steps over the

trajectory length gives us a complete set of Gaussian distributions on the state at every time step.

This moment-matching approach, suggested in Girard et al. (2003), will be used in chapter 4, which

makes these results all the more important. The predictive distributions are evaluated against the true

distribution of observations in the same way as for the one-step-ahead predictions. Each model is given

the same training set consisting of a number of observed trajectories. A separate set of trajectories is

used at test time. We assume that the system starts each test trajectory in a known state; each model

then simulates the system over the remaining time steps. For the systems with control variables, the

control policy/law is provided to the models, from which they can generate controls at each time step

based on their belief about the system state.

Figure 3.40 shows the frequency with which each method achieved a particular rank on the test

trajectories for the three different test systems. Better performances are indicated by larger circles at

ranks closer to 1. Table 3.7 summarises the figure by listing the average rank of each method for each

data set. For the one dimensional kink function, the direct method achieves the best results most

consistently, with the particle EM in second place. NIGP performs the worst, which is likely to be a

consequence of the linearisation failing around the sharp kink in the function. The results are more

mixed for the cart and pendulum system, although the direct method still comes out on top. NIGP

performs very well on this dataset, as does the particle filter, although it again is very inconsistent —

regularly being either the best or the worst model. This is similar to the particle EM model, which

suggests that it is a feature of the sampling approaches rather than a lower level implementation issue

causing this instability. The EP-EM method has a significant drop in performance on this dataset

compared to how it does on the other two, although it is not completely clear why this is. The

ten dimensional unicycle dataset proves to be very difficult for the two sampling methods to model,

with the particle filter performing the worst of all the models. This is strongly related to the path

degeneracy problem: although we have 1000 individual samples at the end of the particles’ trajectories,

if we trace these back to the first time step we find that we only have ten to fifteen separate paths

at that point. This is far too few to perform reliable estimates of the expectations in ten dimensions.
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Figure 3.38: Comparative boxplots for one-step-ahead predictive performance. Each plot shows how
the method listed on the row compares against the method listed on the column for the three test sets.
A box plot coloured green indicates that the row method outperformed the column method in over
75% of trials, whilst a red box indicates the opposite. The test NLP values were normalised against
the standard GP, such that the numbers on the y-axis indicate the difference between the approaches
as a fraction of the standard GP’s performance.
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Figure 3.39: The worst (left) and best (right) models learnt by the particle filter approach using the
same number of particles (5000), the same number of optimisation steps (250), and the same starting
configuration. Best and worst is determined by the one-step-ahead test log probability statistic used
throughout this chapter.

The direct method once again performs best, with the analytic EM approach in second place. This

highlights the advantages of analytical approaches in high dimensions.

Table 3.7: The average rank (lower is better) for each method over all test trajectories on each data
set.

Data set GP NIGP Direct IS-EP-EM PF PGAS-EM

1D 4.35 5.26 2.00 2.81 4.34 2.24
Cart & Pend. 4.16 3.39 2.16 4.12 3.57 3.60
Unicycle 4.05 3.15 2.00 2.63 5.03 4.14

3.10 Conclusion

In this chapter we have presented and compared a number of different approaches to learning in

Gaussian Process state space models. All the state space models we investigated involve introducing

a set of pseudo-points, often termed inducing points, to the GP formulation, which allowed us to

treat the GP latent function values in a Bayesian manner. Apart from the ‘fully Bayesian’ approach

(Frigola et al., 2013) all the methods we looked at use maximum likelihood optimisation to solve the

GP hyperparameters. The variational approach we discussed in section 3.4.4 allowed for a Bayesian

treatment of the pseudo-targets, finding a posterior distribution over them and integrating them out.

Due to time constraints we were limited in our investigation of this approach, although preliminary

results on the one dimensional function showed it was under-fitting. In the remainder of the chapter

we treated the pseudo-targets as parameters and investigated four different methods for fitting the

resulting state space model: direct gradient descent on an analytic approximation to the marginal
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Figure 3.40: Simulation test performance on the three test data sets, in order from top to bottom: 1D
function, cart & pendulum, unicycle. The circle size shows the number of times a method achieved a
particular rank, relative to the other methods, over a set of 20 test trajectories and random repeats
for the stochastic methods. Colour further denotes rank, thus a large green circle at rank 1 indicates
good performance. See table 3.7 for average ranks.

likelihood, an approximate-analytic EM algorithm using a variety of inference methods including

expectation propagation, direct gradient descent using a particle filter to estimate the derivatives of

the marginal likelihood, and a particle EM method using a particle Gibbs algorithm in the E step.

Each of these methods have their own strengths and weaknesses and their relative performances were

found to be strongly dependent on the dataset to which they were applied.

The novel, analytic, direct optimisation method tended to underestimate the noise levels for lower

dimensional, or simpler, problems. Where this is not a problem it performed consistently well and

was the method which performed the best on the most number of data sets. The Gaussian moment-

matching did not appear to cause a strongly detrimental effect that we could detect, although there

may be other datasets where this becomes more apparent. The direct method also avoids having to
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run smoothing over the latent states, which is a large advantage when compared to the EM methods.

Of all the approaches we looked at, the analytic EM methods were the most complex: combining

importance sampling, expectation propagation, and the EM algorithm. The introduction of sampling

into the EP stage gave some significant improvements for the lower dimensional problem but caused

numerous problems with numerical stability as well as a non-negligible computational cost. That

said, the method performed particularly strongly on the kink function and the unicycle data set,

suffering a currently unexplained drop in performance on the cart and pendulum system. Its splitting

of inference and learning into two stages allowed us to solve for the pseudo-targets directly, which is a

strong advantage, although this approach can also lead to slow convergence, particularly of the noise

levels. However, it does make the most approximations of all the methods, and our results showed it

had a very strong tendency to overfit, so care should be taken with this approach.

The particle filter can be very effective, producing the best performing models for lower dimensional

systems. However, its performance is incredibly variable — it also produces the worst performing

models on the same data set. It is not completely clear as to the cause of this variance, it does

not seem to be just too few particles as there was no increase in performance from five thousand

to ten thousand particles for the kink function (see figure 3.29). Its greatest difficulty is finding

an appropriate search direction for optimisation as steepest descent leads to poor performance and

the gradients are somewhat noisy, which limits the effectiveness of BFGS-style methods. It suffered a

significant drop in performance for the ten dimensional unicycle system, indicating that its application

is very problem specific and care must be taken with its use. It was also easily the slowest method

to train (3.5), although it is easily parallelised. The particle EM approach combines the advantages

of using EM, namely solving for many of the parameters, with the advantages of a particle approach

(lack of approximations), while avoiding many of the disadvantages of both. The only approximation

it has to make is that of using samples in the E step; these samples are then fixed in the M step, thus

avoiding the gradient instability of the particle filter. Despite this the results were broadly similar to

the analytic EM approach and not as strong as expected. It also proved to be fast to train, although

it required a much larger number of EM steps to fit the cart and pendulum dataset than might have

been expected. In section 3.8.5, we discussed an extension to this approach, the particle stochastic

approximate EM algorithm (Lindsten, 2013b), which we did not compare to due to time restrictions

but which may well improve results.

As well as introducing a powerful novel method of modelling GP state space models, we have demon-

strated some of the strengths and weaknesses of a broad range of modelling approaches, something

often lacking in the literature. Although the direct method produced the best results in our exper-

iments, there is enough variability to suggest other methods may perform better on different data.

Thus this chapter shows the benefits of a careful choice of a modelling strategy to suit the system of

interest, rather than a single beats-all method.

Although the comparisons in this chapter have been somewhat lengthy, they are far from the definitive

word on these models, and there is much still to be investigated. In particular we would like to extend

the analysis of the variational approach and test it on the higher dimensional datasets, and run the

Bayesian method of Frigola et al. (2013) on the test datasets. All the methods need an overhaul in their

implementation to provide computational gains and we need to investigate the numerical stability and

overfitting issues in the approximate-analytic EM approach. Given the power and general applicability

of Gaussian Process state space models we expect this to be an important and fruitful area of research
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for many years to come.



Chapter 4

Machine Learning for Control

4.1 Chapter Overview

In this chapter we look at a control policy learning framework developed over the last few years

to optimise a control policy for a plant based purely on measurements. This framework has been

published under the name of ‘PILCO’ (Probabilistic Inference for Learning COntrol) (Deisenroth and

Rasmussen, 2011; Rasmussen and Deisenroth, 2008; Deisenroth et al., 2014; Deisenroth, 2009). We

highlight a number of weaknesses in the framework as published, particularly when the system to be

controlled has even a moderate level of observation noise. We then apply a GP state space model

method from chapter 3 and show that it vastly improves the control learning algorithm. We also

investigate two further aspects of the framework and show how these could be advanced in future

research to bring additional improvements to the framework.

The main contribution of this chapter is improving PILCO to work on systems with significant obser-

vation noise, a common situation it could not tackle adequately before. The PILCO framework has

been developed in collaboration with a number of others, however the work presented from section

4.5 onwards is entirely original.

4.2 Background

The field of control theory is often said to have started with James Clerk Maxwell’s 1868 paper

‘On Governers’ (Maxwell, 1867). Since then the design and implementation of control systems has

become essential to our everyday lives: manufacturing and mass production, power generation and

distribution, transport, communications, and computing, among many, many other applications, all

rely on numerous controllers. As our processes become ever more complex the task of designing

satisfactory controllers becomes increasingly difficult. The vast majority of controller design techniques

in the control field revolve around the mathematical analysis of a parametric model of the plant to

be controlled. This model is most commonly built from first principles and knowledge of relevant

laws and equations describing the plant dynamics, which represents a significant barrier to overcome

before controller design can even start. An incredible amount of time and effort is invested in building

increasingly complicated models of modern processes in order to facilitate controller design.

147
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Once a model has been built, common controller design methods include loop-shaping and ‘optimal’

control methods such as the linear quadratic Gaussian regulator (LQG), or model predictive control

(MPC) (Maciejowski, 2002). In ‘optimal’ control, the control policy is designed to minimise a specified

loss function given the model of the plant’s behaviour. For example the time-invariant, discrete-time,

linear quadratic Gaussian regulator assumes a linear model of the form,

xt = Axt−1 + Bt−1 ut−1 + εt

yt = C xt−1 + νt
(4.1)

where εt and νt are Gaussian noise vectors. It then finds a controller, ut = −L x̂t, where x̂t is the

Kalman filtered state, which minimises the quadratic loss,

J = E

[
xTT F xT +

T−1∑
t=1

xTt Qxt + uTt Rut

]
(4.2)

If the plant’s dynamics are perfectly described by equation 4.1, the true loss is quadratic, and there

are no constraints or restrictions on either the state or the controls then the controller so designed is

optimal. As one might expect, these criteria are rarely met for anything other than very simplistic

systems.

Model predictive control is a more complex form of ‘optimal’ control, introduced in particular to

handle constraints and nonlinear dynamical systems. Once again a particular parametric model for

the plant is assumed but this time it is used to predict the system trajectory from the current state

for a set number of time steps into the future, termed ‘receding horizon’. The control actions at each

time step are then optimised to reduce a specified loss function. Once the optimisation has finished

the resulting control action for the current time step is actuated and then the optimisation begins

again at the next time step with new measurements. The optimised controls for future time steps are

discarded, or used to initialise optimisation at the next step. As the optimisation must run online

within one time step there is a computational limitation in the complexity of the dynamical model

used and in the simulation horizon length. With modern computing power however, MPC has been

successfully implemented in industry for control of complex plants.

