The DELVE Manual

C. E. Rasmussen, R. M. Neal, G. E. Hinton, D. van Camp,
M. Revow, Z. Ghahramani, R. Kustra, and R. Tibshirani

Version 1.1
December 1996

This manual describes the preliminary release of the DELVE environment. Some
features described here have not yet implemented, as noted. Support for regression
tasks is presently somewhat more developed than that for classification tasks.

We recommend that you exercise caution when using this version of DELVE for real
work, as it is possible that bugs remain in the software. We hope that you will send us
reports of any problems you encounter, as well as any other comments you may have
on the software or manual, at the e-mail address below. Please mention the version
number of the manual and/or the software with any comments you send.

For the latest DELVE news, visit http://www.cs.utoronto.ca/~delve/

Send comments to delve@cs.utoronto.ca

This project was supported by grants from the Natural Sciences and Engineering Research
Council of Canada and the Institute for Robotics and Intelligent Systems.

Copyright (© 1995-1996 by The University of Toronto,

Toronto, Ontario, Canada.

All Rights Reserved

Permission to use, copy, modify, and distribute this software and its documentation for
non-commercial purposes only is hereby granted without fee, provided that the above
copyright notice appears in all copies and that both the copyright notice and this permission
notice appear in supporting documentation, and that the name of The University of Toronto
not be used in advertising or publicity pertaining to distribution of the software without
specific, written prior permission. The University of Toronto makes no representations about
the suitability of this software for any purpose. It is provided “as is” without express or
implied warranty.

The University of Toronto disclaims all warranties with regard to this software,
including all implied warranties of merchantability and fitness. In no event shall
the University of Toronto be liable for any special, indirect or consequential
damages or any damages whatsoever resulting from loss of use, data or profits,
whether in an action of contract, negligence or other tortious action, arising out
of or in connection with the use or performance of this software.

It you publish results obtained using DELVE, please cite this manual, and mention the
version number of the software that you used.

i

CONTENTS

INTRODUCTION

1.1 What DELVE can do for you
1.2 The DELVE hierarchy of data, methods, and results
1.3 Using DELVE: A tutorial example
1.4 What toread next

THE SCOPE OF THE DELVE PROJECT
2.1 Learning methods that DELVE can handle
2.2 Aspects of performance that can be assessed using DELVE

2.3 How DELVE encourages meaningful assessments

2.4 Kinds of datasets included in DELVE

DATASET FILES AND SPECIFICATIONS

3.1 Specifications for datasets: The dinfo command
3.2 Datasets with dependencies between cases
3.3 The DELVE format for dataset files

3.4 Preparing a new dataset: The dcheck command.

FROM DATASETS TO TASKS

4.1 Specifications for prototasks and tasks: More on dinfo
4.2 The size and nature of the training set for a task
4.3 Prior information available for a task 000000

4.4 Defining prototasks: The dgenorder and dgenproto commands

PREDICTIONS AND LOSS FUNCTIONS
5.1 Types of predictionso
5.2 Standard loss functions supported by DELVE

5.3 Using a specialized loss functiono 0oL

SCHEMES FOR LEARNING EXPERIMENTS
6.1 Issues in designing learning experiments
6.2 DELVE’s standard set of task instances

6.3 Using non-standard task instances L0

i1

BN —

14
14
15
15
16

18
18
21
22
23

26
27
29
30
35

38
38
39
41

7 ASSESSING A LEARNING METHOD

7.1 Documenting the method to be assessed

7.2 Creating directories for assessments: The mgendir command

7.3 Specifying how attributes are to be encoded

7.4 Creating data files for training: The mgendata command

7.5 Processing predictions on test cases: The mloss command
7.6 Submitting your results to the DELVE archive 00000 0.

8 ANALYSING THE RESULTS

8.1 Analysing the hierarchical loss model

8.2 Analysis of experiments with common test sets

8.3 Obtaining performance statistics: The mstats command

A INSTALLING DELVE ON YOUR COMPUTER

B CONTRIBUTING TO THE DELVE ARCHIVE

C DESCRIPTIONS OF DELVE COMMANDS
Introduction to DELVE commands
dcheck Validate DELVE data files

dgenorder Generate random order for a prototasko

dgenproto Generate prototask data files

dinfo Get information about datasets
dls List contents of DELVE data directories
dmore Browse or page through DELVE data files

mgendata Generate task data fileso 0000000

mgendir Generate task directorieso oL o000

minfo Get information about learning methods
mloss Generate task loss files oo
mls List contents of DELVE method directories
mmore Browse or page through DELVE method files
mstats Calculate or compare loss statistics

D GLOSSARY OF DELVE TERMINOLOGY

v

46
46
47
48
51
52
33

55
)
38
60

63

67

69
69
72
73
74
76
79
80
81
84
86
88
92
93
94

97

1 INTRODUCTION

DELVE — Data for Evaluating Learning in Valid Experiments — is a collection of datasets
from many sources, an environment within which this data can be used to assess the per-
formance of methods for learning relationships from data, and a repository for the results of
such assessments.

Many methods for learning relationships from empirical data have been developed by re-
searchers in statistics, pattern recognition, artificial intelligence, neural networks, and other
fields. Methods in common use include simple linear models, nearest neighbor methods,
decision trees, multilayer perceptron networks, and many others of varying degrees of com-
plexity. Properly comparing the performance of these learning methods in realistic contexts
is a surprisingly difficult task, requiring both an extensive collection of real-world data, and
a carefully-designed scheme for performing experiments.

The aim of DELVE is to help researchers and potential users to assess learning methods in a
way that is relevant to real-world problems and that allows for statistically-valid comparisons
of different methods. Improved assessments will make it easier to determine which methods
work best for various applications, and will promote the development of better learning
methods by allowing researchers to easily determine how the performance of a new method
compares to that of existing methods.

This manual describes the DELVE environment in detail. First, however, we provide an
overview of DELVE’s capabilities, describe briefly how DELVE organizes datasets, methods,
and learning tasks, and give an example of how DELVE can be used to assess the performance
of a learning method.

1.1 What DELVE can do for you

DELVE can help you assess the performance of learning methods in three major ways:

1. The DELVE archive contains a collection of many datasets that are appropriate for
developing and assessing learning methods.

2. The DELVE software helps you use this data to assess learning methods. DELVE also
provides guidelines on how such assessments should be done.

3. The DELVE archive also records the results of assessing many other learning methods
on the same datasets, performed in the same way, along with detailed descriptions of
these methods.

All these components of the DELVE environment are freely available via the Web, at URL

http://www.cs.utoronto.ca/~delve/

1. INTRODUCTION

If you are interested in using a learning method for a particular application, you may find
DELVE usetul in determining which methods might be appropriate for you to use. To do
this, you would look at the results of various learning methods on problems that appear
similar to your application. For those methods that seem promising, you could refer to the
detailed descriptions recorded in the DELVE archive.

It you are a researcher developing new learning methods, you will no doubt wish to know
how well the methods you develop compare in performance to existing methods. DELVE
can help you answer this question by providing a large number of datasets to test on, by
providing standard conventions for conducting experiments that facilitate comparisons, by
providing the results of other methods on the same datasets, and by performing appropriate
tests of the statistical significance of the observed differences in performance.

After using DELVE to assess a novel learning method, you can submit your results for
inclusion in the DELVE archive. You should provide a detailed description of your method,
and include results of applying your method to a selection of datasets. In this way other
researchers and users of learning methods will be able to benefit from your work.

1.2 The DELVE hierarchy of data, methods, and results

DELVE organizes data, learning methods, and experimental results in a hierarchical fashion.
This section provides an informal description of this hierarchy, sufficient for you to follow
the example in the next section.

The DELVE hierarchy is contained within one or more top-level directories, each of which
has a name starting with the five letters “delve”. All such delve directories contain two
sub-directories, corresponding to the two main divisions of the DELVE hierarchy. The
data sub-directory contains information on datasets, and on learning tasks defined for these
datasets. The methods sub-directory contains information on learning methods, and on the
results of applying these methods to various learning tasks.

By using more than one top-level delve directory, you can keep datasets and results that
come from the DELVE archive separate from datasets and results that you are working on
yourself, but have not yet submitted to the archive. Some research groups may also find it
convenient to maintain a group delve directory, in addition to the private delve directories
of the group members.

When you use DELVE, you will see information on data and methods from all such delve
directories that are currently active, merged into a single hierarchy. In the rest of this section,
we will for simplicity describe this hierarchy as if was contained in a single directory.

The data part of the hierarchy begins with a number of datasets, each of which has its own
sub-directory within the data directory. A dataset is a list of cases, with each case consisting
of values for a number of attributes. Some additional information is also specified at the
dataset level, such as names and ranges for attributes.

1. INTRODUCTION

Prototasks are the next lower level in the data hierarchy. A prototask defines which cases in
the dataset are relevant to the learning task, which attributes of a case we wish to predict
(the target attributes), and which attributes we wish to predict the targets from (the input
attributes). There may be several different prototasks for a dataset, each of which has a
sub-directory within the dataset’s directory.

At the task level the size of training set for use in learning is specified, along with whatever
prior information is available (which can be used, for example, to select encodings for the
attributes). The task level specifies enough information that a learning method will have
a well-defined expected performance with respect to any particular loss function. A task
instance 1s a particular training set and test set for a task, to which we can actually apply a
learning method. The performance of a method on several task-instances is used to estimate
its expected performance on the task.

Tasks do not have directories of their own in the data part of the DELVE hierarchy. However,
the results of applying a particular method to a particular task are contained in a directory

in the methods part of the DELVE hierarchy.

The methods part begins at the methods directory of a top-level DELVE directory. Within
this directory are sub-directories for the various learning methods that have been assessed,
each of which will contain a description of the method, and perhaps the programs implement-
ing it. The directory for a method will also contain sub-directories for every dataset that has
been used in assessing the method, within which will be sub-directories for each prototask
to which the method has been applied. Inside the directories corresponding to prototasks
will be task directories, containing the results of applying the method to the various task
instances.

A DELVE hierarchy is illustrated in Figure 1.1. The top-level delve directory could reside
anywhere on your file system, but it’s name must start with delve, and it must contain two
sub-directories called data and methods.

In Figure 1.1, the data part of the hierarchy contains two datasets, demo and kin-8nh, each
with its own sub-directory within the data directory. Inside each dataset directory there
are two files: Dataset.data which contains the cases, and Dataset.spec which contains
information about the data. There is also a sub-directory called Source, which contains all
the data and information used to build the dataset, as it was originally obtained.

The demo dataset in Figure 1.1 has two prototasks, age and income, which differ in the
attribute that is to be predicted. These prototask directories contain the files needed to
specify both the prototask itself and the tasks that are defined for it.

Back at the top level, the methods directory in Figure 1.1 contains sub-directories for two
methods: 1in-1 (a linear regression model), and knn-cv-1 (a k-nearest-neighbor method).
The descriptions and program source for these methods are contained in their Source di-
rectories. The results of applying the methods to various tasks are contained in directories
whose names combine the name of the prior for the task — std, for “standard”, in these

1. INTRODUCTION

delve
l
[|
methods data
| | | |
lin-1 knn-cv-1 demo kin-8nh
l Dataset.data Dataset.data
| ! ‘ Dataset.spec Dataset.spec
Source demo kin-8nh |
lin-1.c l [W |
lin-1.ps | . | Source age income dist
age Income Notes (Prototask.data) (Prototask.data) (Prototask.data)
,—F o gen.c Prototask.spec ~ Prototask.spec Prototask.spec
$d32 <d.64 <d.512 std.prior std.prior std.prior

guess.* guess.* guess.*
(loss*) (loss*) (loss*)

Figure 1.1: Schematic diagram of the structure of a DELVE directory. Names of directories are in
bold font, names of files are in normal font. Files in brackets may not be present, as they can be
generated by DELVE if needed. A dotted line indicates parts of the directory that are left out.

examples — and the size of the training set. These task directories may contain files with
names such as guess.*, prob.*, and loss.* files, which record the final results of learn-
ing and prediction (here, “*” indicates several possible endings, which specify a particular
task-instance and loss function).

1.3 Using DELVE: A tutorial example

This section is a walk-through tutorial, which introduces DELVE by showing how you can
test a simple learning method using the DELVE utilities.

This tutorial assumes that you (or someone else) have installed DELVE on your computer.
For details on how to do this, see Appendix A. It also assumes that the DELVE utilities are
somewhere in your shell’s search path. This will likely be true if DELVE has been installed
in its usual place in /usr/local/bin, but if it has been installed elsewhere, you may have
to set your PATH environment variable appropriately.

The roles of the DELVE commands used in this tutorial are described in more detail in later
chapters. For detailed descriptions of command syntax and options, refer to Appendix C.

Telling DELVE where to look for information — setting your DELVE PATH

First you need to know how DELVE looks for information in one or more active delve
directories. Formally, a delve directory must have a name starting with the five letters

1. INTRODUCTION

“delve” and must have two sub-directories called data and methods. You tell DELVE where
to look for these directories by setting the DELVE PATH shell environment variable. This path
works analogously to the shell search path, except that DELVE looks in all the directories
in DELVE PATH rather than stopping as soon as the first match is found. It therefore makes
little difference what order the directories in DELVE_PATH come in.

You can create your own delve directory, and tell DELVE to use both it and a delve
directory that holds data, methods, and results from the DELVE archive. Assuming that
DELVE has been installed on your machine in directory /usr/local/lib/delve, you might
do this as follows, if you use a shell program like csh:

unix> cd $HOME
unix> mkdir delve delve/data delve/methods
unix> setenv DELVE_PATH /usr/local/lib/delve:$HOME/delve

If you use a shell like sh, you would instead say:

unix> cd $HOME

unix> mkdir delve delve/data delve/methods

unix> DELVE_PATH=/usr/local/lib/delve:$HOME/delve
unix> export DELVE_PATH

In either case, you would probably want to put the commands that set DELVE_PATH in your
shell start-up file (either .cshrc or .profile), so that DELVE PATH will be set again when
you next log in.

Setting up your DELVE PATH in this way lets you keep the material distributed with DELVE
separate from the results of your own experiments. You could also have several delve
directories of your own, or include other users’ delve directories in your DELVE_PATH in
order to access their results. Also, whenever your current directory is within a valid delve
directory, that directory will be temporarily added to the list of active delve directories,
in addition to those in DELVE_PATH. This lets you easily look in a delve directory that you
don’t usually access.