A weakness of all the above methods is that they require a model of the plant to be pre-specified

and then use this model to design the controller. Designing these models often requires significant

domain knowledge to understand the underlying principles of the plant’s dynamics and thus model

them. Even with such knowledge the almost fractal-like complexity of real systems necessitates making

modelling assumptions and idealisations. For example, consider the simple cart and pendulum system

(see section 1.7.1) we can model the high level dynamics simply enough with Newtonian mechanics.

However, we could then model the dynamics of the motor and its shaft, the response of the cart sliding

along the rail, the flexibility in the cable attached to the cart and in the pendulum arm, or the effects

of friction and ‘stiction’. On top of this, will usually assume the pendulum, mass, and cart are each of

a uniform density and are attached to one another perfectly symmetrically. All of these assumptions

can be wrong and these errors will cause the true plant to behave differently to the model. In fact, it

will rarely be the case that the model captures the true dynamics of the plant and these model errors

can cause severe problems — controllers which successfully stabilise the model might not stabilise the

real plant. The area of robust control attempts to reduce these problems by considering disturbances

to the state and perturbations to the model and ensuring stability for a certain size of model error.
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The weakness with this approach is that it usually only considers errors with a certain form or that

are within the model class, i.e. if the model is linear then a controller might be found to stabilise the

system,

xt = Axt−1 + B ut−1 + εt + F wt (4.3)

where wt is some additional noise which can be correlated with the state and F is how this noise is

assumed to affect the dynamics. Alternatively we can consider the structured error

xt = (A + ∆A)xt−1 + (B + ∆B)ut−1 (4.4)

however, if the true dynamics are nonlinear then the size of perturbations ∆A and ∆B required to

capture the true plant is likely to be very large. For example, consider figure 4.1, which shows a true

plant transition function and a linear model of it. By eye the model looks close to the true plant’s

dynamics, however, the right hand plot shows a trajectory from each of these transition functions

which are completely different. In order to capture all possible true trajectories within this input

space by perturbing the offset term in the linear model we would have to consider all linear models

within the dashed red bounds. This can lead to a very conservative controller.
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Figure 4.1: Illustration of the effect of model errors on trajectory prediction. The left plot shows the
true nonlinear transition function in green and the linear model of the plant in blue. Whilst these
look visually similar they lead to very different trajectories as shown in the right hand plot. In order
to capture the true trajectory in a predicted set by considering perturbations to the linear model’s
offset parameter we would need to use all models within the red dashed lines.

Model predictive control has some inherent robustness as the controls to be applied are optimised in

an online fashion, at each time step, and are based on the most recently acquired observations. Model

errors have the largest effect over a long time horizon where they are compounded by making multiple

predictions from the model. MPC only requires the model to be accurate for a short time horizon and
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thus it can avoid the difficulties that an offline designed controller suffers from. However, model errors

can still cause its performance to degrade and it should be noted that its claim to be an ‘optimal’

control method is based on the accuracy of its dynamical model.

A different approach is that of adaptive control (Landau et al., 2011), which seeks to adapt either

the control policy or the plant model online in order to improve performance. Adaptive control

methods can be broadly split into two approaches: indirect and direct. Direct, or model-free, methods

attempt to adapt the control policy directly as actions are taken and new measurements are made

(Kaufman et al., 1998). The key method in direct adaptive control is Model Reference Adaptive

Control (Whitaker et al., 1958; Parks, 1966), which attempts to adjust policy parameters to reduce

the error between the actual plant output and a desired output. Whilst direct adaptive control

methods have been applied to numerous industrial applications, they cannot always be used: for

example, many of the elegant theorems are based upon the use of a minimum-phase linear model of

the plant, which can be very restrictive (Landau et al., 2011). Indirect adaptive control attempts to

adjust the parameters of the dynamical model as measurements are made in order to better capture

the plant’s dynamics. This idea has been around for a long time, for example an early reference

is Kalman (1958). A popular approach for many years is that of self-tuning regulators (Åström and

Wittenmark, 1973); these adjust the model’s parameters so as to minimise a predictive metric (e.g. the

squared distance between predicted and observed trajectories) and then redesign the controller based

on a regularisation scheme such as LQG or minimum-variance control. In all these adaptive schemes

there is a trade off between controlling the plant satisfactorily and exploring the state space so as to

improve the dynamical model and advance the control policy, this is often termed the exploitation-

exploration trade-off. In the control field, this trade-off was formalised with the introduction of dual

control theory (Feldbaum, 1960). Dual control methods are often intractable to apply directly and

thus rely on approximate approaches.

The field of adaptive control is strongly related to the field of reinforcement learning (Sutton et al.,

1992; Sutton and Barto, 1998). Like adaptive control, reinforcement learning can be broadly split into

two categories: model-free and model-based learning. In model-free learning we attempt to learn a

control strategy without building a model of the state dynamics. This is most commonly achieved by

instead modelling the value function, which maps from a state (or state-action pair) to the long-term

loss that would result from being in that state (and taking that action). There is a distinction here

between the immediate loss (or reward) that might be gained from being in a state and the cumulative,

long-term value that results from being in a state at the current time. It is this longer term value

which is captured by the value function. The most well known model-free method is that of temporal

difference (TD) learning (Sutton, 1988), made famous by the successful backgammon playing algorithm

‘TD-Gammon’ (Tesauro, 1995). These approaches can be very successful for complex, branching

trajectories such as those found in backgammon but where the total number of states and actions

is manageable. However, for very large state and input spaces it can become extremely difficult to

learn the value function without requiring inordinate amounts of data and computation time (tens

or hundreds of thousands of trials are not uncommon). In such cases model-based learning can be

more effective (Atkeson and Santamaria, 1997). Model-based learning generally requires more offline

computation as a dynamical model must be learnt as well as a policy, however this (usually) allows

effective policies to be learnt from fewer interactions with the plant.

The success or failure of model-based learning is strongly dependent on the accuracy of the model used
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to capture the plant’s dynamics. If this is chosen to be a deterministic model then we once again suffer

from the model-errors problem illustrated in figure 4.1 — the model is biased and thus resulting control

policies can perform poorly. It is therefore essential that any model trained on data is able to represent

its uncertainty rather than just making a prediction. This strongly suggests the use of a probabilistic

model inside model-based methods. The strengths of this approach were emphatically demonstrated

when it was used to learn to fly a helicopter through numerous acrobatic manoeuvres (Kim et al., 2003;

Ng et al., 2006). Two proposed approaches for policy learning, which both use stochastic nonlinear

models, are PEGASUS (Ng and Jordan, 2000) and PILCO (Deisenroth and Rasmussen, 2011). In

PEGASUS, a number of transition functions are sampled from the stochastic model and used to

predict future trajectories under the influence of a control policy. This policy is then optimised to

produce the lowest cost, averaging over the trajectories. PILCO uses Gaussian Processes to model the

dynamics and builds a Gaussian distribution over the predicted state trajectories before optimising

the control policy to find the minimum expected cost.

In this chapter we examine the PILCO framework and build upon it to improve some of its key

weaknesses, particularly in the area of observation noise.

4.3 The Control Learning Framework

In this section we describe the PILCO control learning framework. The core components of the

framework are:

1. The system state, x In classical control theory, the system state is defined to be the set of

system variables which renders the transitions Markov i.e. those variables which capture all the

historical information necessary to determine the system’s future behaviour. If we already have

a mathematical model of the system’s dynamics then, in most cases, the state can be derived

from the properties of this model. However, in the machine learning approach we do not have

such a model available and are unlikely to know which variables we need to include in the state

(there might also be prohibitively many of them). We therefore use a less precise definition: the

system state is the collection of variables required to predict the system’s evolution to within a

required accuracy, in union with the variables required to compute the control action(s), and to

compute the loss. Even once we have chosen a set of variables to be the state, in most cases we

won’t know their values exactly and so we will represent our belief over the state’s value with a

Gaussian distribution,

xt ∼ N (µxt , Σxt) (4.5)

2. The loss function, L(x) The loss function contains the goal of the control task and returns

a value depending on how far away the current state is from that goal. Given that the system

state can be uncertain we require that the loss function be chosen such that we can compute the

expectation over the state in closed form,

L̄t = Ext∼N (µxt ,Σxt )
[L(xt)] (4.6)

We also require that the loss function be differentiable so that we can optimise the control policy

parameters via gradient descent. Suitable loss functions include linear, quadratic, a saturating



152 CHAPTER 4. MACHINE LEARNING FOR CONTROL

loss function such as 1− exp(−(xt−z)T W (xt−z)) (where z is the target state and W is a weight

matrix), RBFs or, for a one dimensional state, a hinge loss function. The exact choice of loss

function form will depend on the problem being solved: for example, a regularisation problem

(such as the unicycle discussed later) is suited to the saturating loss function centred on the

target state; whereas a maximisation-type control problem, such as trying to drive a car as fast

as possible, would be suited to a linear loss function on speed.

The above loss function is placed on the system state, x, however we can also place loss func-

tions on the applied control actions or the parameters of the control policy. We can also

introduce an exploration-exploitation trade-off by adding a term based on the uncertainty,

Vxt∼N (µxt ,Σxt )
[L(xt)]. This is discussed in more detail in section 4.4.

3. The control policy, π(x, θ) The control policy maps the current state, xt to the control

action to be applied, ut. It can take the form of any parametric function, linear or nonlinear,

providing that we can compute in closed form the output moments for a Gaussian distributed

state vector,

µut = Ext [π(xt,θ)] , Σut = Vxt [π(xt,θ)] (4.7)

and the mapping is differentiable. The goal of the entire framework is to find the setting of the

control policy parameters θ, which minimises the sum of the expected losses over a fixed time

horizon, T ,

θ∗ = arg min

T∑
t=1

Ext∼N (µxt ,Σxt )
[L(xt)] (4.8)

Typically we use either a linear control policy, a Gaussian RBF, or a mixture of the two, although

there are numerous other suitable forms.

4. The dynamical model, f(x, u) The dynamical model is used to simulate the plant to allow

a control policy’s effectiveness to be evaluated without needing to interact with the real system.

The dynamical model maps from the current state and an applied control action to the state

at one time step later. Complete predicted trajectories can be found by chaining several such

predictions together. As we are using a data-driven approach we fit the dynamical model directly

from the observed data, although this does not preclude us from encoding prior knowledge of

the plant into the model. The dynamical model needs to satisfy a number of requirements; it

must be able to:

• Handle nonlinear dynamics — the motivation behind this approach is to be able to find

controllers for complex nonlinear systems, thus the dynamical model must be able to fit

such systems.

• Quantify its predictive uncertainty — as the model is fit to data it will only be accurate in

the region of the observations. However, during policy optimisation (described below) the

model may be required to make predictions at points far away from any observed data. If

the model is not able to indicate that its resulting prediction is very uncertain then control

policy training can be extremely slow or fail altogether.

• Make predictions with an uncertain test point — we will nearly always be uncertain about
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the exact current state (as a direct result of the above point) and so the dynamical model

must be able to handle and propagate this uncertainty correctly. In most cases this means

we need to be able to analytically compute,

µxt = Ext−1,ut−1
[f(xt−1,ut−1)] , Σxt = Vxt−1,ut−1

[f(xt−1,ut−1)] (4.9)

• Be differentiable We wish to optimise the policy parameters via gradient descent and thus

we must be able to compute the derivative of the next state prediction w.r.t. the input

state.

A principled and powerful model which satisfies these requirements is the Gaussian Process

(Rasmussen and Williams, 2006). A GP can model highly nonlinear functions, it is a stochastic

model which provides Gaussian predictive distributions, with some restrictions on the allowed

covariance functions we can compute predictive moments for a Gaussian distributed test point

Girard et al. (2003), and the resulting predictive moments are differentiable w.r.t. the input test

point (or its moments). The framework does not require the use of a GP but we have yet to find

a more suitable model.