Listing information — dls and mls, dinfo and minfo, dmore and mmore

Once you have set your DELVE PATH to a list of delve directories, you can use various
DELVE commands to look at information in the DELVE hierarchy that is contained in
these directories. These commands come in two flavours — “d” commands that look in the
data part of the hierarchy, and “m” commands that look in the methods part. You can, for
instance, find out what files are in the directory for a particular dataset using dls, or get a
formatted display of various information about a dataset using dinfo.

You can specify what you want to look at with these commands in two ways. One way is to
give a dpath or mpath that specifies the location of a file or directory in the data or methods

1. INTRODUCTION

part of the hierarchy. Such dpaths and mpaths start with “/”, and are translated by DELVE
into one or more Unix path names within the active delve directories. The other way is to
specify a relative Unix path name (which doesn’t start with “/” or “~”) of a file or directory

in the DELVE hierarchy.

The dls and mls commands are analogous to the Unix 1s command. They let you look at
what files and sub-directories exist in the data and methods parts of the DELVE hierarchy.
For example, we can use the d1s command with a dpath of “/” to list the datasets found in
all the active delve directories:

unix> dls /
demo kin-8nh kin-8nm

There might be many more than these three datasets, of course, depending on what you have
installed, and on how your DELVE_PATH is set. Note that the three datasets shown would not
necessarily be located in the same Unix directory.

We can list the files and sub-directories for the demo dataset as follows:

unix> dls /demo
Dataset.data Source age income siblings
Dataset.spec Summary colour sex

Once again, these files and sub-directories might not all be in the same Unix directory,
though in this case, these files and sub-directories are in fact all present in the directory for
demo from the DELVE archive. To see exactly where things exist, you can use the -1 option.
(By the way, you can find out about options for any DELVE command by executing the
command with the -h option.)

Here we use -1 with the corresponding mls command, to see what methods are available, in
what places:

unix> mls -1 /
/usr/local/delve/methods/:
knn-cv-1 1lin-1

We see that there are just two methods, knn-cv-1 and 1in-1, and that files for both methods
are found only in the directory holding information from the DELVE archive. If we had tested
one of these methods on new datasets of our own, however, results for that method could
exist in our private delve directory as well, in which case directories for the method would
exist in both places.

Two DELVE commands similar to the Unix more command also exist, called dmore and
mmore. Here we use dmore to look at the summary description for the demo dataset:

1. INTRODUCTION

unix> dmore /demo/Summary

The "demo" dataset was invented to provide an example for the DELVE
manual, and to test the DELVE software and software that implements
learning methods. To those ends, it has a variety of numerical and
categorical attributes. Cases for the '"demo'" dataset were artificially
generated from a distribution based on simple demographic assumptions
and various stereotypical notions concerning the relationships between
people’s sex, age, number of siblings, income, and favourite colour.
Prototasks are defined for predicting each of these attributes given
the others.

We could also use dmore to look at the specification file for a dataset, but we would not
usually do so, since DELVE provides a command dinfo for conveniently displaying this and
other information about datasets. We can ask about information for the demo dataset as
follows:

unix> dinfo /demo
Dataset: /demo
Origin: artificial
Usage: development
Order: uninformative
Number of attributes: &
Prototasks:

age

colour

income

sex

siblings

We would see more details if we used the -a option (ie, the command ‘dinfo -a /demo’).
Similarly, we can ask for information about the age prototask from the demo dataset with
the command “dinfo /demo/age”, and so on. There is a corresponding minfo command
for getting information on learning methods, and on their application to learning tasks.

Applying your learning method to a task — mgendir and mgendata

Now that you have seen how to obtain information about datasets and methods in DELVE,
we will see how we can go about testing a simple learning method, which we will call
mymethod. First, we need to create a directory for the method, with a structure of sub-
directories similar to that for the 1in-1 method depicted in Figure 1.1. These sub-directories
will hold the results of applying the method to the demo/age prototask. We could create all
these sub-directories using the Unix mkdir command, but it is more convenient to use the
DELVE mgendir command:

1. INTRODUCTION

unix> cd delve/methods
unix> mkdir mymethod
unix> cd mymethod
unix> mgendir demo/age
demo

demo/age
demo/age/std.32
demo/age/std.64
demo/age/std.128
demo/age/std.256
demo/age/std.512

Now that the mgendir command has created the appropriate directories, we can proceed to
put files containing training and test data into the sub-directory for one of the tasks (with
the standard prior, and 256 training cases) using the mgendata command:

unix> cd demo/age/std.256

unix> mgendata
segmenting cases...
splitting test inputs and targets...
encoding instance O training data...
encoding instance O test inputs...
encoding instance 0 test targets...
encoding instance 1 training data...
encoding instance 1 test inputs...
encoding instance 1 test targets...
encoding instance 2 training data...
encoding instance 2 test inputs...
encoding instance 2 test targets...
encoding instance 3 training data...
encoding instance 3 test inputs...
encoding instance 3 test targets...

W W WNNNERE, P2~ OO

This command creates files in the current directory pertaining to four tasks instances. The
train.n files contain the inputs and targets for the training cases in instance n, the test.n
files the inputs for the test cases, the targets.n files the true targets for the test cases, and
the normalize.n files the normalization constants used in encoding the data. Files called
Coding-used and Test-set-stats are also created; they hold information used by later
commands.

You can get information about the way this method is being applied to this task using the
minfo command. When called with no arguments, this command will give information about
the method and task associated with the current directory, as illustrated below:

1. INTRODUCTION

unix> minfo
Task: /demo/age/std.256
Training set size: 256

Inputs:
col attr name type relevance coding options
1 1 SEX binary nlmh -1/+1 -
2 3 SIBLINGS integer nlmh nm-abs -
3 4 INCOME real nlmh nm-abs -
4 5 COLOUR:pink nominal nlmh 1-of-n -
5 5 COLOUR:blue
6 5 COLOUR:red
7 5 COLOUR:green
8 5 COLOUR:purple
Targets:
col attr name type relevance coding options
1 2 AGE real nlmh nm-abs -

This shows things such as the way the various attributes have been encoded in the data files
to be used by the method (in this case, the default encodings were used). Similar information
would be displayed by the dinfo command, but minfo will show any information specific to
how this learning method is being applied to this task, whereas dinfo shows only information
about a dataset itself, and its associated tasks.

Each of the train.n files that were created above contains one line for each training case.
With the default encoding used above, the four input attributes are encoded as eight num-
bers, which appear at the beginning of the line. (The COLOUR attribute is encoded in 1-of-n
form, which uses five numbers to represent which of its five possible values the attribute
has.) The target is encoded as a ninth number, at the end of the line.

You can now train your model using the data in each of the four train.n files. This is to
be done separately for each file, as the four training files are for four instances of the task,
which are to be handled completely independently of each other. You then use the results of
this training to make guesses for the targets in the test cases that go with each task instance,
given the inputs for these cases in the test.n files. Your method should write its guesses in
the files cguess.S.0 though cguess.S.3, one guess per line. Here, the prefix ‘c’ indicates
that the guess are for the coded form of the attribute, not the original form in which it
appears in the dataset file. The suffix S indicates that the guesses are designed for use with
the squared error loss function.

For this tutorial, we don’t want to get into the complexities of writing a realistic learning
method, so we’ll use as an example a method that simply predicts the constant zero for
every test case. Notice that, as seen in the output from minfo above, the (default) encoding
of the targets used here is nm-abs, which means that they are shifted and re-scaled so
that the median of the target values in the training cases is zero, and the average absolute
deviation from the median in the training cases is one. Because of this, always predicting
zero, while not very sophisticated, is at least not wholely unreasonable. This method can be

1. INTRODUCTION

implemented by the following awk commands:

unix> awk ’ { print "0.0" } ’ test.0 > cguess.S.O
unix> awk ’> { print "0.0" } ’ test.l > cguess.S.1
unix> awk ’ { print "0.0" } ’ test.2 > cguess.S.2
unix> awk ’> { print "0.0" } ’ test.3 > cguess.S.3

Notice that the training data is ignored here (though it is implicitly used through the use of
a normalized encoding), and the test data is looked at only in order to determine how many
test cases there are. However, this is certainly not typical behaviour for a learning method!

How well did it do? — mloss and mstats

Once our method has produced cguess.n files containing its guesses for targets, we can use
the mloss command to evaluate the “loss” suffered when using each of these guesses. The
loss is based on the difference between the guess and the actual target value. To find the
losses as judged by the squared difference between guess and target value, we would use
mloss with the ‘-1 S’ option:

unix> mloss -1 S
decoding cguess.S.0...
decoding targets.O...
creating loss.S.0...
decoding cguess.S.1...
decoding targets.l...
creating loss.S.1...
decoding cguess.S.2...
decoding targets.2...
creating loss.S.2...
decoding cguess.S.3...
decoding targets.3...
creating loss.S.3...

The mloss command transforms the guesses in the cguess.S.n files back to the original
domain, storing these transformed guesses in the files guess.S.n. It then computes the loss
for each test case and writes these losses to the loss.S.n files.

We can now use the mstats command to get a summary of the predictive performance of
our method. Here, we give the ‘-1 S’ option to mstats to say we are only interested in the
squared error loss function:

10

1. INTRODUCTION

unix> mstats -1 S
/mymethod/demo/age/std.256
Loss: S (Squared error)
Raw value Standardized

Estimated expected loss: 520.43 1.06461

Standard error for estimate: 41.7 0.0853028

SD from training sets & stochastic training: 49.1004 0.100441

SD from test cases & stoch. pred. & interactions: 1078.63 2.20648

Based on 4 disjoint training sets, each containing 256 cases and
4 disjoint test sets, each containing 256 cases.

The first line of this summary gives an estimate for the expected loss when using this method
on this task; the next line gives a standard error for this estimate. The lines below these
give the standard deviations for the variation in performance due to various causes. For a
more detailed discussion of these statistics refer to Section 8. The second column gives the
same quantities rescaled to a standardized domain, which makes interpretation easier. In
the case of squared error, the losses are standardized by dividing by the sample variance of
the targets in all the test cases.

The mstats command can also be used to compare the performance of different learning
methods. In the methods part of the DELVE hierarchy are descriptions and results for a
selection of learning methods on some of the DELVE tasks. If you have obtained the results
of the linear regression method called 1in-1 from the DELVE archive, you will be able to
compare your method to the 1in-1 method as follows (again, with respect to squared error
loss):

unix> mstats -1 S -c lin-1
/mymethod/demo/age/std.256
Loss: S (Squared error)
Raw value Standardized

Estimated expected loss for mymethod: 520.43 1.06461

Estimated expected loss for /lin-1: 397.82 0.813792

Estimated expected difference: 122.61 0.250815

Standard error for difference estimate: 26.9735 0.0551778

SD from training sets & stochastic training: 44.5182 0.0910678

SD from test cases & stoch. pred. & interactions: 487 .52 0.997285

Significance of difference (t-test), p = 0.0199425

Based on 4 disjoint training sets, each containing 256 cases and
4 disjoint test sets, each containing 256 cases.

11

1. INTRODUCTION

This shows that the linear method has a smaller expected loss that our more trivial method.
Notice that the expected difference between the methods is approximately 4 times greater
than the standard error on this estimate. The p-value from the ?-test indicates that the
difference should be considered significant at the 2% level. The methods used to compute
such p-values are described in Section 8.

It could happen that when you tried to compare our method with 1in-1, as shown above,
mstats could fail to find loss files for the linear method in any of the active delve directories.
If this were to happen, you could generate the loss files needed by mstats yourself (assuming
that the guess for 1in-1 were available). However, you would probably need to generate
these files in your own DELVE directory, since you likely don’t have permission to write in
the directory that holds information from the DELVE archive. To achieve this, you could
do the following:

unix> cd $HOME/delve/methods
unix> mkdir lin-1

unix> cd lin-1

unix> mgendir demo/age

unix> cd demo/age/std.256
unix> mloss

The mstats command will now be able to use these mloss files, as long as the delve directory
they are stored within is mentioned in your DELVE_PATH, or you are currently inside this delve
directory.

In similar fashion, you put things in your own delve directory that extend what is in the
the DELVE archive by adding new datasets, new prototasks for old datasets, new methods
and results for new methods, and new results for old methods. However, to avoid confusion,
DELVE will not allow you to use names for new things that are the same as the names for
things that already exist in the DELVE archive directory.

1.4 What to read next

Section 2 contains a more detailed specification of the scope and aims of the DELVE project;
this section may be of general interest. Sections 3 and 4 contain detailed descriptions of how
datasets, prototasks, and tasks are specified in DELVE. These sections may be of some
interest to all users, but are primarily intended for people who wish to include new datasets
in DELVE, or who wish to create new prototasks and tasks based on existing datasets.
Section 5 describes the standard loss functions supported by DELVE, and discusses how other
loss functions can be incorporated. Section 6 discusses the schemes for learning experiments
used in DELVE, and compares these to more traditional schemes such as cross-validation.

Users who want to get straight into using DELVE to test their learning methods may wish
to just skim these initial sections, and start serious reading with Sections 7 and 8, which

12

1. INTRODUCTION

describe the methodology for DELVE assessments, and the DELVE commands required to
perform them.

Appendix A tells you how to get software, data, and results from the DELVE archive, while
Appendix B tells you how to contribute things to the DELVE archive. Detailed descriptions
of DELVE commands are found in Appendix C, and a glossary of DELVE terminology is
found in Appendix D.

13

2 THE SCOPE OF THE DELVE PROJECT

The aim of the DELVE project is to promote the development and use of empirical learning
methods by providing a well-designed environment in which the performance of such learning
methods can be assessed on data that is relevant to the real world. This is a broad objective,
which we can hope only to partially fulfill. This section outlines the scope of the DELVE
project at present — the sorts of learning methods that DELVE can handle, the sorts of
assessments that DELVE supports for these methods, and the kinds of dataset on which
these assessments are performed.

As researchers ourselves, we of course have ideas about which learning methods are most
promising, but we have tried to keep such prejudices from affecting the design of DELVE.
We have also tried to minimize the extent to which DELVE constrains the sorts of questions
that researchers can investigate. Inevitably, however, we have had to use our own judgement
in making tradeoffs between different design goals, some of which are mentioned below.

2.1 Learning methods that DELVE can handle

At present, DELVE supports only methods for supervised learning — that is, methods that
aim to predict one or more target attributes using the information provided by some set
of input attributes. The relationship between the inputs and the targets is learned from a
number of training cases, in which both the inputs and targets are known. These training
cases are modeled as if they were generated more-or-less independently from some source.
The goal of learning is to predict the target in a test case, generated from the same source
as the training cases, but for which only the inputs are known. For some datasets, the cases
are not truly independent, but the primary goal is always to learn the relationship of targets
to inputs, not to learn the nature of any dependencies between cases.

We distinguish between regression tasks, in which the targets (usually one, but sometimes
more) are real-valued, and classification tasks, in which there is a single target, the class of
the item in question, which takes on values from a small set. We also provide some limited
support for other supervised learning tasks, such as those in which the target is an integer,
or an angular value.

The DELVE facilities presently treat the attributes in a case as an unstructured collection
of values. In some applications, such as image processing, the attributes (eg, pixel values)
are known to have certain relationships to each other (eg, spatial adjacency), which can be
of great help in learning. Although data from such application areas could be included in
DELVE, assessments using this data may be of limited interest, since DELVE provides no
scheme for informing learning methods about such structure in the data.

In future, we hope to also support unsupervised learning methods and related statistical
methods such as density estimation, in which attributes are not characterized as inputs or

14

2. THE SCOPE OF THE DELVE PROJECT

targets. As well, we may someday add facilities for assessing time series methods, in which
the aim is to characterize the sequential dependencies between cases.

2.2 Aspects of performance that can be assessed using DELVE

DELVE is aimed primarily at assessing the predictive performance of learning methods —
that is, their ability to make predictions in previously unseen cases by generalizing from
the information contained in the data used for training. Computational performance — the
amount of time and space needed for training and subsequent use of the methods — is also
of concern. There will often be a tradeoff between predictive performance and computa-
tional performance. However, DELVE does not include any datasets where computational
considerations appear paramount, as might be the case, for example, when the amount of
data is extremely large.

Other characteristics of learning methods are also of interest, such as ease of use by both
expert and inexpert users, and the degree to which the results of learning can be interpreted,
but DELVE does not support any formal evaluation of such characteristics.

2.3 How DELVE encourages meaningful assessments

The DELVE environment is designed to encourage and assist users to produce meaningful
assessments that are faithful, comparable, and reproducible.

To be faithful, an assessment of a learning method must be indicative of how well it would
perform on an actual task that is of some interest. One must, for example, avoid any
inadvertent “cheating”, such as would occur if parameters of the learning method were
set on the basis of performance on the test cases. Arbitrary restrictions on how learning
methods may be used must also be avoided, if better performance might be obtained in a
real application by doing things differently.

For assessments of different learning methods to be comparable, they must all have been
applied in the same context — for instance, with training sets of the same size, and with
equivalent attention being paid to prior information. It is perhaps in this respect that a
standard environment such as DELVE is most useful.

One requirement for an assessment to be reproducible is that the method used be adequately
documented. To encourage this, we have provided guidelines for proper documentation,
and examples of their use. Reproducibility is most easily achieved if the method is fully
automatic. This is not always possible, however, so we suggest ways of improving the
reproducibility of methods that involve human decisions.

Furthermore, DELVE is designed to provide assessments that are as accurate as is practical,
and for which the degree of accuracy is known. DELVE also supports comparisons of learning

15

2. THE SCOPE OF THE DELVE PROJECT

methods that provide indications of the statistical significance of any observed differences.
The power of these comparisons is increased by using the same training and test sets for
different methods, which is another advantage of a standard environment.

2.4 Kinds of datasets included in DELVE

Obtaining data is one of the most crucial, and most difficult, parts of building an assessment
environment. We have drawn datasets for DELVE from four sources, each of which has its
advantages.

Natural datasets come from real-world sources, and were at one time used to address ques-
tions of real interest that are similar to those addressed by the supervised learning methods
we would like to assess. Cultivated datasets also come from the real world, but do not
represent real supervised learning problems. Such cultivated data was instead gathered or
selected specifically for the purpose of assessing learning methods. We also include real-world
datasets that have been altered (eg, by adding noise) in this category.

Stmulated datasets are generated by a computer simulation of a real-world phenomenon. To
qualify for this category, the simulation should be reasonably realistic, and of a complexity
that makes it difficult to see what form the relationships in the data will take. Artificial
datasets are randomly generated from a distribution defined by a relatively simple mathe-
matical formula.

Natural datasets have the advantage of being arguably representative of the problems we
are actually interested in. For example, a statistical consultant might reasonably conclude
that it would be worthwhile to learn more about a learning method that has been found
to perform better than others on such real-world problems. Relevance to the real world is
more doubtful for cultivated, simulated, and artificial datasets. As the datasets become less
natural, it also becomes more likely that a researcher may bias the assessment of a learning
method by unconsciously selecting problems on which that method can be anticipated to do
well.

Why, then, do we include any other than natural datasets? One reason is that the number
of readily-available natural datasets is limited, and those that are available are usually not
as large as we would like. In the real world, the cost of collecting data is often high, and we
must try to obtain the most information possible from a small dataset. To properly assess
the performance of a learning method in such a context, however, we need much more data,
in order to reduce the uncertainty in our estimate of expected performance. Simulated and
artificial datasets can easily be made as large as required (limited only by storage space);
this can greatly improve the accuracy of performance estimates.

Another reason for using non-natural datasets is that they can be designed to address certain
questions that would otherwise be difficult to answer, such as what the effect is of adding
extra noise to the input attributes, or of adding extra irrelevant inputs. In particular, we

16

2. THE SCOPE OF THE DELVE PROJECT

can design families of tasks that are related in interesting ways — eg, that have more or less
noise, or a larger or fewer number of input attributes — and see how these dimensions of
variation affect the performance of various learning methods.

When we began collecting datasets for use in assessing supervised learning methods, we had
hoped to confine ourselves to datasets where the cases were truly independent, as indepen-
dence of cases is an assumption behind many existing supervised learning methods. We
found, however, that in many otherwise-interesting datasets, there is at least a possibility of
dependencies between cases. We therefore decided to include such datasets, both in order to
increase the variety of datasets available, and because it seems to us that the possibility of
such dependencies is a common feature of real-world problems, which designers of supervised
learning methods may be well-advised to accommodate. We have, however, avoided datasets
in which the dependencies themselves are the primary focus of interest.

17

3 DATASET FILES AND SPECIFICATIONS

A dataset is a collection of cases. For each case, the values of certain attributes are recorded.
DELVE stores these attribute values in a file with a standard format that is general enough
that a wide variety of datasets can be represented without loss of information. For each
dataset, DELVE also keeps a specification file, which records basic information such as the
number of attributes and their theoretical ranges. Finally, the original files or programs from
which the dataset was derived are retained in the DELVE archive, along with any original
documentation.

Files relating to a dataset are kept in a directory with the same name as the dataset, located
in the data sub-directory of a top-level delve directory. Some of the files that may appear
in such a dataset directory are listed in Figure 3.1.

3.1 Specifications for datasets: The dinfo command

The specifications for a dataset include information about the dataset as a whole, such as
its origin and usage within DELVE, plus information about each attribute in the dataset,
such as its range of legal values. This information is stored in the dataset’s specification file,
Dataset.spec. However, the only time you will need to directly access this specification file
is when you create a new dataset, using the procedure described in Section 3.4.

Usually, it is more convenient to view the specifications for a dataset using the dinfo com-
mand, as was illustrated in the tutorial in Section 1.3. For instance, to see the specifications
(as well as some other information) for the demo dataset, you would use the command

dinfo /demo

Further details on individual attributes of the dataset can be obtained by using the -a option

Summary A briet description of the dataset
Dataset.data The actual data, in the format described in Section 3.3
Dataset.spec Specifications for the dataset, usually accessed using the dinfo command

Source A sub-directory with files relating to the source of the dataset, such as:
Notes Documentation on the dataset
original The original data file (but sometimes there will be more than one)
gen.c C program for generating dataset (or gen.f for a Fortran program, etc.)

Prototask-1

Prototask-2 Sub-directories for prototasks based on the dataset (see Section 4)

Prototask-3

Figure 3.1: Some files and sub-directories that may appear within a DELVE dataset directory.

18

3. DATASET FILES AND SPECIFICATIONS

with dinfo, as is illustrated in Figure 3.2.

Note that dataset specifications contain only very basic information, which is not likely to
be wrong unless the data has been totally misinterpreted. More debatable prior information

may be specified as part of a task description (Section 4.3).

The following characteristics of a dataset as a whole are recorded as part of its specification,
and displayed by dinfo:

Origin:

Usage:

Order:

natural or cultivated or simulated or artificial

A natural dataset was originally gathered for some real-world application;
a cultivated dataset comes from a real-world source, but was never used to
solve a real problem; a simulated dataset was generated by a simulator, but is
believed to resemble real data — as opposed to an artificial which is generated
according to some mathematical formula and does not pretend to resemble
any real dataset. These distinctions are discussed further in Section 2.4.

development or assessment or historical or 7

A development dataset is recommended for use in developing new learning
methods, but to avoid bias, should not be used for formal assessments. An
assessment dataset is intended for use in formal assessments; use for devel-
opment should be minimized. A historical dataset is included in DELVE
because it has been used for assessing learning methods in the past, but is
not recommended for general use. A ‘7’ indicates that a recommended usage
has not yet been decided on.

informative or uninformative or 7

A dataset has an informative ordering if the order of cases may convey in-
formation that is not already present in the attribute values. The order is
recorded as uninformative if it is random, or has some basis that is not related
to any matter of interest. The order is recorded as ‘7’ if the order appears
to be non-arbitrary, but the basis of the ordering cannot be determined from
the available documentation.

Commonality indexes are present

If this line i1s displayed by dinfo, commonality inderes are associated with
some or all cases in the dataset. Cases with the same commonality index
share something in common, as is described further in Section 3.2. If this line
is not displayed, the cases in the dataset do not have commonality indexes.

If the ordering of a dataset is informative, or if commonality indexes are present, the issue
of possible dependencies between cases must be addressed, as is discussed in Section 3.2.

Each dataset has a specified number of attributes associated with each case. Datasets in
which the number of attributes varies from case to case are not handled by DELVE, though it

19

3. DATASET FILES AND SPECIFICATIONS

Dataset: /demo

Origin: artificial
Usage: development
Order: uninformative
Number of attributes: &

Attributes:
name c/u range description
1 SEX u male female Sex of the person
2 AGE u [0,Inf) Age of the person in years
3 SIBLINGS u O..Inf Number of siblings the person has
4 INCOME u [0,Inf) The person’s annual income (dollars)
5 COLOUR u pink blue red green purple
The person’s favourite colour
Prototasks:
age
colour
income
sex
siblings

Figure 3.2: Qutput of the command: dinfo -a /demo.

is possible for the values of some attributes to be missing in some cases (see Section 3.3). The
attributes for a dataset are numbered from 1 on up. Attributes can also have short names,
which can be used in place of numbers to identify them. For the demo dataset illustrated in
Figure 3.2, the attributes have names of SEX, AGE, etc.

The dataset specification also records whether each attribute was controlled or uncontrolled
(abbreviated to ‘c’ or ‘u’” in the output of dinfo). The values of a controlled attribute were
fixed for each case by the investigator who gathered the data; the values of an uncontrolled
attribute were not fixed, though the investigator will often have had some influence on the
mechanism by which they were generated. For example, in a dataset concerning the growth
of plants under various conditions, the amount of fertilizer applied to a plant would usually
be a controlled attribute, whereas the amount of rainfall would be an uncontrolled attribute.
This field will be recorded as ‘77 if it is not clear from the available documentation whether
or not the attribute was controlled.

Each attribute in the dataset also has a specified range, consisting of a list of items, each
of which defines a set of allowed values for the attribute. Such an item can specify a single
permitted value (which could be a missing value, as discussed in Section 3.3), or a set of
permitted numerical values having the form of an open, closed, or half-open interval of real
numbers, or a range of integers. The bounds of a real interval can be ordinary numbers, or
one of ‘Inf’, ‘-Inf’, or ‘+Inf’, with ‘Inf’ representing infinity; these bounds are enclosed
by round or square brackets, indicating whether the bound itself is included. For example,

[0,1) represents the interval from 0 to 1, including 0, but not including 1, and (0,Inf)

20

3. DATASET FILES AND SPECIFICATIONS

represents the set of positive real numbers. An integer range extending from low to high,
inclusive, is written as low. . high (with no enclosing brackets); low and high can be infinite,
as for real intervals. For example, 1. .Inf represents the positive integers.

Several items can be combined, as in the following range:
(-Inf,0) (0,+Inf) 7

This specifies that the attribute can take on any numerical value other than zero, as well as
the missing value indicator, ‘7’

Note that the range specified for an attribute is the full set of conceivable values, regardless
of whether all of these values actually occur. For example, the range [0,100] would be
appropriate for an attribute that represents the percent by weight of water in a sample of
some substance, since it is inconceivable that the value could ever fall outside this range,
but any more narrow range would not be appropriate, even if the actual values in the
dataset never exceed 10%. Similarly, for an attribute representing a person’s birth sign, the
appropriate range would be all twelve signs of the zodiac, even if no Scorpios happen to be
included in the dataset.

Finally, an attribute may be accompanied by a short description, which is ignored by the
DELVE software, but may help users keep track of which attribute is which.

3.2 Datasets with dependencies between cases

Dependencies between cases in a dataset are of significance for two reasons. First, a learning
method may take account of such dependencies in order to improve learning. For example,
a method that adapts its behaviour based on the size of the training set might consider
the effective size of the training set to be reduced when training cases are dependent (since
the information in one case may largely duplicate the information in other cases). Second,
DELVE itself must be aware of possible dependencies in order to avoid assessing learning
methods using test cases that are dependent on the cases included in the training set, and
in order to properly compute standard errors for performance figures.

Whenever a dataset has an informative ordering, there is the possibility of sequential depen-
dencies between the cases. In some circumstances, however, this possibility may be remote
enough that it is reasonable to ignore it — for example, if the cases are ordered by the time
when their attributes were measured by some machine, it is possible that dependencies are
present as a result of temporal variation in the machine’s accuracy, but this possibility may
be too remote to be worth worrying about.

Dependencies between cases may also exist whenever commonality indexes are present. Cases
with the same commonality index have something in common of a nature that may produce
dependencies. For example, suppose the problem is to classify cars by make, given an image
of the car. If several cases were obtained by viewing the same car from different angles, the

21

3. DATASET FILES AND SPECIFICATIONS

whole group of cases should be used either for training or for testing, but not for a mixture
of these. Otherwise, a test case might be correctly classified based on some idiosyncratic
feature of a training case in the same group (eg, a scratch on the car’s bumper). Similarly,
in a dataset of spoken words, all the words spoken by one person would share a commonality
index.