Figure 4.2 illustrates the high level steps in the control framework.

1) Acquire initial
system measurements

2) Train
dynamical model

3) Optimise policy

4) Apply policy to
obtain new data

Figure 4.2: Diagram of the high level steps of the control learning framework. Once we have some
initial data we can train a dynamical model and optimise the control policy. From this point we can
collect more data and then iterate the procedure to improve the dynamical model and control policy.

1. Acquire initial system measurements We need some initial data from the system in order

to start training. This data can be acquired in a number of ways: for example by application of

random controls or a random control policy, or by use of an existing controller.

2. Train dynamical model As discussed above the model of the plant’s dynamics is a key

component of the framework. In this step the observed data is used to construct this dynamical

model.

3. Optimise policy The dynamical model is used to simulate the plant’s behaviour under the

current control policy. The policy parameters are then updated to reduce the expected loss

incurred.

4. Apply policy to obtain new data After the policy parameters have been optimised the

new policy is applied to the plant to obtain further training data. This data is used to update

the dynamical model and then find a new policy.
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We now look at steps 2 and 3 in more detail.

4.3.1 Training the dynamical model

The dynamical model maps the current state and control action to the state at the next time

step,

xt = f(xt−1,ut−1) + εt (4.10)

where ε is a zero-mean Gaussian noise vector (process noise). We will model the dynamics with a

Gaussian Process,

f ∼ GP(m, k) (4.11)

where m(x) is the GP mean function and k(xi, xj) is the covariance function. We will mostly be

modelling multi-dimensional systems, x ∈ RD and thus we will use D independent GPs to model the

mapping from the inputs to each output dimension,

xit = fi(xt−1, ut−1) for i = 1 . . . D (4.12)

fi ∼ GP(mi, ki) for i = 1 . . . D (4.13)

We will usually set the GP mean function to be the identity function such that the the relevant input

variable is passed to the output,

mi(xj) =

1 if i = j

0 otherwise
(4.14)

which means that the GP models the change in state rather than the absolute state value. Providing

the time step isn’t too long compared to the system time constants, the current state is usually

a reasonable estimate for the next state and so this choice of mean function tends to lead to better

performance than using a zero mean function. As stated above, we will need to evaluate the predictive

output moments of the dynamical model for the case of Gaussian input points, which limits the choice

of covariance function. We will use the ‘squared exponential’ function in this chapter as it leads to

a flexible class of models whilst keeping the mathematics simple. For future work we would like to

investigate more widely the class of covariance functions we could use to see if there is a better choice

— the squared exponential kernel imposes smoothness constraints which are mostly too strict for the

systems we are modelling.

In real-world systems we will rarely be able to observe the true state directly. We therefore define the

observations made at time t to be yt, and introduce an observation function to account for this,

yt = g(xt) + νt (4.15)

where νt is a zero-mean Gaussian noise vector, referred to as the observation noise. We argued in
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section 3.3 that we can always define our state x such that the observation function is linear,

g(xt) = C xt (4.16)

In fact, in all the systems we will consider in this chapter we observe all the state variables up to noise

corruptions, and so we will set C = ID, where ID is the D-dimensional identity matrix. Considering

systems which include completely unobserved state variables is an extension we are keen to explore in

the future.

We are now faced with training a Gaussian Process dynamical model based on noisy data, which

is exactly the problem considered in chapter 3. In the previously published work on this control

framework the noisy observations y were simply substituted in for the latent states x when training

the GP. That is, a training set was produced such that,
y1, u1

...

yT−1, uT−1

 GP−−−−−→


y2

...

yT

 (4.17)

As was discussed in the previous two chapters, ignoring the effect of noise in the inputs of the GP

can lead to very poor modelling performance. In section 4.5 we will use techniques from chapter 3 to

improve the performance of the control learning framework.

4.3.2 Optimising the policy

Optimisation of the policy is based on simulation of the plant using the dynamical model. There are

two compelling reasons for taking this approach,

• Using a data efficient model to simulate the true plant means that a controller can be learnt

with very few interactions with the real system — something which can be costly and time

consuming.

• Use of a differentiable model means that the policy can be learnt using gradient optimisation

methods, which are greatly preferable to gradient-free methods. This would not be possible if

we evaluated a policy by applying it to the real plant.

Simulation of the plant involves chaining together numerous one-step-ahead predictions using the

trained dynamical model. We start by specifying an initial Gaussian distribution over the state,

x0 ∼ N (µx0
, Σx0

) (4.18)

This is useful for specifying a set of start states from which the controller must solve the required

task. If the plant will always start in exactly the same state then this distribution can be collapsed

to a point. The current setting of the control policy is used to calculate the mean and variance of the

control variables to be applied along with their covariance with the state. However, we cannot simply

apply the control policy to the distribution over the latent state x0 because during a real trial we do

not have access to this, we only have an observation. Thus we must first find the distribution over the
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observation y0, which we can do by using our estimate of the observation noise variance,

y0 = x0 + ν0 ⇒ y0 ∼ N (µx0
, Σx0

+ Σν) (4.19)

The control moments are therefore,

µu0
= Ey0 [π(y0, θ)] , Σu0

= Vy0 [π(y0, θ)] , Cx0,u0
= Cx0,u0

[x0, u0] (4.20)

If the policy is linear then the distribution over the controls u0 are Gaussian, however for a nonlinear

policy this won’t be the case. To maintain analytic tractability we moment-match a Gaussian to the

distribution over the controls. We can thus find an approximate joint Gaussian distribution over the

latent state and the controls,[
x0

u0

]
∼ N

([
µx0

µu0

]
,

[
Σx0

Cx0,u0

CTx0,u0
Σu0

])
(4.21)

We use the dynamical model to find the moments over the state at the next time step. Once again

we use moment-matching to approximate the distribution over the next state with a Gaussian.

p(x1 | µ0,Σ0, θ) ≈ N (µx1
, Σx1

) (4.22)

We then compute the first expected loss,

L̄1 = Ex1∼N (µx1 ,Σx1)[L(x1)] (4.23)

These steps are repeated until we have a complete predicted trajectory and associated losses. This

process is illustrated in figure 4.3. The total loss is formed by summing the individual expected losses.

At each step we also compute the derivatives and use the chain rule to find the derivative of the

total loss with respect to the policy parameters. With this computed we can use gradient descent to

optimise the policy parameters.

4.4 Framework Evaluation

The control learning framework described in the previous section has been applied to a number of

different mechanical systems, both real and simulated, with great success. Figure 4.4 shows a series of

photos from Deisenroth and Rasmussen (2011) demonstrating a trained control policy swinging-up a

pendulum and holding it in an inverted position. This task cannot be achieved with a linear controller,

nor with a linear dynamical model (as the pendulum moves through more than π radians).

Figure 4.5 shows a still from McHutchon and Rasmussen (2010) where the task was to balance a

pitch-only unicycle (a unicycle with stabilising wheels preventing it falling over in roll). This task was

completed satisfactorily with only nine policy optimisation iterations. This task was then extended

to the full, unrestricted unicycle in Queiro et al. (2011) (figure 4.6) who trained a controller which

stabilised the system for around two seconds. However, there were strong hardware constraints, which

restricted testing on the actual system and made the task significantly more difficult. The unrestricted

unicycle task has been successfully learnt in simulation, using a very complex model of the dynamics
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x0 x1 x2

u0 u1 u2

L̄1 L̄2

f(x0, u0) f(x1, u1)

π(y0, θ) π(y1, θ) π(y2, θ)

E [L(x1)] E [L(x2)]

Figure 4.3: An illustration of the plant simulation step under a control policy π, for a 2D system with
1 control variable and 2 time steps.

Figure 4.4: A series of stills from a video of a control policy successfully swinging up the pendulum.

as the plant.

In Bischoff et al. (2014) the learning framework was applied to a mobile robotic arm, which was
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Figure 4.5: A still from a video of training performance on the restricted, pitch-only unicycle.

Figure 4.6: A still from a video of training performance on the unrestricted robotic unicycle.

required to move to an object and pick it up. Figure 4.7 shows a series of photos of the final trained

policy applied to the real system. In addition to these real-world examples, the framework has been
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applied to a number of simulated tasks, including cars, quad-copters, and a double pendulum version

of the cart and pendulum swing-up task.

Figure 4.7: A series of photos demonstrating the optimised policy in action on the mobile robotic arm
from Bischoff et al. (2014). The robot approaches the item, extends the arm and manipulates the claw
so as to successfully pick up the object.

These myriad applications strongly demonstrate how powerful and approach to controller design this

framework is. Despite this there are a number of areas of weakness in the framework, which could be

improved upon. The first of these, which must be solved before the framework can be applied to a wide

variety of real-world tasks, is the problem of observation noise. In section 4.3.1 we stated that in the

published version of the framework the dynamical model was trained by fitting a GP directly to the

observed transitions, from yt−1, ut−1 to yt, in an auto-regressive manner. However, as chapter 3 has

shown, this can lead to a very poor dynamical model for even moderate amounts of observation noise.

This weakness therefore must be addressed. To do so we propose to use methods from chapter 3 to

train the GP dynamical model rather than just using simple GP-regression on the observations.

A second weakness is the Gaussian moment-matching approximations we are forced to make at each

time step of the simulation stage, in order to keep the equations analytically solvable. It is hard to

evaluate the effect that this approximation has. For some tasks it might seem clear than a Gaussian

would be a very poor approximation to the true state distribution; for example consider the distribution

the angle of a pendulum, a few time steps after it has been released from an initial inverted position.

Presumably the pendulum will have fallen to either the left or the right, it is very unlikely to have

remained perfectly balanced upright. Thus the true distribution on the angle would be bi-modal, but,

under a Gaussian approximation (assuming symmetric dynamics) the most likely state would actually

be upright. However, this analysis is complicated by the fact that the dynamics are learnt with the

current controller in-the-loop, that is the actual state transitions are affected by the control signals

applied. This means that, long before the controller learns to balance the pendulum, it can learn

to push the pendulum always in one direction, thus collapsing the state distribution to a uni-modal

distribution. In fact, the policy learning framework will favour controllers which drive the system

along trajectories which are well modelled by the dynamical model.

A mixture of Gaussians could model more complex distributions but it is hard to see how to manage

the transitions — each Gaussian would have to be propagated to the next time step in isolation,
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which doesn’t solve the problem. An alternative is to use a set of particles to approximate the state

distribution at each time step. These particles can be individually propagated through the dynamical

model to maintain a point cloud at every time step, which can approximate complex distributions

with much greater accuracy than a simple moment-matched Gaussian. However, this approach comes

with its own problems, particularly in regard to derivatives, which are now noisy. These methods, and

others, are discussed in section 4.6.

A third weakness is that during the simulation stage all state transitions are considered to be inde-

pendent from each other. That is, we neglect the covariance between the state at a particular time

step and the dynamical model itself, which arises from previous transitions. This extra covariance

is neglected because it cannot be computed analytically with a GP dynamical model. It can lead to

the control framework being either over-confident or under-confident about its performance, both of

which can prevent policy learning from proceeding. This area is discussed in further detail in section

4.7.

Finally, we list some other areas of potential weakness, which we do not discuss in any further detail

here but which may be fruitful areas for future research.

• Exploration–exploitation Currently policy optimisation proceeds greedily — the frame-

work attempts to find the control policy which leads to the lowest expected loss given the current

model of the plant dynamics. However, if we know we have a budget of I policy training itera-

tions then the optimal tactic may not be greedy optimisation, but rather to spend some initial

iterations exploring the state-space. One simple method for doing this would be to make use of

the variance of the loss and not just the expected loss at each time step. By subtracting some

fraction of the variance from the expected loss the control policy would be rewarded for visiting

areas of high uncertainty. The relative amounts of expected loss and loss variance included acts

as a trade-off between exploitation and exploration. How should this parameter be set? Is there

a better approach to encouraging exploration? These are open questions.