The presence of commonality indexes or of an informative ordering is merely an indication
of the possibility of dependencies, and even if dependencies exist, they may or may not
be of significance in the context of a particular learning task. More specific information
concerning dependencies may be given in prototask and task specifications. When significant
dependencies do exist, they are dealt with in DELVE in one of two ways. One is to properly
accommodate the dependencies, as would be necessary in a real-world learning task. The
other is to randomly select cases so as to produce an internally-consistent task without
dependencies. Such tasks can be useful for assessing learning methods even though they no
longer correspond to a real-world situations. These issues are discussed further in Section 4.

Note: Currently, commonality indexes are not really implemented — you can include them
in DELVE dataset files, but they will be ignored. Also, the only way of dealing with sequential
dependencies at present is to randomize the ordering.

3.3 The DELVE format for dataset files

DELVE datasets are stored in a standard format that is designed to preserve as much relevant
information from the original data as possible, even if some of this information is not currently
used by DELVE. Users may occasionally wish to look at these dataset files, but programs
implementing learning methods do not read these files directly. Instead, a learning method
will work with data files that have been appropriately encoded for a given task, as described
in Section 7.

A dataset in the DELVE standard format consists of an ordered list of cases, each of which
consists of values for an ordered list of attributes. A case may optionally be accompanied by
a comment, which may be anything, and by a commonality index, a number that identifies
several cases as having a common origin. Note: Commonality indezes aren’t implemented yet.

The number of attributes is a characteristic of the dataset, and all cases have values (of some
sort) for all attributes. The value of an attribute may be any of the following:

o A string that represents a number in any of the common forms — that is, with syntax

[+ | -] [diget...) [.[digit...]][(e|E)[+]|-]digit...]
with the restriction that at least one digit must appear, not counting digits after an
‘e’ or ‘E.
e A number as above, preceded or followed by “:’, representing a censored value. If the

colon is at the end, the actual value of the attribute is known only to be greater than or

22

3. DATASET FILES AND SPECIFICATIONS

equal to the given number; if the colon is at the beginning, the actual value is less than
or equal to the given value. Note: Support of censored values is not yet implemented.

e The character ‘7", perhaps followed by other non-space characters. This represents
a missing value. The other characters may indicate the reason for the value being
missing. Just ‘7" is used for values that are missing due to a random mechanism
unrelated to the relationship of inputs to targets. Note: Missing values are not really
implemented yet. About the only thing useful that can be done at present with cases
having missing values is to ignore them.

e Any other string of non-space characters that does not begin with \’, ‘@’ ‘#’, ‘(,
L, 47 =7 L7 f 7 or a digit. These strings represent values from a discrete set of

categories.

Numerical values are represented in as close to their original form as possible — for example,
‘5.0 is not converted to ‘5" or to ‘5.00°. This preserves any information that might be
contained in the original choice of the number of significant digits.

A dataset in standard format is encoded as a ASCII file, in which the cases appear in order,
with each case being represented by a group of lines. All lines in a group except the last end
with a space followed by the character *\’. The whole group of lines for a single case should
be thought of in terms of the single line that would result if the *\” and the following newline
were removed. Within the line (or group of lines) representing a case, the attribute values
appear in order, separated by one or more spaces.

If a case has a commonality index associated with it, it appears after all the attributes. This
index consists of the character ‘@’ followed by one or more digits.

If a case has a comment associated with it, it appears at the end of the line, preceded by
‘#’. These comments are ignored by all DELVE programs.

3.4 Preparing a new dataset: The dcheck command

When a dataset is obtained, the original data files, documentation, programs, and any other
possibly relevant material should be saved in as close to its original form as possible. This
archived information may be of interest if, for example, doubts should arise as to whether
the original data format was properly interpreted, or questions are raised regarding the
real-world relevance of the data. This information goes in the Source sub-directory of the
dataset’s directory.

The dataset should then be converted to the standard DELVE format, and stored in the
Dataset.data file in the dataset’s directory. The aim in doing this should be to retain all
information that could be relevant to some use of the data, discarding only fields such as
redundant case numbers. Converting a dataset will often be simply a matter of mechanically
reformatting it. However, difficulties of interpretation may arise if there are peculiar aspects

23

3. DATASET FILES AND SPECIFICATIONS

to the original data, or if it is inadequately documented. In such cases, the rationale for
the decisions made should be documented, in the Notes file in the Source directory for the
dataset.

As well as the data file itself, you must create a specification file for the dataset, with the
name Dataset.spec, which describes how the dataset is to be interpreted and used. The
specification file is meant to be machine readable, and, as such, has a very strict format.
The file may have zero or more initial comment lines (lines where the first character is a #).
Immediately after the comments lines there should appear the three lines (in any order):

Origin: origin
Usage: usage

Order: order

These lines specify the information discussed in Section 3.1. Specifically:

ortgin should be one of the strings natural, cultivated, simulated, or artificial.
usage should be one of the strings development, assessment, historical, or 7.
order should be one of the strings informative, uninformative, or 7.

In addition to the above lines, you may include the optional line:

Title: title

where title is a string describing the dataset. It is not used directly by DELVE, but it is
available to users via dinfo.

The string Commonality indexes are present may appear on the next line. If there are
no commonality indexes, this line should be omitted. Note: Currently, this line must be
omitted. You can always include commonality indexes, but they will be ignored.

Following these lines should be a line contain the single string Attributes:. Each remaining
line in the file will be interpreted as an attribute description, with the format:

i name control range | # comment |

The fields above have the following meanings:

i is the integer index for the attribute. Indices should start at one and increment
by one for each line.

name is a mnemonic name that can be used in place of the attribute’s index. The
names must be unique (within a dataset). They may not contain spaces, and
may not look like integers.

control is one of the characters c or u, depending on whether the attributes was con-
trolled or uncontrolled.

24

3. DATASET FILES AND SPECIFICATIONS

Origin: artificial
Usage: development
Order: uninformative

Attributes:

1 SEX u male female # Sex of the person

2 AGE u [0,Inf) # Age of the person in years

3 SIBLINGS u 0O..Inf # Number of siblings the person has

4 INCOME u [0,Inf) # The person’s annual income (dollars)

5 COLOUR u pink blue red green purple # The person’s favourite colour

Figure 3.3: Dataset specification file for the demo dataset.

range is the range for the attribute, a list of items of the form described in Section 3.1.

The range for an attribute may optionally be followed by ‘#” and a comment describing the
attribute.

The specification file for the demo dataset is shown in Figure 3.3.

Once you have created both Dataset.data and Dataset.spec, you should check that the
two are legal and consistent using the dcheck command, which will verify that each case has
the right number of attributes, and that they are in the specified ranges. Note that missing
values are allowed in Dataset.data only if they are listed as allowed in Dataset.spec. A
censored value for an attribute (specified using ") is allowed only if it includes at least
one possible value that is within the attribute’s range. Note: The dcheck command is not
implemented yet.

25

4 FROM DATASETS TO TASKS

A dataset does not, by itself, define a problem to be solved. To get a well-defined learning
task, we must specify additional information, such as what part of the data we are concerned
with, what we hope to predict about this data, and what contextual information is available
to assist learning. In the DELVE environment, these specifications have a hierarchical form,
in which specificity increases as we go from a dataset, to a prototask, to a task, and finally
to a task instance.

A prototask fixes only the most basic aspects of the learning task — just enough so that it
makes sense to compare the performance of various learning methods on the various tasks
that derive from the prototask. Specifically, a prototask will define the following:

o The subset of cases that a learning method is expected to handle.

o The set of target attributes that the method is supposed to predict, and the set of input
attributes that it may refer to when making these predictions.

A task 1s derived from a prototask by specifying the additional information required so
that each learning method will have a well-defined expected performance on the task, with
respect to some given loss function (see Section 5). In particular, to define a task, we must
supplement the specifications for the prototask by specifying the following:

o The number of training cases in the training set that will be provided to the learning
method, and (if applicable) whether this training set will be stratified by target value.

o The prior information that the method may use to assist the learning.

Note that expected performance is estimated using task instances, for which particular train-
ing cases are specified, as discussed in Sections 6 and 7.

Specifications and other information relating to a prototask and its tasks are kept in a sub-
directory associated with the prototask, located within the directory for the dataset. Some
of the files that may appear within such a prototask directory are listed in Figure 4.1.

Summary A brief description of the prototask

Prototask.data Data relevant to the prototask, a subset of that in Dataset.data

Prototask.spec Specifications for the prototask and associated tasks, usually accessed
using the dinfo command

std.prior The “standard” prior information for the prototask

Prior-1 .prior
Prior-2 .prior Other specifications of prior information
Prior-3 .prior

Figure 4.1: Some files that may appear within a DELVE prototask directory.

26

4. FROM DATASETS TO TASKS

Prototask: /demo/age

Origin: artificial

Cases: all

Order: retain

Test set size: 1024

Training set sizes: 32 64 128 256 512
Test set selection: hierarchical
Maximum number of instances: 8

Inputs:
name c/u range description
1 SEX u male female Sex of the person
3 SIBLINGS u O..Inf Number of siblings the person has
4 INCOME u [0,Inf) The person’s annual income (dollars)
5 COLOUR u pink blue red green purple
The person’s favourite colour
Targets:
name c/u range description
2 AGE u [0,Inf) Age of the person in years
Tasks:
std.32
std.64
std.128
std.256
std.512

Figure 4.2: Output of the command: dinfo /demo/age.

4.1 Specifications for prototasks and tasks: More on dinfo

A supervised learning prototask is derived from a dataset by specifying the set of attributes
that are available for use as inputs, the set of attributes that constitute the targets to
be predicted, and any restrictions on the types of cases for which the learning method is
expected to work. It is possible to define many prototasks based on the same dataset,
involving different sets of inputs, targets, and cases.

Such prototask specifications are contained in files named Prototask.spec in the prototask
directories. Usually, users will not look at such files directly, however, but will instead view
the information using dinfo. For example, the information displayed by dinfo for the age
prototask of the demo dataset is shown in Figure 4.2.

The meaning of the prototask specifications displayed by dinfo is as follows:

Origin: natural or cultivated or simulated or artificial

The origin of a prototask and the tasks derived from it is usually the same as
that of the dataset on which the prototask is based. For a natural dataset,
however, there will generally be only one or a few natural prototasks, those

27

4. FROM DATASETS TO TASKS

Cases:

Order:

Inputs:

Targets:

that were of actual interest to the original investigators. Any substantially
different prototasks that are based on the same natural dataset are classi-
fied as cultivated. In particular, all prototasks based on natural datasets
in which the effect of possible sequential dependencies among the cases has
been suppressed by random re-ordering are classified as cultivated.

all or no missing or filename

This specifies which cases are to be included in the prototask. The special
string all specifies that all cases are included in the prototask. The string
no missing specifies that all cases are included except those for which the
values of one or more attributes used by the prototask are missing. Otherwise,
the cases to include are listed in the given file, as described in Section 4.4.

retain or filename

The order in which cases for the prototask are to be used in constructing
training and test sets. The specification may say to retain the order in
Dataset.data. Alternatively, the order may be as specited in the given file;
often this is a file called Random-order containing a random re-ordering of
cases. Section 4.4 for more details.

list

A list of indexes or names for attributes of the dataset that the learning
method is allowed (but not obliged) to use as inputs.

list

A list of indexes or names for attributes of the dataset that the learning
method will attempt to predict.

Test-Set-Size: size

The number of cases to be set aside for testing in the standard DELVE set
of task instances.

Training-Set-Sizes: list

A list of sizes for the training sets for the standard DELVE set of tasks
associated with this prototask.

Test-Set-Selection: hierarchical or common

Specifies how the test sets should defined for the standard set of task in-
stances. In the heirarchical scheme test sets for the different instances are

disjoint; in the common scheme the same test set is used for all task instances.
See Section 6 for further details.

28

4. FROM DATASETS TO TASKS

Maximum-Number-0f-Instances: number

Specifies the maximum number of task instances used in the standard DELVE
scheme. This upper limit is used to prevent a very large number of instances
being generated for the tasks with small training sets.

Note that the last four items above are not, strictly speaking, specifications for the prototask,
but rather for the standard set of tasks and task instances that DELVE defines for the
prototask.

Attributes in the Inputs: and Targets: list may be identified by number, starting with
‘1’ for the first attribute in the dataset, or by name. An additional attribute, identified by
‘07, is allowed for datasets with an informative order; its value is the index of the case in the
original ordering, starting with one for the first case. (This index attribute is usually not an
appropriate input, but provision for its use is included for completeness.) Note: Attribute
‘07 is not yet supported by the implementation.

The ordering of cases in a prototask determines which cases will make up the training and
test sets of the various task instances for the standard DELVE set of tasks. Most typically,
we will want this ordering to be random, to ensure that cases are effectively independent
(even if, in reality, there were dependencies between cases as originally ordered). This can be
ensured by using a random re-ordering, though one can also choose to retain the ordering
if it is certain that the original ordering is random (as will often be the case for simulated
or artificial datasets).

When the dataset is in an informative order, one may instead define a sequential prototask,
in which this order is retained. To avoid certain complications, sequential prototasks are
not allowed when the cases also have commonality indexes. In order to allow an appropri-
ate selection of training and test sets, the prototask specification must include a maximum
range over which there may be non-negligible sequential dependences that are relevant to
the supervised learning task. Note that this may be less than the range over which there
are dependencies in the input attributes, as it is only dependences in the noise in the rela-
tionship between inputs and targets that are relevant. This maximum range should be set
on the high side, to ensure that the performance assessments are not biased. A sequential
prototask should not be defined if it is thought that the range of relevant dependencies may
be comparable to the number of cases available. Note: Sequential prototasks are not yet
supported by the implementation.

4.2 The size and nature of the training set for a task

Potentially, a researcher might wish to assess the the performance of learning methods on
a task with any number of training cases, up to the maximum that is feasible given the
number of cases in the dataset. It is unrealistic, however, to expect all researchers to test
their methods on training sets of all possible sizes. DELVE therefore defines a relatively

29

4. FROM DATASETS TO TASKS

small set of training set sizes for each prototask, which we hope will be adequate for most
purposes.

The smallest standard training set size is chosen to be the smallest that the designer of the
prototask believes might be sufficient for a learning method to learn something interesting.
The larger standard training set sizes are bigger than this smallest size by powers of two, up
to a maximum size limited by the need to reserve an adequate test set.