• GP covariance function In all current and past work we have used the squared expo-

nential covariance function as it leads to analytically solvable equations. There are, however,

other choices of covariance function which also lead to tractable equations, for example scale

mixture of Gaussians, or Fourier based functions. The squared exponential kernel leads to tran-

sition functions which are infinitely differentiable; this is usually excessively smooth and so better

performance may be gained by using a different covariance function.

• Training time The framework can take a long time to train, especially if large amounts

of data are needed to fit an accurate dynamical model. There are various training parameters

which can affect the training time but it is not clear how these should be set. For example, is

it quicker to use short optimisation runs at each training iteration, which are quick but may

we may then need more training iterations in total, or to use long optimisation runs in the

hope that we need fewer iterations. Similar questions surround parameters such as the number

of pseudo-points we use in the dynamical model and how long we spend training this model

compared to optimising the policy. Are there further, or better, approximations we can make

to speed up training at little cost to performance? Can we make better use of the increasingly

parallel architecture of modern computers?

• Time discretisation Currently, for each task we choose a time step that roughly co-
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ordinates with the time constants observed in the dynamics of the system in question. Longer

time steps are usually to be preferred as this means we need fewer transition steps to simulate

a trajectory of a particular length, and that we collect a smaller amount of data for each test

trajectory. Both of these factors play a significant role in training time. However, if we set

the time step to be too long then the framework cannot learn a controller, either because the

dynamics are too complex on such a time scale, the observed states are too noisy, or the current

zero-order-hold control methodology is too simplistic: if the controller could vary the applied

control signal within a time step could we use a lower sampling frequency?

4.5 Handling Observation Noise

Observation noise causes two problems in the control learning framework. The first of these is in

learning the dynamical model as discussed previously. The second of these occurs when we compute

the control values using the policy, which is applied to the observed values. This can inject a large

amount of noise into the controlled system. For example, for a one control variable, linear policy with

D× 1 weight vector w, and an observation noise variance Σν the controls will have a noise variance of

wTΣν w, potentially magnifying the effect of the observation noise. This effect is classically overcome

by the use of a filter running inside the control feedback loop. Given that we have trained a model

of the plant dynamics we can extend the framework to include a filter. However, this is not as

straightforward as one might assume as, if we want to see the full effect, we cannot just include the

filter during the trials on the real plant, we must also include it during the simulation state when

optimising the policy. If we don’t include it in this stage then the policy will not be able to take

advantage of the filter, it is even possible that performance could be degraded as the policy would be

applied to the real plant with an extra component that was not present during training. Including the

filter in the simulation state is made difficult by the fact that we don’t have any observations available,

we must use distributions on yt based on our belief over the latent state and the observation noise.

Combining these distributions correctly requires several careful steps of probability mathematics, but

can be done analytically. This is ongoing work and we do not report any further on the filter here,

instead we focus on improving the dynamical model learning.

We could potentially use any of the methods discussed in chapter 3 to replace the simple GP regression

model in the framework. We will be dealing with relatively high dimensional systems, D ∼ 10, which

suggests we should avoid the sampling based methods. We therefore choose the ‘direct’ method from

section 3.5, although in the future we aim to test other methods, particularly the variational approach.

We can take the ‘direct’ method as described in chapter 3 and immediately apply it to the control

learning framework without any further modifications. We test the learning framework with this state

space model in place on the cart and pendulum swing-up and the unicycle balancing tasks, using

differential equations to simulate both real systems so that we can make multiple runs quickly. Tables

4.1 and 4.2 show the settings of various training parameters for the tasks. We ran ten complete policy

training runs using different random seeds. After each iteration the current policy was tested ten

times from different start states. As a performance metric we used the total loss for each of the test

trials over the ten repeats and the ten different training runs.

Figure 4.8 shows the results for the cart and pendulum swing-up task for four different noise levels.

The figure clearly shows a significant performance increase from using the state space model over the
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Table 4.1: The settings of various training parameters for the cart and pendulum swing-up task. The
velocity noise levels are set such that an Euler integration of the velocities would lead to the same
noise levels as on the corresponding position or angle variable.

Parameter Setting

Time step 0.1 seconds
Simulation horizon 5 seconds, 50 time steps
Policy function Gaussian RBF with 50 basis functions
Loss function saturating loss function about the stationary, in-

verted pendulum state
True observation noise standard deviation
• cart position 0.01 m
• cart velocity 0.1 m/s
• pendulum angular velocity 10 degree/s
• pendulum angle 1 degree

Table 4.2: The settings of various training parameters for the unicycle balancing task. The angular
velocity noise levels are set such that an Euler integration of the velocities would lead to the same
noise levels as on the angles.

Parameter Setting

Time step 0.15 seconds
Simulation horizon 10.05 seconds, 67 time steps
Policy function linear with bias term
Loss function saturating loss function about the zero state vec-

tor (all angles, velocities, and positions)
True observation noise standard deviation
• roll angular velocity 6.67 degree/s
• yaw angular velocity 6.67 degree/s
• wheel angular velocity 6.67 degree/s
• pitch angular velocity 6.67 degree/s
• turntable angular velocity 6.67 degree/s
• x position 0.01 m
• y position 0.01 m
• roll angle 1 degree
• yaw angle 1 degree
• pitch angle 1 degree

simple GP regression model used previously. Figure 4.9 shows the results for the unicycle balancing

task where the differences are even more marked. For all four noise levels the simple GP dynamical

model does not satisfactorily solve the task, for the two higher noise levels the framework never makes

any noticeable progress. With the state space model, however, the framework is able to learn a control

policy which can stabilise a significant proportion of the trials for the first three noise levels and makes

clear progress for the highest noise level. It seems likely that the observation noise is still having a

strong effect on the system via the control policy as discussed earlier, resulting in the controller being

unable to stabilise a number of trajectories, as seen in figure 4.9. It is therefore strongly desirable to

implement a filter-in-the-loop to tackle this problem.
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Figure 4.8: Training performance on the cart and pendulum swing-up task with the simple (non-state
space) GP dynamical model in red, and the ‘direct’ GP state space model in green. The x axis shows
policy training iteration number and the y axis shows the total loss over a 20 step trial when the
policy was applied to the plant. The solid lines show the mean performance over ten different training
runs and ten different trials for each run, the shaded region shows the 10 - 90% interval. The four
panels show the results for four different observation noise levels: the noise variances were scaled by
the factor indicated in the top right hand corner of each plot. Thus the bottom right plot has ten
times the observation noise variance as the top left plot.

4.6 Simulation with Particles

In the control learning framework as described at the beginning of this section we moment-match

Gaussian distributions to the true distribution over the state at each time step in order to main-

tain tractability. An alternative is to use a particle simulation approach, and approximate the state
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Figure 4.9: Training performance on the unicycle balancing task with the simple (non-state space)
GP dynamical model in red, and the ‘direct’ GP state space model in green. The x axis shows policy
training iteration number and the y axis shows the total loss over a 67 step trial when the policy was
applied to the plant. The solid lines show the mean performance over ten different training runs and
ten different trials for each run, the shaded region shows the 10 - 90% interval. The four panels show
the results for four different observation noise levels: the noise variances were scaled by the factor
indicated in the top right hand corner of each plot. Thus the bottom right plot has ten times the
observation noise variance as the top left plot.

distribution by a set of delta functions at the sample locations,

p(xt | µx0
, Σx0

, π, θ) =

N∑
i=1

δ(xit) (4.24)

Trajectories can be simulated as follows,

1. Sample from the initial distribution, {xi0}Ni=1 ∼ N (µx0
, Σx0

)
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2. Compute controls for each sample, {ui0}Ni=1 = π
(
{xi0}Ni=1, θ

)
3. Make a standard GP prediction at each sample to find the set of moments {µix1

, Σix1
}Ni=1

4. Draw samples of the next state from the predictive distributions,
{
xi1 ∼ N (µix1

, Σix1
)
}N
i=1

5. Return to step 2 and repeat for the next time step until desired trajectory length has been

reached.

Figure 4.10 shows a histogram of the pendulum angle state variable for the cart and pendulum bal-

ancing system over twenty time steps starting at thirty different positions near the inverted position.

The figure shows strongly non-Gaussian distributions as the pendulum begins to fall either to the

left or to the right. The red distributions plotted on top of the histograms show the predicted state

distribution using the moment-matching simulation approach. Likewise, in green we show a kernel-

smoothed density estimate based on the sampling approach. It is clear to see that the particles do

a significantly better job of simulating the system. The bimodal structure of the true distributions

forces the moment-matching Gaussians to have far too much mass beyond the range of the data and

from this point it cannot recover.

2.8 3 3.2 3.4 2.8 3 3.2 3.4 2.5 3 3.5 2 3 4 1 2 3 4 5

0 2 4 6 −2 0 2 4 6 8 0 5 10 −5 0 5 10 −5 0 5 10

−10 0 10 −10 0 10 −10 0 10 −10 0 10 −10 0 10

−10 0 10 −10 0 10 −10 0 10 −10 0 10 −10 0 10

Figure 4.10: Distributions over the pendulum angle as it falls from upright over 20 time steps. The
first plot in the top left corner shows the initial distribution over start positions. The histogram
shows the true distribution from thirty repeats, the red Gaussians show the predicted distributions
using Gaussian moment-matching at each time step, the green lines show a kernel-smoothed density
estimate from the particle simulation method.
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Despite this poor simulation performance the moment-matching approach can still optimise a control

policy because the goal of the task itself is to hold the state around a fixed value. This means that the

control actions taken to solve the task also prevent the multi-modal behaviour of the state distribution,

see figure 4.11. Furthermore, the Gaussian moment-matching causes the simulation to be conservative,

that is it predicts a worse performance than the truth. This is not so dangerous as predicting the

controller will do better than it actually does as the optimisation approach can attempt to remedy

the situation. A conservative simulator may however lead to significantly slower policy learning and

to a poorer control performance. In the extreme case, the simulation might be so pessimistic that the

optimiser cannot find any setting of the policy which it believes will improve task performance and so

policy training stops. This situation is made more likely if the loss function contains any sharp edges.

For example, with the cart and pendulum system perhaps we do not mind if the cart moves around

within a specified window but we have a very strong loss if it moves beyond certain boundaries. In

this case the controller may have to keep the cart far from the constraint boundaries in order to reduce

the loss associated with the too-wide tails of the state distribution. Finally, note that the difference

between the particle approach and the moment-matching approach is dependent on the amount of

uncertainty in the dynamical model, as we collect more data and the model becomes more accurate

the difference reduces. This again indicates that the moment-matching approach might be slower to

learn a control policy as it requires more data to shrink the uncertainty in the simulated trajectories.

Whilst particles are effective for simulating the plant and controller the primary goal of our framework

is to optimise a control policy to complete a task. We therefore need a way of optimising the policy

whilst using particles to simulate the plant. We can’t immediately take derivatives for each of our

samples and then average them together because we cannot differentiate the sampling steps. One

method for solving this problem is to freeze the random seed at the start of optimisation. This means

that if we keep the policy parameters the same the particles will also take on the same values — the

simulation stage becomes deterministic again. This approach is taken in the PEGASUS framework (Ng

and Jordan, 2000). If we take this approach however we encounter a problem: figure 4.12 shows the

loss function evaluated along the direction of the gradient in policy parameter space. The figure shows

that the moment-matching approach has the unintended consequence of smoothing the loss function

over the policy parameter space, which is necessary for gradient descent to work. The loss surface for

the particle simulation approach has many local minima and indeed can often be not smooth. This

implies that we cannot use gradient descent coupled with the particle approach due to the jaggedness

of the loss function. We are therefore left with either more complex gradient methods or non-gradient

based optimisation methods which perform significantly worse, especially when we can have hundreds

(or even thousands) of policy parameters. Figure 4.12 shows that the loss function can be reduced by

moving in the direction of the gradient, which suggests that we could still use gradient information

if we had a more robust linesearch algorithm, able to take into account local minima. Whilst this

approach can indeed work at the start of optimisation, once the initial large steps have been taken

in policy improvement it becomes harder and harder to find directions which lead to any significant

decrease in loss. This results in optimisation terminating much earlier in particle based simulations

than for the moment-matched approach.

There seem to be a variety of causes for the lack of smoothness when simulating with particles, and

these are not all understood. It is, however, strongly linked to the iterative use of the transition
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Figure 4.11: Distributions over the pendulum angle using a trained policy which balances the pendulum
over 20 time steps. The first plot in the top left corner shows the initial distribution over start
positions. The histogram shows the true distribution from thirty repeats, the red Gaussians show the
predicted distributions using Gaussian moment-matching at each time step, the green lines show a
kernel-smoothed density estimate from the particle simulation method.

function to simulate trajectories over a long horizon: the loss function qualitatively becomes more

smooth as we decrease the length of the simulation horizon. Consider making a small change in the

control policy parameters and then simulating a particle trajectory over many time steps: the first

control variable computed by the policy u0, will be only slightly different to what it was previously

as we only made a small difference to the policy. This means that the particle at the next time step

x1 is still close to its previous location and the loss is not changed by very much. However, when we

compute the next control signal the policy parameters have not only changed but also the state, thus

the second control variable will differ from its previous value by a greater amount. This leads to a

larger difference in predicted next state, which in turn further increases the difference in subsequent

control variables. In this way, with a long enough prediction horizon, particle trajectories can diverge

significantly for only a very small change in policy parameters. For the moment-matched approach,

the light-tails of a Gaussian distribution seem to keep the state distribution more constricted than

for the particles: individual particles can move a lot further around in state space than the mass of

a Gaussian distribution. A possible solution based on these insights is to fit a Gaussian distribution

to the particles and then resample them. This need not be done every time step but only after a

fixed interval. In some preliminary experiments this approach showed promise in smoothing the loss

function. Fitting a Gaussian will destroy the potentially non-Gaussian distribution of particles, which
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Figure 4.12: A 1D slice through the loss surface in the direction of steepest gradient descent for the cart
and pendulum balancing task (starting with the pendulum around the inverted position). The blue
line shows the loss for different parameter settings as calculated by the moment-matching approach
and the red line for the particle simulation approach with 1000 particles. The green line shows the
true loss using the differential equations to simulate the state. The simulation horizon was 20 steps,
with a maximum loss of 1 at each time step. The losses in red and blue are based on a model without
much training data which is why they do not match the truth.

was one of the motivations for using particles in the first place. We could potentially fit a mixture

of Gaussians instead, which would allow the more complex distribution to be maintained. We are

restricted in that we need derivatives of the new particles w.r.t. the old particles and so care needs to

be taken in this step to ensure we can calculate this derivative.

Another part of the problem is contributed by loss functions in which there is an ‘edge’, e.g. the

pendulum falling beyond the point of recovery: there can be a large step-change in loss as a particle

moves from one side of this boundary to another. This can happen in terms of movement in the state

space where the particle trajectory either crosses this boundary or not; it can also happen in terms of

time, whereby a particle crossing the boundary at time t+ τ can have a very similar total loss whilst

τ < δt, the discrete time step. As an example of this, one can imagine the situation where a trajectory

passes across an area of very high loss but the sample times catch the particle just before and just after

this region and thus the whole trajectory has a low loss. Any movement of particles however would lead

to a jump in loss. This can be mitigated somewhat by increasing the number of particles although this

can become computationally infeasible long before the loss function is sufficiently smooth. Another

approach to pursue would be to consider whether we could integrate the loss over the length of the

trajectory to avoid the time step problem, although it is not clear at present how this could be done.

We could try to avoid loss functions which exhibit these characteristics, however they are inherent

to all tasks attempting to stabilise open-loop unstable systems as the plant dynamics will inevitably

drive particles which fail to be stabilised into areas of high loss.
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Given that sampling has been successfully used in the PEGASUS algorithm we are hopeful of finding

a solution such that training can be carried out successfully. As has been discussed, using particles

promises improvements in a number of areas: from more accurately representing the state uncertainty

to compuational speed-ups via parallelisation. However, further research is required here in order to

unlock this potential.

4.7 Simulation with Dependent Transitions

In the control learning framework discussed so far all the state transitions during the simulation stage

are assumed to be independent. That is, the transition prediction of xt is only dependent on the state

xt−1, the controls ut−1, and the previously observed training data. It is not affected at all by any

previous transitions, for example from xt−2 to xt−1. In state space theory this Markov transition is

justified based on the definition of the state: the state xt−1, along with the control ut−1, is required

to contain all information required to fully specify the transition to the next time step. However, a

state vector which is sufficient for a deterministic transition function is not necessarily sufficient for an

uncertain transition function. As we will show, making transitions in the presence of uncertainty leads

to covariance between the state and the uncertainty in the model. Neglecting this extra covariance

term can potentially have a large effect on predictions. This extra covariance term is most easily seen

for a linear transition function with an uncertain bias term,

xt = Axt−1 + b, b ∼ N (µb, Σb) (4.25)

Figure 4.13 illustrates this for a one dimensional state. Suppose that we start at the point x0, after

one time step we have,

x1 ∼ N (Ax0 + µb, Σb) (4.26)

It is tempting to write that after two time steps the state distribution would be,

x2 = Ax1 + b = A (Ax0 + b) + b (4.27)

x2 ∼ N (A (Ax0 + µb) + µb, AΣbA
T + Σb) (4.28)

However, if we consider figure 4.13 then we see that smaller values of x1 result from following a

transition function similar to the red line, and larger values from following a transition function

similar to the blue line. In other words there is covariance between x1 and b which we have neglected

from our calculation of the moments in equation 4.28.

An alternative way of thinking about this is in terms of sampling a number of transition functions at

the start of the simulation stage. Our start state can be propagated to the next time step using each

of the sampled transition functions. Given that we are modelling time-invariant dynamics, we should

then use the same sampled transition function for the second transition as we did for the first. In

figure 4.13, suppose we draw the mean transition function (green line) and the red and blue transition

functions. Starting from x0 we will end up with three values of x1 as indicated by the red, green,

and blue dots in the figure. When transitioning to x2 we should use the red transition function to

propagate the red dot, the green to propagate the green dot, and the blue function for the blue dot.
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Figure 4.13: Illustration of the dependent transition problem for a linear transition model with an
uncertain bias term. The green line and shaded area shows the distribution over the next state for a
particular current state: the solid line represents the mean and the shaded area shows ± 2 standard
deviations. The red and blue lines indicate two sampled transition functions from the model. The value
of x1 indicated by the red dot can only be reached by using the red transition function, and similarly
for the green and blue dots. This means that the uncertainty in x1 covaries with the uncertainty over
the transition function: functions closer to the red line will result in states closer to the red dot. This
covariance should be taken into account when propagating the state further.

The current propagation methodology in the framework is equivalent to resampling the transition

functions at each time step. This can lead to poor simulation performance. For example, in figure

4.13, the red state should always use the red transition function, below the mean dynamics, whereas if

we neglect this covariance we will integrate over the full distribution on x2, evaluated at the red state,

which includes transition functions above the mean dynamics. This means that if we were to trace

the path of the red state through multiple transitions we would see it, on average, using the mean

transition function. We can see that this will lead to a distribution on the state trajectory with a

too small variance — extremal states should always continue to use the extremal transition functions,

pushing them even further apart than if they use, on average, the mean transition function.

4.7.1 The uncertain linear model

We will first derive the correct moments for the fully uncertain linear model and then consider the GP.

For simplicity we will restrict ourselves to looking at a one dimensional model, the multi-dimensional

case is also analytically tractable but requires a lot more algebra (or a more elaborate notation). We
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extend the linear model of equation 4.25 by also considering the weights to be uncertain,

xt = a xt−1 + b (4.29)[
a

b

]
∼ N

([
µa

µb

]
,

[
Σa Cab

Cba Σb

])
(4.30)

Also, let x0 have a Gaussian distribution,

x0 ∼ N
(
µx0

, Σx0

)
(4.31)

Under this setup we can compute,

E[x1] = Ex0,a,b
[a x0 + b]

= µa µx0
+ µb (4.32)

and

V[x1] = Vx0,a,b
[a x0 + b]

= Σa Σx0
+ µ2

a Σx0
+ µ2

b Σa + 2µx0
Cab + Σb (4.33)

but we also have the covariances,

C[x1, a] = Ex0
[Ca,b[a x0 + b, a]] + Cx0

[Ea,b[a x0 + b], E[a]]

= Ex0
[Σa x0 + Cba] + 0

= Σa µx0
+ Cba (4.34)

and

C[x1, b] = Ex0
[Ca,b[a x0 + b, b]] + Cx0

[Ea,b[a x0 + b], E[b]]

= Ex0
[Cab x0 + Σb] + 0

= Cab µx0
+ Σb (4.35)

The product of Gaussian variables in equation 4.29, a x0, means that x1 is not Gaussian, which spells

the end for analytic tractability. We are trying to parallel the simulation stage in the control learning

framework and so we will proceed as we do there and approximate the distribution with a Gaussian.

Doing so here allows us to write a joint probability distribution on the state and the model,

p(x1, a, b | µx0
, Σx0

) ≈ N



µa µx0

+ µb

µa

µb

 ,


Σx1
Σa µx0

+ Cba Cab µx0
+ Σb

Σa µx0
+ Cba Σa Cab

Cab µx0
+ Σb Cba Σb


 (4.36)
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If we now consider x2,

E[x2] = Ex1,a,b
[a x1 + b]

= µa µx1
+ C[a, x1] + µb

= µa (µa µx0
+ µb) + Σa µx0

+ Cba + µb (4.37)

and

V[x2] = Vx1,a,b
[a x1 + b]

= Σa Σx0
+ µ2

a Σx0
+ µ2

b Σa + (Cx1,a
+ µa µx1

)Cx1,a
+ 2µx1

Cab + 2µa Cx1,b
+ Σb (4.38)

where we have used the shorthand Cx1,a
= C[x1, a] and similarly for Cx1,b

. Comparing equations 4.37

and 4.38 to the moments in equation 4.28 we can see that the covariance of the state with the model

parameters has led to both a different mean and variance for x2. We can illustrate the difference by

simulating from the system described in equations 4.29 and 4.30 using the predictive equations with

and without the covariance between the state and the model parameters. State trajectories for four

such systems are shown in figure 4.14. Note how the state distribution after one time step is the same

for both methods of propagating the state as the covariance between the state and the model is initially

zero. However, the two methods then diverge and for all subsequent time steps the distributions are

different. The top right hand plot shows an example where the covariance leads to a smaller variance

in the state distribution, whereas the other three show systems where the variance is increased. The

bottom right hand plot in particular shows a very large difference in state distribution between the

two methods: neglecting the covariance between the state and the model in this case would lead to a

vastly over-confident estimate of the state.

4.7.2 Dependent transitions in GP models

We now look at the same covariance between state and model for the GP dynamical model. There

is a fundamental difference which means that the analysis we have just completed for the uncertain

linear model cannot be solved for the GP. In the linear model the covariance between the state x1

and the model is independent of the value of x1. However, this is not the case for a GP. In a GP the

covariance is determined by the covariance function, which depends on the state value. Recall that in

1D our GP model of the transition function is given by,

xt = f(xt−1) + εt , ft + εt (4.39)

f ∼ GP(m, k) (4.40)

εt ∼ N (0, Σε) (4.41)

The graphical model is repeated from chapter 3 here in figure 4.15.