For non-sequential prototasks with a single target taking values from a finite set, DELVE
also provides the option of specifying that the training set for a task should be stratified
by target value — that is, that the training set will contain equal numbers of cases with
each target value. The size of a stratified training set must be a multiple of the number of
target values. Stratification is natural in applications such as handwritten digit recognition,
for which training data would often be collected in a fashion that ensured that there were
equal numbers of cases for each digit. The expected performance of a task with a stratified
training set will be based on a distribution of test cases in which all values of the target are
equally likely. Note: Support for stratification is not yet implemented.

4.3 Prior information available for a task

Learning can be (some would say, must be) assisted by the provision of prior information
about the relationship to be learned. For real applications, all available prior information
should be used to improve performance, to the extent that it can be accommodated by the
learning method. But for research into the performance of learning methods, it is not desir-
able for each researcher to employ whatever prior knowledge they may happen to have about
the problem, as the results obtained by different researchers would then not be comparable.

Each DELVE task specification therefore includes an explicit specification of the prior infor-
mation that is to be regarded as available for use by a learning method. Researchers who
happen to know something about the real-world context of the problem beyond what is spec-
ified should not use such additional information to improve the performance of their learning
methods. Indeed, if they happen to know that some of the prior information specified for
the task is incorrect, they should still use this information as if they believed it to be true,
despite any bad effects this might have on performance. (They could, however, create a new
prior specification that reflects their knowledge, and apply their method to tasks based on
this new prior.)

Although prior information for real tasks can take many forms, DELVE supports only prior
information that is specified in the semi-formal form described below. Most of this prior
information is associated with the various input and target attributes for the prototask,
and is used to determine the default encodings of attributes, as discussed in Section 7.3. A
learning method that uses the default encodings will therefore implicitly be making use of
the prior information. A learning method may employ some other way of selecting encodings
based on the prior information, however, and may also use prior information in other ways.

30

4. FROM DATASETS TO TASKS

Task: /demo/age/std.128
Training set size: 128

Inputs:
col attr name type relevance def coding options
1 1 SEX binary nlmh -1/+1 -
2 3 SIBLINGS integer nlmh nm-abs -
3 4 INCOME real nlmh nm-abs -
4 5 COLOUR:pink nominal nlmh 1-of-n -
5 5 COLOUR:blue
6 5 COLOUR:red
7 5 COLOUR:green
8 5 COLOUR:purple
Targets:
col attr name type noise-lev def coding options
1 2 AGE real nlmh nm-abs -

Figure 4.3: Output of the command: dinfo /demo/age/std.128

A prototask will typically come with a “standard” prior specification, stored in the file
std.prior, which generally will be fairly unspecific (eg, will be vague about how relevant
the various inputs are). Other specifications of prior information may also be defined, stored
in other files ending in .prior. A learning task within a prototask is specified by giving
both the name of a prior specification and the number of training cases used, for instance,
std.128. The prior for a task can be viewed using dinfo, as illustrated in Figure 4.3. The
output also shows the default encodings derived from this prior information, as explained in
Section 7.3.

Note that the explanations of prior specifications given below are meant only as rough guides
to their meanings. The precise, quantitative representation of prior knowledge is, after all, a
topic for ongoing research in learning. Note also that none of these prior specifications should
be taken as indicating absolutely certain knowledge; they mean only that it is considered
very likely that the true situation conforms to the specification.

Noise in targets. The amount of inherent noise that is thought to affect the values of a
target is specified using one or more of the characters ‘N’, ‘I, ‘M’, and ‘H’, representing no,
low, medium, or high noise. If more than one character is specified, the amount of noise is
uncertain. For example, a specification of ‘NLM’ indicates that there might be no noise at
all, or there might be a low or medium amount of noise, but it is thought that there is not
a high amount of noise.

It a target is noise-free, its value will be the same in all cases where the input attributes are
the same. This does not imply that the target can be always be predicted with certainty
on the basis of information from a finite training set, since there may be no training case
with inputs that match a particular test case. It means, rather, that it would be possible to
predict the target with certainty if we had enough training data. For many prototasks, the

31

4. FROM DATASETS TO TASKS

inputs will be different for every case that is actually available, so that the characterization
is hypothetical in nature (as is the case below as well).

A real-valued target is said to have a low amount of inherent noise if the spread in the
distribution of target values over cases where the inputs are all the same is roughly 1% or
less of the spread of target values for all cases. For a target with a medium amount of noise,
the spread for particular values of the inputs is roughly 10% of the overall spread. For targets
with a high amount of noise, the figure is substantially higher, perhaps approaching 100%.
Here, the spread is assumed to be measured in a unit such as standard deviation, but the
term is left deliberately vague, as it could be, for example, that the standard deviation is not
defined for a target that takes on occasional extreme values. The intent is that the rough
figures of 1% and 10% should be interpreted with respect to some intuitively appropriate
notion of spread.

For discrete targets, a low amount of noise means that the target value differs from that which
is most common for the given inputs about 1% or less of the time, with the corresponding
figure for medium noise being about 10%, and for high noise something substantially greater
than that.

Note: At present, the noise level specified does not affect the default encoding, but this may
soon change. For the moment, it is probably best to always specify a noise level prior of
‘NLMH’, as it is expected that the default coding with this specification will not change in
the future.

Dependencies between cases. For a sequential prototask, or a prototask based on a
dataset containing cases with commonality indexes, the prior specification for a task must
include information on the anticipated strength of any dependencies between cases with
the same commonality index, or which are close to each other in sequential order. This
specification will consist of one or more of the characters ‘N’, ‘I, ‘M’, and ‘H’, representing
the possibility of no, low, medium, or high dependencies.

If there is a high degree of dependence between such cases, knowing the true target for one
case would, if the true nature of the relationship were known, permit one to predict the
target in another case that is nearby, or has the same commonality index, with an accuracy
that is better than would be possible without knowing the true target for such another
case, by a factor of around 100 or more (in terms of some intuitively appropriate measure
of “spread” such as discussed above for noise levels). For a medium degree of dependence,
the corresponding factor would be around 10, and for a low degree of dependence, much less
(perhaps around 2). If there is “no” dependence, very little or no improvement in predictions
would be possible from knowing the true target in another case that is close in sequential
order, or that has the same commonality index.

For a sequential prototask, the maximum range over which it is thought that non-negligible
dependencies may occur will also be specified as part of the prior information. This maximum
range will often be the same as that specified in the prototask specification, but might differ
if the effect of changing this aspect of the prior information is being investigated. Note that

32

4. FROM DATASETS TO TASKS

it is possible for dependencies to persist over a long range even if the magnitude of these
dependencies is low. It is usually reasonable, however, to expect that the strength of the
dependencies will likely decline at least somewhat with increasing range, even before the
maximum is reached.

Note: These prior specifications regarding dependencies between cases have not yet been
implemented.

Relevance of inputs. The degree of relevance that an input attribute is thought to possess
is specified using one or more of the characters ‘N’, ‘L.’ ‘M’ and ‘H’, representing no, low,
medium, or high relevance. If more than one character is specified, this indicates that
the degree of relevance is uncertain, except that it is likely to be in one of the categories
mentioned.

The meaning of degree of relevance can be explained in terms of the variation in target
valuess, after the component of the variation due to inherent noise is eliminated. An input
is considered to be of high relevance if as it varies over the range of values that may actually
occur in combination with the other input values (which are kept fixed), the target attributes
often vary over close to their full range (discounting variation that is due to inherent noise).
The effects of some inputs may depend on the values of other inputs. To be considered
highly relevant, it is not necessary that the input always have a big effect; only that it does
so in many of the cases. Note the mention above of the range of values for the input that
actually occur in conjunction with the other inputs. It may sometimes be known that an
input would have a big effect if it were to take on an extreme value, but this does not make
the input highly relevant unless such extreme values are likely to actually occur.

An input is considered to be of medium relevance if it can have a somewhat smaller effect on
the targets — say, changing them by about 10% of their range. Variation in inputs of low
relevance might affect the targets to the extent of about 1% of their range. Inputs of “no”
relevance have substantially less effect (perhaps none).

Learning methods may use prior information about relevance in various ways. A Bayesian
method might use this information to set up a prior distribution for model parameters.
A method prone to “overfitting” might reduce the number of model parameters when the
training set is small by looking only at inputs thought to be highly relevant .

Note: At present, the relevance specification does not affect the default encoding, but this
may soon change. For the moment, it is probably best to always specify a relevance prior of
‘NLMH’, as it is expected that the default coding with this specification will not change in
the future.

Binary attributes. An input or target attribute that takes on only two possible values
(not counting missing values) can be specified to be either symmetric or active-passive.

For a symmetric binary attribute, nothing is known about the two possible values that would
justify treating one differently from another. The actual significance of the two values may
be quite different, however — we just have no prior knowledge of which way around the

33

4. FROM DATASETS TO TASKS

effects might go.

For an active-passive attribute, one of the two values is specified to be passive; the other is
then active. Exactly what this means will depend on the problem; the general concept is
best defined by an example. In a medical diagnosis task, binary input attributes indicating
whether the patient has fever, chest pain, and yellow toenails are active-passive, with the
presence of the symptom being the active value. We expect that the presence of such a
symptom will have specific diagnostic implications, pointing to a relatively small class of
diseases. In contrast, the absence of fever does not in itself suggest a diagnosis. For a binary
target, the “passive” value is considered to be the “default”, though this does not necessarily
mean that it occurs more often than the “active” value.

What, if anything, the distinction between symmetric and active-passive attributes should
mean for the proper treatment of binary inputs and targets is a matter for researchers devel-
oping learning methods to judge. However, the default DELVE encodings (see section 7.3)
do treat symmetric inputs symmetrically, and active-passive inputs asymmetrically.

Categorical attributes. An input or target attribute that takes on a finite number of
possible values (three or more, not counting missing values) may be specified to be nominal
or ordinal. This distinction affects the default encoding of the attribute, as discussed in
Section 7.3.

The values of a nominal attribute are significant only in that they are distinct from one
another, except that one of the values may optionally be singled out as the passive value.
The meaning of such a passive specification is analogous to that described above for binary
attributes.

The values of an ordinal attribute have a defined ordering, which must be specified, if it
differs from the order in which the possible values are listed in the dataset specification.
The first value in this ordering may optionally be specified to be passive. Note: There s
currently no way of overriding the ordering of attribute values in the dataset specification.

Real-valued attributes. Currently, no specific prior information pertaining to real-valued
attributes is recorded, other than the noise level and degree of relevance, as discussed above.
Formal specification of prior information regarding promising transformations of real-valued
input and target attributes may be allowed in future. The expected degree of smoothness
in the relationship between a real-valued input attribute and the targets might also be
useful prior information, but this also has not been standardized. In the absence of such
information, it is appropriate to assume that relationships are often smooth, or at least
continuous, but that discontinuities are not impossible.

Integer attributes. At present, no special special prior specifications are defined for integer
attributes. The relevance and noise level priors apply, however.

Angular attributes. Numeric attributes interval can be specified to be angular. These
attributes are thought to have a circular meaning, for which all that matters is the modulus
of the value with respect to some unit. For instance, a attribute giving the time of day could

34

4. FROM DATASETS TO TASKS

be considered to be angular, with a modulus of 24 hours.

Angular attributes are by default encoded in terms of the sine and cosine of the angle they
define (see Section 7.3). This representation respects the assumed continuity as values wrap
around.

4.4 Defining prototasks: The dgenorder and dgenproto commands

Before a new dataset can be used to assess learning methods in DELVE, at least one prototask
must be defined for it. Researchers may also wish to define new prototasks for existing
datasets. This section describes how to do these things, as well as the approach taken in

defining the standard DELVE prototasks.

The purpose of defining a prototask is to support interesting experiments, which say some-
thing significant about the learning methods that are assessed. For some datasets, such
interesting prototasks may need to have special features. For example, if a potential input
attribute is very highly correlated with a target attribute, it may be best to leave it out of
the allowed set of input attributes, in order to prevent the prototask from being so easy that
it is uninteresting. If the inputs in a few cases differ greatly from those in the other cases,
it might be of interest to define a prototask that excludes cases with these extreme inputs,
in order to assess learning methods that do not purport to handle such extrapolation well.
The documentation for a prototask with unusual features should include a statement of the
research questions the prototask is meant to address, and a justification for its specifications
in terms of these objectives.

Most standard DELVE prototasks are defined with no specialized objectives in mind, how-
ever, and include all attributes and all cases. Complications due to missing data arise fairly
often, however. Since many of the supervised learning methods we would like to assess do
not naturally handle missing data, we hope to obtain a good collection of DELVE prototasks
in which the values of input attributes are never missing. We expect that this will require
creating some such prototasks by excluding a few input attributes whose values are missing
in many cases, or by excluding a few cases for which the values of one or more attributes are
missing, or by doing a bit of both.

The designer of a prototask decide how to deal with any dependencies between cases that
may be present. We take two approaches to this for the standard DELVE prototasks. For
some prototasks, we accommodate the dependencies in a proper fashion (or rather, we will
do so once the required facilities are implemented). In particular, we ensure that there are
no significant dependencies between training and test cases, as this would invalidate the
results. Other times, however, we instead circumvent sequential dependencies by randomly
reordering the dataset. This second approach allows us to define tasks for which ignoring
dependencies gives internally consistent results, although such tasks no longer correspond to
real-world situations.

35

4. FROM DATASETS TO TASKS

Prototask.spec std.prior
Cases: all 1 NLMH binary
Inputs: 1 34 5 3 NLMH integer
Order: retain 4 NLMH real
Origin: artificial 5 NLMH nominal
Targets: 2 2 NLMH real

Test-Set-Size: 1024
Training-Set-Sizes: 32 64 128 256 512
Test-Set-Selection: hierarchical
Maximum-Number-0f-Instances: 8

Figure 4.4: Prototask specification (Prototask.spec)and standard prior specification (std.prior)
for the age prototask of the demo dataset.

When a non-sequential prototask is defined it is recommended that the cases always be ran-
domly re-ordered, unless it is known for certain that the existing order is random. Certainly
this must be done if the ordering is informative, or is sorted by some attribute value. It
should also be done even if it is thought that the order is arbitrary, in order to provide
greater certainty that assessments based on the assumption of no sequential dependence will
be internally valid. When cases have commonality indexes, this random re-ordering must
keep cases with the same index grouped together (in random order), while randomly ordering
the groups themselves.