Suppose that we have some previously observed transitions, X, from which we have trained our GP

model to give us a posterior on the transition function, as shown in green (mean and plus/minus two

standard deviations) in the top plot of figure 4.16. In the plot we also show a number of different

‘sampled functions’ (to be precise, different collections of points) from this posterior at various values
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Figure 4.14: Comparison between simulations of a 1D uncertain linear system with (green) and without
(red) the covariance between the state and the model parameters. The four plots show simulations
using four different randomly generated 1D systems over a horizon of 10 steps. The solid line shows
the mean of the state distribution and the shaded region ± 2 standard deviations.

xt−1 xt xt+1

yt−1 yt yt+1

ft−1 ft ft+1 ft+2

+ εt−1 GP + εt GP + εt+1 GP

g g g

Figure 4.15: Graphical model of a Gaussian Process state space model. The random variables f

represent the GP function values, which are fully connected to each other, as represented by the thick
line. The transition of xt−1 to xt is modelled by the GP followed by the addition of process noise εt

of xt−1. We can see that there is strong covariance between values of xt across the input space —

functions above the mean remain above the mean for most of the input space. This suggests that

previous transitions are likely to have a strong effect on future predictions. First we draw a sample x0

from our initial distribution. Using our GP model we can make a prediction at x0 and find that,

p(f1, x1 | x0) = N
([

f1

x1

]
;

[
m(x0)

m(x0)

]
,

[
s(x0) s(x0)

s(x0) s(x0) + Σε

])
(4.42)

The marginal distributions over f1 and x1 are shown as the blue and red Gaussians in figure 4.16

respectively. Imagine we now also draw a value of x1, as shown by the red dot in figure 4.16. We can

condition on this x1 too, which is equivalent to adding the transition from x0 to x1 to the GP training
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set and then recalculating the GP posterior moments,

p(f1 | x1, x0) = N
(
m(x0) + s(x0) (s(x0) + Σε)

−1(x1 −m(x0)), s(x0)− s(x0) (s(x0) + Σε)
−1s(x0)

)
(4.43)

Given that a GP specifies a joint Gaussian distribution on its latent variables with covariance given

by k, the marginal distribution on f2 given x0 and x1 has a similar form,

p(f2 | x1, x0) = N
(
m(x1) + Cf1,f2 (s(x0) + Σε)

−1(x1 −m(x0)), s(x1) − Cf1,f2 (s(x0) + Σε)
−1Cf1,f2

)
(4.44)

with

Cf1,f2 = k(x0, x1)− k(x0)T K−1k(x1) (4.45)

where k(x0) is the N × 1 vector of covariances between x0 and each of the training points, and K is

the N ×N matrix of covariances between each of the training points. This conditional distribution is

shown as the red shaded area in figure 4.16 for different values of x1. Note how different the green

and red predictive distributions are. This is the effect of including the transition from x0 to x1 in the

prediction of f2. The difference depends on the ratio between the variance of the marginal p(f1 | x0)

and the process noise variance Σε as well as on the the value of the covariance function, k(x0, x1).

So far we have derived the moments of the distribution on f2 for given samples of x1 and x0. Of course

during an actual simulation state the states x0 and x1 are uncertain and so we need to integrate them

out of equation 4.44. We can immediately foresee a problem however, x0 appears inside a complex

inverse in both the mean and variance of equation 4.44, which means we will be unable to integrate

it out analytically. The dependence on x0 is in fact even more complex as we must first integrate out

x1, because the distribution on x1 is also a function of x0 (equation 4.42). Doing so,

p(f2 | x0) =

∫
p(f2 | x1, x0) p(x1 | x0) dx1

=

∫
p(f2 | x1, x0) N (x1; m(x0), s(x0) + Σε) dx1 (4.46)

Although this is the integral of a product of two Gaussians the resulting distribution is non-Gaussian

as x1 appears three times in both the mean and the variance of p(f2 | x1, x0). The histogram on the

left of figure 4.17 shows a sample-based estimate of p(f2 | x0), which has significant skewness. We can

still compute the moments analytically however,

E[f2 | x0] = Ex1

[
m(x0) + Cf1,f2 (s(x0) + Σε)

−1(x1 −m(x0))
]

= Ex1
[k(x1)]

T
β + Ex1

[(
k(x0, x1) − k(x0)K−1 k(x1)

) (
x1 − k(x0)Tβ

)]
(s(x0) + Σε)

−1

= Ex1
[k(x1)]

T
β +

[ (
Ex1

[k(x0, x1)] − k(x0)K−1 Ex1
[k(x1)]

) (
Ex1

[x1] − k(x0)Tβ)
)

+ Cx1
[k(x0, x1), x1] − k(x0)K−1 Cx1

[k(x1), x1]
]

(s(x0) + Σε)
−1

(4.47)
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Figure 4.16: Illustration of how the state covaries with the GP transfer function. The top plot shows
the GP posterior along with some sampled functions, which show long range covariance. The bottom
plot shows the same posterior along with the one (in red) that results from also conditioning on the
{x0, f1} transition, as f1 varies.

V[f2 | x0] = Ex1

[
s(x1) − Cf1,f2 (s(x0) + Σε)

−1Cf1,f2
]

+ Vx1

[
m(x0) + Cf1,f2 (s(x0) + Σε)

−1(x1 −m(x0))
]

= Ex1
[s(x1)] − Ex1

[
(k(x0, x1)− k(x0)T K−1k(x1))2

]
(s(x0) + Σε)

−1

+ Vx1
[m(x0)] + Vx1

[
(k(x0, x1)− k(x0)T K−1k(x1)) (x1 −m(x0))

]
(s(x0) + Σε)

−2 (4.48)

Each of the moments in equations 4.47 and 4.48 involve integrals over the covariance function. These

are the same moments as have been required in various other chapters. For the squared exponential

kernel they can be found in Appendix A. It is important to note that every one of these moments will

depend on x0, often in a complicated way. Because of this it is very hard to see how one might solve

the integral over x0 even approximately. One option is to ignore the uncertainty in x0 and just replace

all references to x0 with the mean µx0
. Although, this is a very crude approximation it can sometimes

lead to reasonable results. The right hand histogram in figure 4.17 shows a sample approximation

to p(f2), which is visually very similar to the left hand histogram which shows p(f2|x0). However, in

other situations this approximation can lead to worse performance than just treating the transitions

as independent.

We hope that with further consideration a better approximate method for solving this problem can be

found. It is interesting to note that, in their variational approximation to GP state space models (see
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Figure 4.17: Histograms showing a sample-based approximation to the densities p(x2 | x0), for the
value of x0 shown in figure 4.16, and p(x2). Neither distribution is Gaussian, as both of them have
significant skewness. The red lines show the sample mean and the green Gaussians show the moment
matched distributions based on independent transitions. The means are very similar between the
independent transition model and for the model taking the previous transition into account. However,
disregarding the covariance between transitions leads to a significant underestimate of the variance.

section 3.4.4) Frigola et al. (2014) find that their variational lower bound is the same for the model with

dependent transitions as for the model with independent transitions. This implies that their approach

is also not able to take the transition covariances into account and a more careful approach is required.

At the beginning of this section we stated that if the state captures all the required information to

determine a transition then the transitions are indeed independent. One different methodology to

solving the problem therefore is to augment the state definition, for example by including previous

states and actions (i.e. a higher order Markov system). Of course we still might then have to make

independence assumptions but this may have a much smaller effect on the state trajectory than it

would with a more parsimonious state representation.

As with the particle simulation methodology, considering dependent transitions allows a more accurate

simulation process of the dynamical system, which is the heart of the control learning framework. If

we cannot accurately simulate the system we are trying to control then the framework is seriously

hindered in its ability to control the plant. However, once again, further research is required if we are

to unlock any potential improvements dependent transitions may bring to the framework.

4.8 Conclusion

Automatic control learning algorithms promise large advances in the field of control engineering, both

in tackling complex systems and in adapting to incoming data. The PILCO framework has previously

demonstrated its ability to learn a successful controller on a range of control tasks. However, it had a

significant shortcoming in how observation noise was handled. By introducing a proper GP state space

model we have greatly improved the learning performance, enabling controllers to be learnt where it
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was impossible previously. We witnessed that the controller still had some difficulty with stabilising

all trials which we hypothesise is due to noise being injected through the control policy. Research

is currently being carried out into including a filter in the control loop based on the GP dynamical

model. We suspect that this will lead to another compelling increase in performance.

In this chapter, we have also investigated the use of particles to simulate trajectories (in a similar

manner to the PAGASUS algorithm) and the dependence between successive predicted transitions

from the GP. Both of these areas are a direct result of using a stochastic model for capturing the

plant’s dynamics and thus their effects are strongly related to the amount of uncertainty in the

dynamical model. This means that they have their strongest effect at the beginning of training and

this diminishes as more data is acquired. This suggests that the current training framework can avoid

these problems by collecting more data than it might otherwise require if they were tackled properly.

In both of these areas we highlighted the potential benefits that could be brought as well as the current

barriers preventing their exploitation. We highlighted some potential avenues for finding solutions to

the discussed problems which opens these up for future research.
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Chapter 5

Conclusions and Further Work

Gaussian Processes are a very powerful method for modelling data. However, their classical derivation

(Rasmussen and Williams, 2006) only considers the presence of output noise, which limits their use.

This is particularly problematic if we wish to model dynamical systems, whereby the output at one

time step becomes input at the subsequent time step. In these circumstances, it is clearly nonsensical

to model the outputs as noisy but maintain that the inputs are clean. In this thesis we introduced

a simple method for extending GPs to the case of input noise: NIGP (McHutchon and Rasmussen,

2011). This approach refers the input noise to the output and models it as heteroscedastic output

noise. This transfer of noise to the output in undertaken by the use of a Taylor series approximation

to the GP posterior. The intuition behind this can be seen by realising that uncertainty in the input

location of a point affects the predicted output much more severely in areas where the gradient of

the function is large, than in areas where the function is nearly flat. We demonstrated how NIGP

can be easily applied to a number of datasets where input noise was a problem, and how predictive

performance was improved over a classic GP. We also presented a variational approach to the problem

but showed it had problems with under-fitting.

In chapter 3 we investigated modelling dynamical systems with GPs. In this application, as in NIGP,

there is noise affecting the input measurements, however here we have additional structure in that the

latent states form a chain over time: the system transitions from state-to-state. Whilst inference in

this model is intractable there are a number of different approximate approaches that one could take.

We discussed a Bayesian treatment based on sampling (Frigola et al., 2013), a variational approach,

and then looked in detail at four different methods for learning in a ‘parametric GP’. In this model

we can integrate over the uncertainty in the latent states by introducing a pseudo-training set to the

GP, which we optimise. First we introduced a novel analytic method which directly optimised the

approximate marginal likelihood via moment-matching Gaussians to intractable densities. We then

considered a family of approximate-analytic EM methods, which used different algorithms in the E

step. We demonstrated the limitations of the expectation propagation E step method presented in

Deisenroth and Mohamed (2012), and extended their approach to include a sampling step, which

overcame these limitations. In this context, we investigated three different sampling schemes and

showed how they led to an improvement in the performance of the EP-EM algorithm for the GP

state space model problem. We then showed how to apply the sequential Monte Carlo method of

Poyiadjis et al. (2011) to approximate the true derivatives of the marginal likelihood in the GP state

space model, and designed a derivative-only optimisation scheme to use them. Finally we presented a
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particle EM method, which used the particle Gibbs with ancestor sampling algorithm (Lindsten et al.,

2012) in the E step.

Whilst optimising the pseudo-points is vulnerable to overfitting our experiments showed that this

only affected the approximate-analytic EM method with any appreciable severity. Furthermore, this

approach provides a powerful method for modelling dynamical systems as we demonstrated on three

nonlinear test sets: a one dimensional ‘kink’ function, the four dimensional cart and pendulum system,

and the ten dimensional robotic unicycle. Out of all the methods we considered in this chapter, the

novel direct optimisation method proved to be the most successful.

In chapter 4 we discussed the PILCO control learning framework. This methodology uses a GP

dynamical model to simulate a system of interest and then optimises a control policy to achieve a

specified task based on this simulation. The framework has been previously tested on numerous

problems, but always for the case of negligible observation noise. We show how the presence of noise

causes the framework to fail at even simple tasks. Given the prevalence of noise in the real world

this is a fatal flaw with the framework. However, we then demonstrated how including a proper GP

state space model dramatically improves the control learning performance. We also discussed some

other open areas for research in the framework, including simulation with particles rather than via

moment-matching, and including the covariance between subsequent transitions within the predictions.

Simulation with particles allows us to represent non-Gaussian densities over the state, which could

be a big advantage. Unfortunately, when using particles the loss surface is no longer smooth as a

function of the policy parameters, which makes it very difficult to optimise. We create a distribution

over trajectories of several time steps by chaining together multiple predictions from the transition

model. Because of this, the uncertainty in both the model and the state covaries, and this covariance

should be taken into account when making predictions. We derive the necessary equations to do this in

a stochastic linear system but show that it is intractable to do this for the GP transition model.

Although the comparisons in chapter 3 were extensive, there is still a lot of work which can be done.

In particular the particle EM approach, in experiments, performed below the level that the theory

suggested it might achieve. This could well be down to implementation problems, which also affected

the approximate-analytic EM. We would like to investigate this further. In section 3.8.5, we discussed

an extension to the particle EM approach based on Lindsten (2013b), however, we did not consider

it in our experiments due to time restrictions. We would therefore like to pursue a more detailed

evaluation of this method. We would also like to pursue the variational method further to see how

it might perform on the more complex problems. Its weakness was in the number of variational

parameters it had to optimise, however we could, instead of optimising the distribution on the latent

states, use a smoothing method to estimate it. This would have its own intricacies and needs further

research. In addition the state space models are currently painfully slow, although we expect there

are a lot of savings that could be made.

There are a number of exciting avenues for further research in the automatic control learning frame-

work. We have discussed a number of these, such as continuing the work on particle simulation,

already. Others include introducing a filter to the controller to allow it reduce the amount of noise

that is introduced via the control variables, considering systems with completely unobserved variables,

and investigating other covariance functions. There are higher level considerations as well: how can

this framework be combined with the successful linear control methods which have been applied in

may applications so far? Can we design a hierarchical control approach which uses the strengths of
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the automatic approach for more complex decisions and simpler controllers to implement low level

strategies? Can we make any statements over stability or controllability, in the way that can be done

with linear control? Given the potential that automatic control design has to open the door to control

of vastly complex systems, these areas are worth investigating.

The field of modelling and control of nonlinear systems is undeniably important to our lives. In our

opinion, Gaussian Processes are one of the most powerful approaches for application in this area,

combining flexibility, and a principled quantification of uncertainty with tractability. In this thesis we

have discussed how to apply GPs to real-world datasets which are corrupted, in inputs and outputs,

with noise. We investigated GP state space models in some depth and introduced a powerful novel

method. Finally, we demonstrated how these pieces can be put together to produce a potent control

learning framework.
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Appendix A

Squared Exponential Covariance

Function: Moments and Derivatives

We have used the squared exponential covariance function (a.k. the squared exponential kernel)

throughout this thesis. At various points we required either its derivatives or its integral. We provide

the derivation of both of these here. First we define the covariance function: the squared exponential

kernel is given by,

k(x1, x2) = σ2
f exp

(
−1

2
(x1 − x2)T Λ−1 (x1 − x2)

)
(A.1)

where the hyperparameters are the signal variance σ2
f and a characteristic length-scale for each dimen-

sion, {li}Di=1. The squared length-scales are collected into a D ×D, diagonal matrix Λ,

Λ =


l21 0 0
...

. . .
...

0 0 l2D

 (A.2)

A.1 Differentiating the Squared Exponential covariance function

The derivative of the squared exponential with respect to the first argument, x1, is,

∂k (x1,x2)

∂x1
=

∂

∂x1

{
σ2
f exp

(
−1

2
(x1 − x2)T Λ−1 (x1 − x2)

)}
=

∂

∂x1

{
−1

2
(x1 − x2)

T
Λ−1 (x1 − x2)

}
k (x1,x2)

= −1

2

∂

∂x1

{
xT1 Λ−1x1 − xT2 Λ−1x1 − xT1 Λ−1x2

}
k (x1,x2)

= −1

2

(
2Λ−1x1 − 2Λ−1x2

)
k (x1,x2)

= −Λ−1 (x1 − x2) k (x1,x2) (A.3)
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which is a D × 1 vector. We can also take the derivative w.r.t. the second argument,

∂k (x1,x2)

∂x2
=

∂

∂x2

{
σ2
f exp

(
−1

2
(x1 − x2)T Λ−1 (x1 − x2)

)}
=

∂

∂x2

{
−1

2
(x1 − x2)

T
Λ−1 (x1 − x2)

}
k (x1,x2)

= −1

2

∂

∂x2

{
−xT2 Λ−1x1 − xT1 Λ−1x2 + xT2 Λ−1x2

}
k (x1,x2)

= −1

2

(
−2Λ−1x1 + 2Λ−1x2

)
k (x1,x2)

= Λ−1 (x1 − x2) k (x1,x2) (A.4)

Note that the only difference between these two derivatives (equations A.3 and A.4) is the minus sign

in equation A.3. This comes about because the distance between x1 and x2 is calculated as x1 − x2

and hence increasing x1 increases the separation and so decreases the covariance; the opposite is true

for x2.

It is trivial to extend these results for the case when one of the inputs is a collection of points, such

as a N ×D training matrix X,

X = [x1, ... , xN ]
T (A.5)

∂k (X,x∗)

∂x∗
= k (X, x∗) � X̃∗ Λ−1 (A.6)

where we define X̃∗ to be the N ×D matrix, [x1 − x∗, ... , xN − x∗]T . Note that k (X,x∗) is a N × 1

column vector. We have abused notation slightly: the element-wise product between a N × 1 vector

and a N ×D matrix should be carried out by replicating the vector D times into a matching N ×D
matrix.

Building on equations A.3 and A.4 we can now find the second derivative (cross term),

∂2k (x1,x2)

∂x1∂x2
=

∂

∂x1

{
Λ−1 (x1 − x2) k (x1,x2)

}
= Λ−1

(
I − (x1 − x2) (x1 − x2)T Λ−1

)
k (x1,x2) (A.7)

a D ×D matrix. We can see the following relationship,

∂2k (x1,x2)

∂x2
1

=
∂2k (x1,x2)

∂x2
2

= −∂
2k (x1,x2)

∂x1∂x2
= −∂

2k (x1,x2)

∂x2∂x1
(A.8)

We can summarise the derivatives as follows,

∂k (x1,x2)

∂x2
= Λ−1 (x1 − x2) k (x1,x2) (A.9)

∂2k (x1,x2)

∂x2
2

= −Λ−1 k (x1,x2) + Λ−1 (x1 − x2)
∂k (x1,x2)

∂x2

T

(A.10)

To find higher derivatives we need to switch to writing down elements of the derivative. First we
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rephrase the first two derivatives before proceeding to the third and fourth,

∂k (x1,x2)

∂x
(i)
2

= Λ−1
ii (x

(i)
1 − x

(i)
2 ) k (x1,x2) (A.11)

∂2k (x1,x2)

∂x
(j)
2 ∂x

(i)
2

= −Λ−1
ij k (x1,x2) + Λ−1

ii (x
(i)
1 − x

(i)
2 )

∂k (x1,x2)

∂x
(j)
2

(A.12)

∂3k (x1,x2)

∂x
(k)
2 ∂x

(j)
2 ∂x

(i)
2

= −Λ−1
ij

∂k (x1,x2)

∂x
(k)
2

− Λ−1
ik

∂k (x1,x2)

∂x
(j)
2

+ Λ−1
ii (x

(i)
1 − x

(i)
2 )

∂2k (x1,x2)

∂x
(k)
2 ∂x

(j)
2

(A.13)

∂4k (x1,x2)

∂x
(l)
2 ∂x

(k)
2 ∂x

(j)
2 ∂x

(i)
2

= −Λ−1
ij

∂2k (x1,x2)

∂x
(l)
2 ∂x

(k)
2

− Λ−1
ik

∂2k (x1,x2)

∂x
(l)
2 ∂x

(j)
2

− Λ−1
il

∂2k (x1,x2)

∂x
(k)
2 ∂x

(j)
2

+ Λ−1
ii (x

(i)
1 −x

(i)
2 )

∂3k (x1,x2)

∂x
(l)
2 ∂x

(k)
2 ∂x

(j)
2

(A.14)

We sometimes need to evaluate these derivatives for x1 = x2,

k((x1,x2)|x1 = x2
= σ2

f (A.15)

∂k (x1,x2)

∂x
(i)
2

∣∣∣∣∣
x1 = x2

= 0 (A.16)

∂2k (x1,x2)

∂x
(j)
2 ∂x

(i)
2

∣∣∣∣∣
x1 = x2

= −Λ−1
ij σ2

f (A.17)

∂3k (x1,x2)

∂x
(k)
2 ∂x

(j)
2 ∂x

(i)
2

∣∣∣∣∣
x1 = x2

= 0 (A.18)

∂4k (x1,x2)

∂x
(l)
2 ∂x

(k)
2 ∂x

(j)
2 ∂x

(i)
2

∣∣∣∣∣
x1 = x2

= Λ−1
ij Λ−1

kl σ
2
f + Λ−1

ik Λ−1
jl σ

2
f + Λ−1

il Λ−1
jk σ

2
f (A.19)

A.2 Squared Exponential Kernel Moments

Many times throughout this thesis we have needed to find the output moments of a GP prediction

given a Gaussian input point,

x ∼ N (µ, Σ) (A.20)

To find these moments we need to first find the moments of the covariance function, which we will do

in this section. First we introduce some notation: where the covariance function is written with three

arguments, e.g. k(x1, x2, Λ), the third argument refers to the lengthscale matrix. Also, we will define

some shorthand as we proceed using the capital letters E, V , and C for expectations, variances, and

covariances. In these cases subscripts refer to the variables those moments are taken w.r.t. and not

indicies, e.g. Exk = E[x k(x, x1)].
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We first note that the SE kernel can be written in terms of a Gaussian density function,

k(x, x1) = σ2
f exp

(
−1

2
(x− x1)T Λ−1 (x− x1)

)
(A.21)

= σ2
f (2π)D/2 |Λ|1/2N (x; x1, Λ) (A.22)

and that the product of two Gaussian distributions is another Gaussian,

N (x; µ1, Σ1)N (x; µ2, Σ2) = ZN (x; M, S) (A.23)

M = (Σ−1
1 + Σ−1

2 )−1(Σ−1
1 µ1 + Σ−1

2 µ2) (A.24)

S = (Σ−1
1 + Σ−1

2 )−1 (A.25)

Z = (2π)−D/2 |Σ1 + Σ2|−1/2 exp

(
−1

2
(µ1 − µ2)T (Σ1 + Σ2)−1(µ1 − µ2)