To create a prototask, you first must create a directory for the prototask within the DELVE
hierarchy. This directory must have the same name as the new prototask, and be located
within one of the directories for the dataset in the DELVE hierarchy. Within this proto-
task directory, you must create a Prototask.spec file, containing the specifications for the
prototask and the standard set of tasks associated with it, and also one or more files contain-
ing prior specifications, usually including std.prior, which contains the “standard” prior
information.

These files have formats paralleling the output of dinfo for a prototask and for a task. A
.prior file should have one line per attribute, specifying the attribute number, the noise
level or relevance prior, the type of the variable, and any additional options. For example,
the line for a nominal attribute, numbered 2, thought to be of at least medium relevance,
and which has a passive value of none, would be be

2 MH nominal passive=none

An angular attribute must be accompanied by a unit=modulus specification.

The Prototask.spec and std.prior files for the /demo/age prototask are shown in Fig-
ure 4.4.

The /demo/age prototask includes all cases in the dataset. Another built-in option is
no missing, which specifies that all cases should be included except those for which one or

36

4. FROM DATASETS TO TASKS

more of the attributes used in the prototask are missing. One can also give for Cases the
name of a file that contains an explicit list of case numbers to include, one case per line,
with numbers starting at one. The order of lines in this file does not matter. This case file
should be located in the DELVE hierarchy, within the prototask directory.

The order for the /demo/age prototask is specified as retain. This prototask is non-
sequential, but the data is artificially generated in a fashion that guarantees that the original
data file is in random order. For a natural or cultivated dataset, one would normally ran-
domize the ordering explicitly (assuming that the prototask is not meant to be sequential).
One does this by specifying a file that contains such an ordering. This file must be located
in the DELVE hierarchy, within the prototask directory. The order file should have one line
per case, with each line containing the index of a case. Indexes start at one, and go up to
the number of cases that are used in the prototask. Note that if any cases were left out of
the prototask, these will not be the indexes of the cases in Dataset . spec.

Most often, this ordering file will be called Random-order, and will be generated automati-
cally using the dgenorder command. This command will also take care of the complications
involved in handling commonality indexes. Or at least it will once commonality indexes have
been properly implemented

Another command that you will often wish to use after creating a new prototask is dgenproto,
which creates the intermediate file Prototask.data, containing the portion of Dataset.data
relevant to this prototask. This intermediate file will be created “on-the-fly” by other com-
mands, as needed, but creating a single permanent copy will save time. You will also want to
use the dcheck command, in order to check that the prototask specifications are consistent
with the dataset specifications.

Here is how you would go about creating a non-sequential prototask for a natural dataset:

unix> cd dataset # Change to a delve directory for the dataset
unix> mkdir prototask # Create a directory for the new prototask
unix> cd prototask # and change into it

unix> edit Prototask.spec # Create the prototask specification file
unix> edit std.prior # Create the standard prior specification
unix> dcheck # Check that it’s all consistent

unix> dgenorder # Generate the Random-order file

unix> dgenproto # Generate the Prototask.data file

The dgenproto step is optional, but usually advisable; if it is done, it must be after
dgenorder has been done. For a simulated or artificial dataset, where the cases are al-
ready in random order, the ordering would usually be retain, and the dgenorder step
would be omitted. Note: The dcheck command is not implemented yet, so you will have to
leave out that step at present.

37

5 PREDICTIONS AND LOSS FUNCTIONS

Together, the specifications for a prototask and for one of its tasks determine what is to
be learned and what information will be available on which to base learning. To complete
the specification of a learning problem, we need to say what form the output of a learning
method should take, and how the performance of a method on a task will be judged.

DELVE supports assessments only of the predictive performance of learning methods — the
degree to which the relationships learned can be used to predict attributes in previously
unseen cases. For this purpose, the relevant output of a supervised learning method is a
set of predictions for the target attributes in a set of test cases for which only the input
attributes are known. The accuracy of these predictions is judged by how well they match
the actual values of the targets, as measured by some loss function.

For some methods, learning, making predictions, and judging the loss from these predictions
may be sequential activities, with the nature of the predictions required having no effect
on the learning itself, and with the loss function by which these predictions will be judged
having no effect on the predictions themselves. In general, however, this need not be so. A
learning method may be designed to behave quite differently depending on the predictions
that it will be required to produce, or on the loss function by which these predictions will
ultimately be judged.

5.1 Types of predictions

DELVE expects learning methods to produce predictions in the form of either guesses or
predictive distributions. A real application might require either type of prediction, and many
learning methods will be able to produce predictions of both types.

A guess for a target in a test case is a value of the same type as the target itself — that
is, if the target is categorical, the guess will be one of the possible target values, and if the
target is numerical, so will the guess be (though a guess for an integer target need not be
an integer). If there is more than one target attribute, a separate guess is made for each
target. One might sometimes wish to allow a learning method to decide to make no guess
for a target (at a penalty); provisions for this are described in Section 5.3.

The accuracy of a guess is judged by a loss function that measures how close the guess is to
the true value, as described below in Section 5.2.

A predictive distribution is a probability distribution for the targets in a test case, conditional
on the known values of the inputs for the test case. In theory, a learning method that
produces predictions of this form should output a complete representation of the predictive
distribution for each test case. Given this distribution and the actual value, a loss could
then be computed using one of the loss functions described below (Section 5.2).

38

5. PREDICTIONS AND LOSS FUNCTIONS

However, the predictive distribution for a target produced by a learning method could be
arbitrarily complex (at least for real-valued targets). When there is more than one target,
the predictive distribution might in general involve dependencies between targets. Due to
the difficulty of defining a standard representation for predictive distributions that is both
convenient and sufficiently general, DELVE does not require learning methods to actually
output their predictive distributions. Instead, the computation of the loss based on the
predictive distribution and the actual target values is left for the learning method itself to
compute, using its internal representation of the predictive distribution.

Tasks with a single categorical target are an exception to this general procedure. In this case
only, a learning method may output an explicit representation of the predictive distribution
for each test case, as described in Section 7.5, leaving the computation of losses to DELVE.
This is in fact the preferred procedure, since it makes the predictive distributions available
for examination, and avoids the possibility that the learning method will compute the losses
incorrectly.

5.2 Standard loss functions supported by DELVE

The accuracy of a prediction for a test case is measured by a loss function, which takes two
arguments: The prediction output by the method for a particular test case, and the true
values of the targets for that case. The value of the loss function is a single real number that
represents the “loss” suffered when the given prediction is used in a situation where the true
values of the targets are as given.

Note that the loss function is defined in terms of a single test case, not a set of test cases.
The goal of prediction is to minimize the expected value of this loss on a test case that is
randomly drawn from the distribution of cases defined for the prototask. In assessing the
performance of a method, we will of course use test sets with many cases, taking the average
loss over many test cases as an estimate of the expected loss on a single test case.

The loss function for an actual application might sometimes be quite complex and specialized.
DELVE does not attempt to assess methods for producing predictions in such a context, but
concentrates instead on a predictions that will be judged using a few simple loss functions.
These loss functions have been selected because they are already in common use, and because
they emphasize somewhat different aspects of predictive performance. The performance of
a learning method with respect to these standard loss functions can be compared to that of
the many other methods that will have been assessed with the same loss functions. More
specialized loss functions may be of interest for some prototasks, however, and DELVE does
provide some support for them, as is described in Section 5.3.

Each of the standard loss functions has a one-letter abbreviation. This abbreviation is used
to specify a loss function, and occurs in the standard names for files holding predictions and
losses on a task instance, as is described further in Section 7. The standard loss functions
are summarized in Figure 5.1.

39

5. PREDICTIONS AND LOSS FUNCTIONS

abbrev. categorical? integer? real? angular?
For guesses:

Squared-error loss S Vv Vv
Absolute-error loss A Vv Vv
0-1 loss 7 Vv Vv

For predictive distributions:
Log-probability loss L Vv Vv Vv Vv
Squared-probability loss Q Vv

Figure 5.1: Standard loss functions, their abbreviations, and the types of targets for which they
can be used.

For predictions that take the form of guesses, the standard loss functions are all based on a
“distance” of some kind between a guess and the true value of a target. For tasks with more
than one target, the total loss is simply the sum of the losses based on the distance of each
target guess from the true target value.

For guesses of targets that take on integer or real values, DELVE supports two loss functions,
based on squared and absolute distance. The squared-error loss is the square of the difference
between the guess and the true target value. Those who take a probabilistic approach to
learning should note that the expected squared-error loss is minimized by guessing the mean
of the predictive distribution for the target. The absolute-error loss is the absolute value of
the difference between the guess and the true target value. The expected absolute-error loss
is minimized by guessing the median of the predictive distribution.

For guesses of integer and categorical targets, DELVE supports 0-1 loss, in which the loss
is zero if the guess is correct, and one if it is incorrect. The optimal strategy for minimizing
0-1 loss is to guess the target value with greatest probability (the mode of the predictive
distribution).

DELVE does not currently support any loss functions for guesses of targets that take on
angular values. There is also no provision for using different loss functions for the various
targets in a case.

For predictions that take the form of a predictive distribution, one may use log probability
loss, which is minus the log (to base e) of the probability or probability density of the true
target values under the predictive distribution. Log probability loss may be used with targets
of any kind. Note that if all targets are integer or categorical, the predictive distribution will
consist of probabilities for the various combinations of target values. If instead the targets
are all real or angular, the predictive distribution will take the form of a probability density
(which must be finite if log probability loss is to be used). If some targets are integer or
categorical and others are real or angular, the log probability loss will be computed from the
hybrid probability /density of the true target values.

Squared-probability loss may be used with predictive distributions for a single categorical
target. In this case, the prediction takes the form of a list of probabilities, py,...,p,, for

40

5. PREDICTIONS AND LOSS FUNCTIONS

the possible target values, which are labeled 1 to n, with ¢ being the true target value for

the case in question. (As mentioned in Section 5.1, in this case only, the learning method

may produce the predictive distribution explicitly.) The squared probability loss is the

square of one minus the probability assigned to the true target value, plus the squares of the

probabilities assigned to all the other possible target values — that is, (1—p;)* + § p3.
1£T

Note that the expected value of both the log probability loss and the squared probability
loss is minimized by a distribution matching the true probabilities. The log probability loss
will be infinite if the probability or probability density for the true target is zero, but the
squared-probability loss is never greater than two.

5.3 Using a specialized loss function

Note: The facilities described in this section have not yet been implemented.

In addition to the standard predictions and loss functions described above, DELVE supports
specialized predictions in which guessing is optional, and specialized loss functions defined
by an arbitrary loss matrix. These facilities are intended for use with natural prototasks
that come from application areas where such specialized predictions and loss functions are
appropriate, or with cultivated or synthetic prototasks that are intended to mimic such
actual applications. For example, an automatic postal code recognition system may have
the option of referring hard-to-recognize postal codes to a human worker, and in a medical
testing application, we might wish to treat a false positive as less serious than a false negative.

Guessing can be made optional by specifying a no-guess penalty, which is the loss suffered
when the learning method decides to make no guess — presumably because the method is so
uncertain of the value of the target that it expects the loss produced with its best guess to
be greater than the no-guess penalty. This form of prediction and loss function is specified
by appending the value of the no-guess penalty followed by “N” to the abbreviation of any
of the loss functions for guesses in Figure 5.1. For example, “Z0.2N” specifies 0-1 loss with
a penalty of 0.2 for not making a guess.

A non-standard loss function for guesses of a single categorical target can be specified by
means of a loss matriz, in which the loss for every possible combination of a guess and a
true value for the target is explicitly specified, with the restriction that the losses must be
non-negative, and be zero when the guess is correct. A loss for making no guess may also
be specified, separately for each true target value.

Use of a loss matrix is specified by giving “M” followed by a file name wherever you would
otherwise use an abbreviation for a standard loss function. This file should be located in the
data part of the DELVE hierarchy, in the directory for the corresponding prototask. The
file should contain as many lines as there are possible values for the target attribute, plus
one additional line if the method is to be allowed to make no guess. The lines correspond
to possible guesses, according to the ordering of possible attribute values in the dataset

41

5. PREDICTIONS AND LOSS FUNCTIONS

specification. Each such line should contain numerical values for the losses suffered for each
possible true value of the target, again in the order given by the dataset specification.

42

6 SCHEMES FOR LEARNING EXPERIMENTS

Tasks are sufficiently well-defined that each learning method has a well-defined expected
performance on each task, which is the expected value of some specified loss function on a
randomly selected test case, when using the predictions produced by the learning method
based on the given prior information and a random training set of the specified size. We
do not, and never will, know this expected performance exactly, but we can estimate the
expected performance by performing experiments in which we apply the learning method to
several task instances, each of which has a particular set of training cases, and a particular
set of test cases.

There are many possible schemes for defining task instances, with different advantages and
disadvantages. This section describes the standard schemes used in DELVE, and discusses
why we chose this scheme for experiments.

6.1 Issues in designing learning experiments

For research purposes, we are usually interested not so much in the numerical value of
the expected loss for a method applied a task, but rather in the relative performance of
several learning methods on the same task. Such performance comparisons can be done
more accurately if the various performance estimates are all based a common set of task
instances, in which the training and test sets contain the same cases.

The statistical benefits of such a common set of task instances are discussed further in
Section 8. In this section, we describe the standard scheme used in DELVE to define a
common set of task instances for each task. This scheme has been designed not only to
allow for good estimates, and an indication of their accuracy, but also to limit the number of
task instances, and hence the number of times that a learning method must be applied to a
training set in order to obtain a performance estimate for a task. Minimizing the number of
applications is important if sophisticated learning methods are to be evaluated, which may,
at least in early stages of research, be computationally intensive. It is even more important
for learning methods that involve decisions made by a human analyst. In order to achieve
these goals, we have been willing to forgo the use tasks based on small datasets, as we believe
that any research questions that these datasets might be useful in answering can equally well
be addressed using larger datasets.

Two different situations arise depending on whether we are dealing with real or synthetic
datasets. For real datasets the number of available cases is often a limiting factor, and
it therefore seems best to use large a single common test set for all instances — what is
referred to in DELVE as a common testing scheme. On the other hand, if we are dealing
with synthetic data, it is usually possible to generate an unlimited amount of data for testing,
and in this case the limiting factor will be the disk space needed to store the prediction and
loss files for all the applications of methods to task instances. In this case it seems more

43

6. SCHEMES FOR LEARNING EXPERIMENTS

profitable to use disjoint test sets for different instances, allowing a much larger number of
test cases in total for a given amount of disk storage. This is what we call the hierarchical
testing scheme.