)
(A.26)

= σ−2
f (2π)−D/2 |Σ1 + Σ2|−1/2 k(µ1, µ2, Σ1 + Σ2) (A.27)

where M , S, and Z are functions of µ1, µ2, Σ1, and Σ2. Hence the product of two squared exponential

kernels is,

k(x,x1) k(x,x2) = k

(
x1

2
,
x2

2
,

Λ

2

)
k

(
x,
x1 + x2

2
,

Λ

2

)
(A.28)

= σ2
f π

D/2 |Λ|1/2 k
(
x1

2
,
x2

2
,

Λ

2

)
N (x; (x1 + x2)/2, Λ/2) (A.29)

From these starting points we can find the expected value of the kernel,

Ex[k(x,x1)] =

∫
k(x, x1) p(x) dx

= σ2
f (2π)D/2 |Λ|1/2

∫
N (x; x1, Λ) N (x, µ,Σ) dx

= σ2
f (2π)D/2 |Λ|1/2 Z

= |Λ|1/2 |Λ + Σ|−1/2 k(µ, x1, Λ + Σ)

= |Σ Λ−1 + I|−1/2 k(µ, x1, Λ + Σ) (A.30)

, Ek(µ,x1,Σ,Λ) (1× 1) (A.31)

which is the same form as the SE covariance function except with µ replacing x, the lengthscales

expanded by Σ, and an additional scaling factor. We now find the mean of a product of kernels,

Ex[k(x1,x) k(x,x2)] = k

(
x1

2
,
x2

2
,

Λ

2

)
Ex
[
k

(
x,
x1 + x2

2
,

Λ

2

)]
= k

(
x1

2
,
x2

2
,

Λ

2

)
Ek

(
(x1 + x2)

2
, µ1, Σ,

Λ

2

)
(A.32)

, Ekk(µ,x1,x2,Σ) (1× 1) (A.33)



A.2. SQUARED EXPONENTIAL KERNEL MOMENTS 189

Therefore, the variance of a kernel and the covariance of two kernels,

Vx[k(x,x1)] = Ekk(µ,x1,x1,Σ) − Ek(µ,x1,Σ,Λ)Ek(µ,x1,Σ,Λ) (A.34)

, Vk(µ,x1,Σ) (1× 1) (A.35)

Cx[k(x,x1), k(x,x2)] = Ekk(µ,x1,x2,Σ) − Ek(µ,x1,Σ,Λ)Ek(µ,x2,Σ,Λ) (A.36)

, Ckk(µ,x1,x2,Σ) (1× 1) (A.37)

The mean of x times a kernel,

Ex [x k(x,x1)] =

∫
x k(x,x1) p(x) dx

= σ2
f (2π)D/2 |Λ|1/2

∫
xN (x; x1, Λ) N (x; µ, Σ) dx

= σ2
f (2π)D/2 |Λ|1/2 ZM

= Ek(µ,x1,Σ,Λ)M

= Ek(µ,x1,Σ,Λ) Λ (Λ + Σ)−1(Σ Λ−1x1 + µ) (A.38)

, Exk(µ,x1,Σ,Λ) (D × 1) (A.39)

and x times a product of kernels,

Ex [x k(x,x1) k(x,x2)] = k

(
x1

2
,
x2

2
,

Λ

2

)
Ex
[
x k

(
x,
x1 + x2

2
,

Λ

2

)]
= k

(
x1

2
,
x2

2
,

Λ

2

)
Exk

(
µ,
x1 + x2

2
, Σ,

Λ

2

)
, Exkk(µ,x1,x2,Σ,Λ) (D × 1) (A.40)

which leads us to the covariance between x times a covariance function and another covariance func-

tion,

Cx [x k(x, x1), k(x, x2)] = Exkk(µ,x1,x2,Σ,Λ) − Exk(µ,x1,Σ,Λ)Ek(µ,x1,Σ,Λ)

, Cxkk(µ,x1,x2,Σ) (D × 1) (A.41)
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The mean of a quadratic product in x and the kernel,

E
[
xxT k(x,x1) k(x,x2)

]
= k

(
x1

2
,
x2

2
,

Λ

2

) ∫
xxT k

(
x,
x1 + x2

2
,

Λ

2

)
p(x) dx

= σ2
f (2π)D/2 |Λ|1/2 k

(
x1

2
,
x2

2
,

Λ

2

) ∫
xxT N

(
x;
x1 + x2

2
,

Λ

2

)
N (x; µ, Σ) dx

= σ2
f (2π)D/2 |Λ|1/2 k

(
x1

2
,
x2

2
,

Λ

2

)
Z
(
S + MMT

)
= Ekk (µ,x1,x2,Σ)

Λ

2

(
Σ +

Λ

2

)−1 ((
2 Λ−1Σ + I

)
+
(
2 Σ Λ−1x1 + µ

) (
2 Σ Λ−1x1 + µ

)T) (Λ

2
+ Σ

)−1
Λ

2

(A.42)

, Exxkk(µ,x1,x2,Σ,Λ) (D ×D)

(A.43)

Finally the variance and covariance of x times a covariance function,

Vx[x k(x,x1)] = Exxkk(µ,x1,x1,Σ) − Exk(µ,x1,x1,Σ)Exk(µ,x1,x1,Σ,Λ)T (A.44)

Cx [x k(x, x1), x k(x, x2)] = Exxkk(µ,x1,x2,Σ) − Exk(µ,x1,x2,Σ)Exk(µ,x1,x2,Σ,Λ)T (A.45)

, Cxkxk(µ,x1,x2,Σ) (D ×D) (A.46)

A.3 Derivatives with Uncertain Inputs

Although we did not use this in this chapter, we can also ask what the distribution over the derivatives

of a GP posterior is when the input location is Gaussian distributed, i.e.,

x∗ ∼ N (µ, Σ) (A.47)

We can use the rule of iterated expectations to find the mean derivative,

E
[
∂f∗
∂x∗

]
= Ex∗

[
Ef∗

[
∂f∗
∂x∗

]]
= Ex∗

[
∂f̄∗
∂x∗

]
= Ex∗

[
−Λ−1 X̃∗

(
k(x∗, X)T � β

)]
= −Λ−1 Ex∗

[
N∑
i=1

βi (x∗ − xi) k(x∗,xi)

]

= −Λ−1
N∑
i=1

βi Ex∗ [(x∗ − xi) k(x∗,xi)]

= −Λ−1
N∑
i=1

βi Ex∗ [x∗ k(x∗,xi)] − βi xiEx∗ [k(x∗,xi)]

= −Λ−1
N∑
i=1

βiExk(µ,xi,Σ) − βi xiEk(µ,xi,Σ) (A.48)
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We can use the rule of total variance to find the variance of the derivative,

V
[
∂f∗
∂x∗

]
= Ex∗

[
Vf∗

[
∂f∗
∂x∗

]]
+ Vx∗

[
Ef∗

[
∂f∗
∂x∗

]]
= Ex∗

[
∂2k(x∗1, x

∗
2)

∂x∗1 ∂x
∗
2

− ∂k(x∗, X)

∂x∗
K−1 ∂k(X, x∗)

∂x∗

]
+ Vx∗

[
∂f̄∗
∂x∗

]
= Ex∗

[
∂2k(x∗1, x

∗
2)

∂x∗1 ∂x
∗
2

− ∂k(x∗, X)

∂x∗
K−1 ∂k(X, x∗)

∂x∗

]
+ Vx∗

[
−Λ−1 X̃T

∗
(
k(x∗, X)T � β

)]
(A.49)

We will calculate these expectations separately. Firstly the expectation of the second derivative of the

kernel (see section A.1 for derivation of the second derivative),

E
[
∂2k(x∗1, x

∗
2)

∂x∗1 ∂x
∗
2

]
= E

[
Λ−1 k (x∗,x∗)

]
= Λ−1 σ2

f (A.50)

E

[
∂k(x∗, X)

∂x∗i
K−1 ∂k(X, x∗)

∂x∗j

]
= Λ−1

i E
[
[X̃

(i)T
∗ � k (x∗ , X)] K−1 [k (X,x∗) � X̃

(j)
∗ ]
]

Λ−1
j

= Λ−1
i

(
E[X̃

(i)T
∗ � k (x∗ , X)] K−1 E[k (X,x∗)� X̃(j)

∗ ]

+ tr
(
K−1 C[X̃

(i)T
∗ � k (x∗ , X) , X̃

(j)T
∗ � k (x∗ , X)]

))
Λ−1
j

(A.51)

where,

X̃
(i)
∗ = [x

(i)
1 − x

(i)
∗ , . . . , x

(i)
N − x

(i)
∗ ]T (A.52)

which is a N × 1 vector.

Ex∗ [(x
(i)
1 − x

(i)
∗ ) k (x1, x∗)] = x

(i)
1 Ek(µ, x1, Σ) − Exk(µ, x1, Σ)

= Ek(µ, x1, Σ) (x
(i)
1 − µi) (Σii Λ−1

i + 1)−1 (A.53)

Defining U to be a N × 1 vector with elements, Uk = x
(i)
k − µi,

Ex∗ [X̃
(i)
∗ � k (X, x∗)] = Ek(X, µ, Σ)� U (Σii Λ−1

i + 1)−1 (A.54)

which is a N × 1 vector.

Cx∗ [(x
(i)
1 − x

(i)
∗ ) k (x1, x∗) , (x

(j)
2 − x

(j)
∗ ) k (x2, x∗)]

= x
(i)
1 x

(j)
2 Cx∗ [k (x1, x∗) , k (x2, x∗)] − x

(i)
1 Cx∗ [ k (x1, x∗) , x

(j)
∗ k (x2, x∗)]

− x
(j)
2 Cx∗ [x

(i)
∗ k (x1, x∗) , k (x2, x∗)] + Cx∗ [x

(i)
∗ k (x1, x∗) , x

(j)
∗ k (x2, x∗)]

= x
(i)
1 x

(j)
2 Ckk(µ,x1,x2,Σ)− x(i)

1 C
(j)
xkk(µ,x2,x1,Σ)− x(j)

2 C
(i)
xkk(µ,x1,x2,Σ) + C

(ij)
xkxk(µ,x1,x2,Σ)

(A.55)
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The C terms are derived and defined in section A.2. Therefore,

C[X̃
(i)T
∗ � k (x∗ , X) , X̃

(j)T
∗ � k (x∗ , X)]

= (X(i)X(j)T )� Ckk(µ, X,X,Σ)−X(i) � C
(j)
xkk(µ, X,X,Σ)−X(j)T � C

(i)
xkk(µ, X,X,Σ) + C

(ij)
xkxk(µ, X,X,Σ)

(A.56)

which is a N ×N matrix.

Finally we need, Vx∗
[
Λ−1 X̃T

∗ (k(X,x∗)� β)
]
, which we will break up and compute as,

Cx∗
[
Λ−1
i X̃

(i)T
∗ (k(X,x∗)� β) , Λ−1

j X̃
(j)T
∗ (k(X,x∗)� β)

]
= Λ−1

i Λ−1
j Cx∗

[∑
k

(x
(i)
k − x

(i)
∗ ) k(xk,x∗)βk,

∑
l

(x
(j)
l − l

(j)
∗ ) k(xl,x∗)βl

]
= Λ−1

i Λ−1
j

∑
k

∑
l

βk βl

(
x

(i)
k x

(j)
l Ckk − x(i)

k C
(j)
xkk − x

(j)
l C

(i)
xkk + C

(ij)
xkxk

)
= Λ−1

i Λ−1
j βTk

(
X(i)X(j)T � Ckk −X(i) C

(j)
xkk −X(j)T C

(i)
xkk + C

(ij)
xkxk

)
βl (A.57)
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