The standard DELVE schemes for defining task instances are certainly not the only possible
ways of estimating expected performance, however. Some researchers may prefer to use
some other scheme, such as leave-one-out cross-validation. One may also wish to evaluate
the performance of a new method on exactly the same task instances as were used to evaluate
some older method. For these reasons, we allow users to specify non-standard task instances,
which will enable them to perform such evaluations using the DELVE facilities described in
Section 7. Note: This facility isn’t implemented yet, however.

6.2 DELVE'’s standard set of task instances

In the standard set of tasks for each prototask, the training set size is one of a series of
numbers that differ by factors of two. The designer of a prototask based on some dataset
might, for example, have specified standard tasks with training set sizes of 20, 40, and 80.
The same range of training set sizes, and the same actual training and test sets, are used for
all specifications of prior information, and for all loss functions. The designer of a prototask
also specifies how many cases should be reserved for use in testing.

To obtain the standard set of task instances that go with a task, DELVE first reserves
the specified number of cases for use in testing. Training sets of the desired sizes are then
obtained by successively dividing the set of remaining cases (whose number will usually
have been arranged to be a multiple of the largest standard training set size). In the above
example, suppose that the prototask was applicable to 500 cases in the dataset. We could
reserve 340 cases testing, leaving 160 cases for inclusion in training sets. For the task with
a training set of size 80, this allows for two task instances, obtained by partitioning the 160
cases not in the test set into two subsets. Similarly, four instances can be created of the task
with a training set of size 40, obtained by dividing each of the training sets of size 80 in half,
and eight instances of the task with 20 training cases, obtained by subdividing the 40-case
training sets yet again. (It would also be possible to define a single instance of a task with a
training set of size 160, but with only a single training set, no empirical assessment could be
made of the variability of performance on this task with respect to random choice of training
set.)

In the above example, the generation of test sets for each task instance would depend on
the type of Test-Set-Selection specified for the prototask, as explained in the previous
section. If the Test-Set-Selection is common then all test cases will be included in a single
common test set, used for every instance. If the Test-Set-Selectionis hierarchical then
the test cases will also be divided into smaller disjoint subsets, one for each instance of a
particular size.

The successive partitioning described above is performed using the order of cases as defined

44

6. SCHEMES FOR LEARNING EXPERIMENTS

in the prototask specification. For prototasks without any complications, the test set consists
of the first so-many cases in this ordering, and the training sets are taken from the later part
of the ordering. The training sets of different sizes are obtained by successively dividing the
full set of potential training cases into contiguous blocks. Recall that the ordering of cases
will be random unless the prototask is intended to be sequential.

The above scheme becomes a bit more complicated if the the prototask has special features.
For a sequential prototask, a gap of unused cases will be left between the cases used for
testing and those used for training. The size of this gap will be the maximum range of
dependencies given in the prototask specification. For data with commonality indexes, the
ordering will group cases with the same commonality index together, and a gap will be left
if necessary to ensure that no cases used for testing have the same commonality index as a
case in some training set. These provisions to eliminate dependencies between the training
and test sets are needed for the performance on the test set to be a faithful indication of
real performance. Note, however, that for sequential prototasks and for prototasks where
there are commonality indexes, there may still be dependencies between the training sets for
different instances of a task (though we try to avoid this with commonality indexes). This
could reduce the accuracy of the performance estimates, but does not introduce any bias.

The provisions in the above paragraph have not been implemented yet. Special provisions will
also be needed to handle tasks whose training sets are specified to be stratified.

6.3 Using non-standard task instances

The facilities in this section have not been implemented yet.

A non-standard task instance (perhaps for a task with a non-standard size of training set)
can be specified by giving an explicit list of the indexes of the cases making up the training
and test sets. These indexes are with respect to the ordering of the original dataset, but
must be among those included in the prototask.

For a sequential prototask, the list for the training set must be a sub-sequence of the prototask
ordering, and the test cases must be further from the training cases than the maximum range
of dependencies specified for the prototask. It is the user’s responsibility to ensure that the
manner in which cases were selected for the training and test sets is valid in other respects.

45

7 ASSESSING A LEARNING METHOD

This section and the following explain the details of how to use DELVE to assess learning
methods. We start here with guidelines on documenting your method, and then discuss how
you can apply your method to a set of task instances.

The information relating to a method and its application various tasks is organized into files
and directories in the methods part of the DELVE hierarchy. This organization is illustrated
in Figure 1.1, and some of the files involved are listed in Figure 7.1 below.

7.1 Documenting the method to be assessed

An essential part of reporting results for a learning method is to document, as precisely as
possible, what the method actually does. These descriptions should be detailed enough to
allow someone to implement the method from the description and get results similar to those
reported. The description should include a specification of how data should be encoded
for use by this method, on the basis of the available prior information. Without such a
specification, it is unclear how the method would be applied to a new task. If the method
uses DELVE’s default encodings, you can just say that. The description for a method should
also specify such matters as how to decide when an optimization procedure has converged.
You can get an idea of the level of detail required in documentation by looking at the existing
documentation in the methods directory.

Precise specification of what a learning method does is easiest if the method is fully auto-
matic. However, there may be situations when it is undesirable to formulate fully automatic

Summary A briet description of the method
Source A sub-directory with files that document the method, and perhaps
programs that implement it

dataset/prototask/task A sub-directory holding results for one task, with files such as:

Test-set-stats Statistics from the test data used to standardize losses
Coding-used The attribute encoding that was used to generate the data files
normalize.n Normalization constants from training data for instance n
train.n Training data (inputs and targets) for instance n

test.n Test inputs for instance n

targets.n Test targets for instance n

cguess.n Coded guesses for test targets for instance n

guess.n Uncoded guesses for test targets for instance n

loss.S.n Squared error losses produced using the guesses for instance n

Figure 7.1: Some files and sub-directories that may appear within a DELVE methods directory.

46

7. ASSESSING A LEARNING METHOD

methods. In these cases, careful descriptions of the heuristics used, together with examples
of the human choices made on sample tasks may be useful. Since our overall goal is to
evaluate how well learning methods can be expected to work on novel tasks, when applied
by people who are not necessarily the designers of the learning method, the proper approach
to assessing a non-automatic method would be for the developers of the method to get other
people to apply the method following their documentation. This method of evaluation may
perhaps be too cumbersome in practice, but it is useful to keep in mind while documenting
a non-automatic learning method.

In many cases it may be a good idea to supply the source of a computer implementation
as a part of the documentation, since the program itself may be able to resolve important
details of the methods. One should not consider cryptic computer code to be a substitute
for an intelligible description, however.

It is also useful to include some rough estimates of the computational costs associated with
applying the learning method. Some learning procedures can use arbitrary amounts of
computation time; in this case a fully-specified method must indicate how the time is limited
in practice. Different time allowances will define different (albeit closely related) methods.

Learning algorithms often have parameters whose values need to be set using empirical trials.
DELVE includes a suite of developmental datasets that are intended for used in such trial
runs. However, it is possible that you will discover ways of improving your method as a result
of running it on one of DELVE’s assessment datasets. This is unfortunate, since modifying
the method based on performance on these datasets may introduce bias in the evaluations.
It a method was tuned using the assessment datasets, you should therefore include in your
documentation a short description of what tests were done, on what datasets, so that people
can take account of this tuning when judging the significance of the results obtained.

Documentation and programs relating to a method should be placed in the DELVE hierarchy
in the Source sub-directory of the method’s directory. A brief summary of the method should
also be placed in the Summary file in the method’s directory.

7.2 Creating directories for assessments: The mgendir command

For each dataset used to assess a method, a directory with the name of the dataset will exist
in the DELVE hierarchy, within the directory for the method. These directories need not all
be in the same actual directory, but may instead be in located within various of the active
delve directories. This allows you to assess existing methods on new tasks without having
to write into the directory holding results from the DELVE archive.

You can create such directories manually if you wish, but it is usually easier to create an
appropriate directory structure using the mgendir command. This command will generate
all the directories associated with a given dataset, prototask, or task. If a task is specified,
only the directory for this task will be generated (along with the directories needed to contain

47

7. ASSESSING A LEARNING METHOD

this task directory, if they do not already exist). If a prototask is specified, then directories
for all the tasks associated with this prototask will be generated. Typically there will be
many tasks, with different training set sizes, and perhaps with different prior information.
Similarly, if a dataset is specified, directories for all prototasks defined for the dataset will
be created.

Mgendir creates these directories in or below the current directory. If some of the directories
already exist, mgendir simply makes sure that they are up to date. An example will illustrate
the command:

unix> cd delve/methods; mkdir mymethod; cd mymethod
unix> mgendir demo/income/std.32

demo/income

demo/income/std.32

unix> mgendir /demo/income

demo/income/std.64

demo/income/std.128

demo/income/std.256

demo/income/std.512

In this example we first generated the task named std.32 of the demo/income prototask.
The mgendir command created the appropriate directories for that dataset, prototask and
task. We then asked to have the entire set of tasks for the income prototask generated. In
this case mgendir skips the existing directories and generates the new ones. Notice that
the identity of the current directory is important. For example, if your current directory is
at the task level, you should not ask mgendir to generate directories for a new dataset —
this will cause mixing of the different levels. Always issue the mgendir command from the
correct level (or higher up, as in the above example).

Note that mgendir just creates directories; it does not create the data files needed to train
and test your learning method. That is done by the mgendata command.

The above discussion has focused on the most common usage of generating directories ac-
cording to existing specifications in the corresponding data part of the DELVE hierarchy.
You may sometimes want to generate tasks with different specifications. For example, you
might want to use an existing prototask, but with a new specification for prior information.
In this case, you would create a new prior specification file in your data directory, and specify
this name to mgendir to generate the data.

7.3 Specifying how attributes are to be encoded

Part of the definition of a learning method is the manner in which attributes are encoded
in a form suitable for the technique used. For example, inputs to a neural network must be
numeric, so a method based on neural networks that handles categorical inputs must include
a definition of how a categorical value is represented as one or more numbers.

48

7. ASSESSING A LEARNING METHOD

Some researchers may be interested in developing better encoding methods, in which case
they will of course employ whatever methods they think are most promising. DELVE has
facilities that support a number of common encoding methods, but it is of course possible
that you will have to implement the encoding you want to use yourself.

For researchers who are not especially interested in encoding methods, DELVE supplies
default encodings for attributes, selected on the basis of the prior information for the task.
If you have no reason not to, it is probably best for you to stick with the default encodings,
as that will make it easier to isolate the reasons for any differences in performance between
your method and other methods that also uses the default encodings.

An encoding specification consists of a name for the encoding, perhaps followed an additional
passive, unit, or center argument. The possible encodings are as follows:

ignore Ignore the attribute.
copy Copy the raw attribute value unmodified from the dataset file.
0/1 Encode a binary attribute as ‘0" or ‘1’, with ‘0’ being the passive value. An

argument of passive=wvalue is mandatory.

-1/+1 Encode a binary attribute using a symmetric encoding of ‘—1" for the first
value and ‘41’ for the second value (as ordered in the dataset specification).

1-of-n Encode a categorical attribute as a list of zeros and ones. If the attribute
has n possible values, and no passive argument is specified, values will be
encoded using n numbers, exactly one of which is ‘1’, with the others being
‘0°. If an argument of passive=wvalue is given, the n possible values will be
encoded as n—1 numbers, with the passive value being encoded by all the
numbers being ‘0’, and the non-passive values being encoded as before, by
setting exactly one of the numbers to ‘1’

therm Encode a categorical attribute by a thermometer code, using a list of n—1
numbers with values of —x or +z, where n is the number of categories for
the attribute, and z is a scaling factor described below. The lowest value of
the attribute (according to the ordering in the dataset specification) will be
encoded by setting all numbers to —z. For the next higher value, the first
number will be 42 and the remaining ones —x, and so forth. The scaling
factor z is determined by the scale=string option, where string is one of
none, linear, or sqrt. If it is none, then = 1.0. If it is linear, then
x = (n—1)"" Ifit is sqrt, then x = (n — 1)~"/2. The default value is sqrt.

nm-sqr FEncode a numerical attribute by shifting and re-scaling its values so that the
distribution of these values in the training set has mean zero and variance
one. If a centre=c argument is specified, the values will be shifted to have ¢
as their mean rather than zero.

49

7. ASSESSING A LEARNING METHOD

nm-abs Encode a numerical attribute by shifting and re-scaling its values so that
the distribution of these values in the training set has median zero and av-
erage absolute deviation from the median of one. If a centre=c¢ argument
is specified, the values will be shifted to have ¢ as their median rather than

zZ€ero.

O-up Encode a categorical attribute as an integer, from zero and up to the number
of possible values minus one (using the ordering of values in the dataset
specification).

1-up Encode a categorical attribute as an integer, from one and up to the number

of possible values (using the ordering of values in the dataset specification).

rectan Encode a numerical value, x, as two numbers, sin(2ra/u) and cos(27x/u),
where u is the value specified by a mandatory argument of the form unit=u.

If you need to use encodings other than these, you will have to specify a coding as close
as possible from the list above, and then modify the data files DELVE produces using a
program of your own.

When you generate data files using the mgendata command (described in the next section),
DELVE will by default use encodings from the above list that are selected on the basis of
the prior information specified for the task (see Section 4.3). The default encoding for an
attribute is based first of all on the type assigned to the attribute in the prior specification,
in the following way:

binary attributes with a passive value are coded as 0/1; those without a passive
value are coded as -1/+1.

nominal attributes are encoded as 1-of-n, with a passive option if a passive value is
specified in the prior.

ordinal attributes are encoded using therm, with the default scale option sqrt.
real attributes are encoded using nm-abs.
integer attributes are also encoded using nm-abs.

angular attributes are encoded using the rectan code, with the unit argument as
specified in the prior.

You can override the default encodings by giving the name of a file of alternate encodings
(typically called encoding) to the mgendata command, using the ‘=c” option. For the format
of this file, see the documentation for mgendata in Appendix C. This is useful if you wish
to use other than the default encodings, and also if the software your using has built-in
facilities that implement the default encodings, but expects to receive attributes in some
other format.

30

7. ASSESSING A LEARNING METHOD

The manner in which choices of encodings are made is logically part of the learning method
and should be documented as part of the description of the learning method being assessed.
If other than default encodings are being used, you will probably have to manually specify
how attributes are to be encoded for a particular task, according to the rules defined for the
method. In theory, however, a method’s encoding rules could be implemented automatically,
using a program that reads the relevant specification files.

7.4 Creating data files for training: The mgendata command

Once you have decided on the encodings to be used by a method on some task (which
may be just deciding to use the defaults), you can use the mgendata command to generate
the training and testing data files to be read by the program implementing the method.
These files must be placed in the directory for the task within the methods part of the
DELVE hierarchy, which you will usually have created earlier using mgendir. The mgendata
command can also generate files for all the task instances associated with a prototask or
dataset, as described in the detailed documentation for mgendata in Appendix C.

For each task, mgendata creates files pertaining to all task instances. These files all have
the number of the instance (from 0 on up) as a suffix. Four files will be generated for task
instance n: train.n, test.n, targets.n and normalize.n. The contents of the first three of
these files will depend on the encoding used, which can be left to default, or can be specified
using the ‘-=c” option of mgendata, which should be followed by the name of the file containing
the alternate encodings. If you type minfo (with no arguments) in the task directory for a
method after running mgendata, you will see a listing of all the numbers involved in encoding
the attributes for the present set of data files (as saved in the file Coding-used). Typing
dinfo (with no arguments) will show you what numbers would be produced by the default
encodings. These commands can also take explicit task specifications. Figure 7.2 shows the
display of the default encodings for the /demo/age/std. 128 task produced by dinfo.

The train files produced by mgendata contain the training cases, one per line. The encoded
values of the input attributes for a case appear first on the line, in the order they are
mentioned in the prototask specification (and in the output of dinfo or minfo). The encoded
values of the target attributes follow the inputs. All the numbers in a training data file are
separated by spaces. Note that there may well be more numbers than attributes, since
some attribute encodings produce more than one number — as is the case with the COLOUR
attribute in Figure 7.2.

The test files contain only the input attributes of the test cases. The true targets for the test
cases are not supplied, since they should not normally be available to the learning method.
An exception is allowed for a method that makes predictions to be evaluated using the log
probability loss functions (see Section 7.5), since it is not practical for DELVE to evaluate
these losses itself. The true targets are available for this use in the targets files.

The normalize files contain the offset and scaling constants that may have been used to

51

7. ASSESSING A LEARNING METHOD

Task: /demo/age/std.128
Training set size: 128

Inputs:
col attr name type relevance def coding options
1 1 SEX binary nlmh -1/+1 -
2 3 SIBLINGS integer nlmh nm-abs -
3 4 INCOME real nlmh nm-abs -
4 5 COLOUR:pink nominal nlmh 1-of-n -
5 5 COLOUR:blue
6 5 COLOUR:red
7 5 COLOUR:green
8 5 COLOUR:purple
Targets:
col attr name type noise-lev def coding options
1 2 AGE real nlmh nm-abs -

Figure 7.2: Output of the command: dinfo /demo/age/std.128.

encode the data (if nm-abs or nm-sqr encodings were specified, or were the defaults). You
will not normally have to look at the normalize files yourself, but they are needed for
DELVE to interpret the predictions produced by the method.

Once the training and testing data files for the various task instances have been generated
using mgendata, you can run your learning method. This should be done completely inde-
pendently for each task instance, with the run for one instance making no reference to any
data files intended for another instance. If your learning method has a stochastic aspect,
you should initialize the random seed differently for each instance, for reasons discussed in
Section 8.

7.5 Processing predictions on test cases: The mloss command

The objective of running your learning method is to produce predictions for the test cases.
These predictions will normally be encoded, in the same way as the targets seen by the
learning method were encoded. As discussed in Section 5, predictions can take two forms:
point predictions or guesses for the target values, and predictive distributions for the tar-
gets. In most circumstances, your method will not read the targets files when producing
predictions, and the losses with these predictions will be calculated by DELVE, not by the
method itself. However, since there is no easy way of representing an arbitrary predictive
distribution for a target of real, integer, or angular type, the predictive probability density
for the true target must be evaluated by the method itself, if log probability loss is of interest,
with reference to the true target values found in the targets files.

The actual losses are in all cases evaluated by the mloss command, which will refer to files
of predictions produced by the method. In general, a method may wish to make different

52

7. ASSESSING A LEARNING METHOD

predictions for use with different loss functions. Accordingly, the files to which a method
writes predictions may have names incorporating the abbreviation of the loss function for
which they are intended. Prediction files have one of three possibile root names, according to
the form of prediction: guess, for point predictions, prob, for predictive distributions, and
ptarg, for probabilities (or probability densities) of the true target value. Prediction files
always have the instance number as a final suffix (e.g. guess.3). If a specific loss function
is specified, it goes between the root and the instance number (e.g. guess.S.0). The name
of a prob or ptarg file can be prefixed by “I” to indicate that it contains the (natural) logs
of the probabilities (or densities), rather than the probabilities themselves. Finally, names
of prediction files may optionally have a leading ‘c’ to indicating that they are for encoded
data. For a more extensive discussion of these conventions, refer to the discussion of mloss
in Appendix C.

The mloss command performs two tasks: it decodes predictions (in the typical situation
where the method’s predictions were encoded), and it evaluates losses. When mloss is
invoked it looks to see if it can find encoded prediction files. If so, it decodes the encoded
predictions in the files and writes these to files with the initial ‘c’ removed from their name.
For example, cguess.A.0 would be decoded into guess.A.0. After this, mloss looks for
the decoded prediction files (which it may just have produced itself), computes the losses
using them, and writes them to files called loss.l.n, where [is the loss function, and n is
the instance number. Section 8 discusses how these loss files are analysed.

After running mloss you can remove the train.*, test.*, targets.*, and normalize.*
files (they can be regenerated using mgendata if you should ever want them again). You
should keep the Coding-used and Test-set-stats files, as they are used by mstats and
minfo. Usual practice is to also remove any encoded prediction files, keeping only the decoded
versions (guess.*, prob.*, etc.). You can remove the loss.* files as well, if you need to
save disk space, as they can be regenerated from the decoded prediction files using mloss,
but it is better if possible to keep the loss files around so that performance comparisons
between methods can be made conveniently.

7.6 Submitting your results to the DELVE archive

Once you have documented a learning method, and tried it out on a number of tasks, you
may submit the method and the results of applying it for inclusion in the DELVE archive.
Other people will then be able to examine your method and results, and compare the results
they obtain with their methods to those that you obtained.

You submit a method to the archive by sending the complete directory structure for the
method, containing the documentation and tests on all the datasets you have tried. This
directory will be placed in the methods directory of the DELVE archive. It is also possible
to submit new results on existing methods, and new datasets and prototask specifications.
For details on how to go about submitting material to the DELVE archive, see Appendix B.

33

7. ASSESSING A LEARNING METHOD

It should be understood that submission of a learning method to the DELVE archive con-
stitutes a form of publication. Once your method has been incorporated into the archive,
other researchers will start publishing comparisons of their results with yours. For these
comparisons to be intelligible to other researchers, it is necessary for methods to remain in
the archive once they have been submitted, in their original form, though you will be able
to submit new commentary on the method, explaining any new developments. When a bug
is found in the program implementing the method, or a substantial improvement has been
made to the learning method, a new updated version may be submitted.

o4

8 ANALYSING THE RESULTS

Suppose we have applied several learning methods to one or more tasks, and used the mloss
command to evaluate the losses for the predictions they produced, as described in the pre-
vious section. We can now use the mstats command to compute summaries of losses, and
perform tests of statistical significance on observed differences. We hope that in this way we
will be able to draw interesting conclusions about the relative performance of these learning
methods on these tasks.

The mstats command addresses two basic questions. First, how can we compute an estimate
of the performance of a method on some task, together with an indication of uncertainly
in the estimate? Second, how can we judge whether an observed difference in performance
between two methods is statistically significant? This section will explain the theory of the
statistical procedures used to answer these questions, and the commands that implement
these procedures.

A task is the basic unit for which an expected loss can be defined. However we cannot
apply our learning methods directly to tasks, since no specific training cases are associated
with a task. Instead we apply our methods to a set of task instances and use the observed
performance these particular instances to estimate the expected performance on the task.
Note, in particular, that we are generally not interested in the performance on a certain set
of test cases, nor in the performance when using particular training sets. Rather, we wish to
estimate the expected performance on a new test case when the learning method has been
trained on a new training set, both of which are randomly drawn from the same distributions
as are the available task instances.

In order to form estimates that are appropriate for this context, we use a set of statistical
techniques known as ANOVA (for ANalysis Of VAriance). In each experiment, we try
several training sets and for each training set we evaluate the losses for many test cases. The
appropriate analysis depends on whether a single common test set or a hierarchical design
with disjoint test sets was used. The analysis for the hierarchical model is simplest, so we
begin with that.

8.1 Analysing the hierarchical loss model

In the hierarchical model, the losses for a particular set of task instances and a particular
learning method are modeled by:

Yij = [+ ai + €ij, (1)

where y;; is the loss on training set ¢ and test case j (from the ¢’th test set — remember,
in the hierarchical model there is a separate test set for each training set). There are [
instances, each of which contain .J test cases. The overall mean loss is given by u. The
parameter a; is a random variable which explains the variation in losses due to individual

)

8. ANALYSING THE RESULTS

training sets. The e;; parameters account for the residual variation in the losses which are
unexplained by the model.

The loss model in eq. (1) captures the notion that individual training sets may not be equally
well suited to learn the true relationship of the data. As an example, it may be that one
particular training set contains an outlier, which can be accounted for by the corresponding
a; taking on a large positive value. The residuals €;; account for the variability in losses
that are unexplained by the contributions from training set factor a. This variability may
be due to variation in the “difficulty” of test cases (either in general, or when a particular
training set is used). Any stochastic aspects of the learning method can also contribute to
the variability in either the a; or the ¢;;, as discussed below.

We propose using simple independent Gaussian assumptions about the model parameters:
CLZ'NN(O,O'E) o NN(O,O‘?). (2)

These assumptions are primarily based on simplicity requirements for the following analysis
of the results. For many loss functions the distributions of the above variables may not be
well approximated by Gaussians. However, it is generally believed that the ¢-test which will
be used in the following are fairly robust to violations of normality. Finally, it seems that
more sophisticated models become very complicated to analyse, which is why we have settled
for this simple model as our standard recommendation in DELVE. Note that the loss files
are available, so that a more ambitious analysis can be performed if desired.

The parameter in which we are primarily interested is p, the overall mean performance of
the method. An estimate for it, i, can be found as follows:

o? 0'62)1/2

o) ot ot

This above standard error is in terms of the true values of the o parameters. In practice, we
will have to substitute estimates for the o parameters.

We introduce the following partial means:
~ 1
Yy = jzyij (4)
J

and the “mean squared error” for a and ¢ and their expectations

J

MSe = —— > (i —y)* EMS,] = Jog + 0 (5)

1
MS, = —— = i) E[MS.] = o2 6
17— & 2 =) MS.] = o (6)

We can now use the following minimum variance unbiased estimators for the o values
MS, — MS.

52 = MS. g = MM (7)

56

8. ANALYSING THE RESULTS

Unfortunately, 5> may be negative, in which case we set it to zero. The estimated values
may be substituted back into eq. (3) to estimate the uncertainty associated with the average
loss.

In order to compare two learning methods, the same model can be applied to the differences
between the losses from two learning methods, identified by k& and &’

Yiij = Yijk — Vi = o+ ai + &, (8)

with similar Gaussian and independence assumptions as in eq. (2). In this case p is the
expected difference in performance and a; will be the difference effect due to training sets.
Since the overall estimate for the mean can be seen as arising from I independent estimates
from each of the instances, we can test whether the estimate for p is should be considered
significantly different from zero using a ¢-test. This is effectively a paired ¢-test for whether
the expected performance of the two methods is different, with the pairing being performed
by modeling the differences in losses. The appropriate ¢ statistic to use is

B 1 B o\ —1/2 B MS, ~1/2
t = y(mZ(?h—y)) / = y(m) /7 (9)

with I — 1 degrees of freedom.

In cases where the methods to be analysed have stochastic elements, these give rise to
variation in the losses that are not explicitly accounted for in the above analysis. There
may be stochastic elements in both the training of the method and in the predictions. For
example, many neural network methods are initialized with random weights which gives rise
to stochasticity in the training phase.

Although these stochastic elements are not explicitly modeled, the additional variability that
they lead to will still show up in this model. Some training conventions should be followed so
that it always shows up in the same way. If your learning method is stochastic, you should
use a different random number seed for every training set. This will result in the variation
due to stochastic training being lumped together with the training set effects in the analysis.
Similarly, if your prediction procedure is stochastic, you should use random numbers that
are independent for each combination of training set and test case, so that the effects of
stochastic predictions will be lumped together with the effects of test cases. Following
these conventions, the present analysis will take these stochastic effects into account in a
consistent way, but you will not be able to separate the stochastic training and prediction
effects from the other sources of variability. In future versions of DELVE we may support
explicit evaluation of stochastic training effects, since it may often be of interest to know
how much performance varies with things such as random initialization of model parameters.
However, this extra information will come at the cost of having to run methods multiple times
on identical training and test sets, but with different random number seeds.

57

8. ANALYSING THE RESULTS

8.2 Analysis of experiments with common test sets

When using a common test set the nested model described in the previous section is no
longer applicable. Instead, we model the losses for a particular set of task instances and a
particular learning method by:

yij = p+ait+b+ey, (10)

where y;; 1s the loss on training set z and test case j. The overall mean loss is given by
p. The parameters a; and b; are random variables that explain the variation in losses due
to individual training sets and test cases respectively. The ¢;; parameters are the residual
variation in losses, which are unexplained by the model.

The loss model in eq. (10) captures both effects of training sets a; and test cases b;. In the
case of a common test set, we have computed the loss for each test case using each of the [
training sets, and can thus explicitly estimate the effects of the different test cases in general
(as opposed to their effect in combination with a particular training set). As before, the
residuals ;; account for the variability of the losses unaccounted for by the model, such as
interactions between training sets and test cases. If the methods being tested have stochastic
elements, variation due to this will also show up somewhere, as discussed below.

We again propose using simple independent Gaussian assumptions about the model param-
eters:

a; ~ N(0,07) bj ~ N(0,07) eij ~ N(0,02). (11)

As before, these assumptions are primarily based on simplicity requirements for the following
analysis of the results. For many loss functions the distributions of the above variables may
not be well approximated by Gaussians. However, it is generally believed that the F-test
which will be used in the following is fairly robust to violations of normality.

We wish to find an estimate, fi, for the expected loss of the learning method, as well as a
standard error associated with this estimate. As our estimate for the expected loss, we can
use the average loss. We can estimate the standard deviation for this estimate based on the

model defined by eq. (10) and (11):

) B) 052 ol &3 1/2
L=y SD(f1) = (—+—b+—) , (12)

where [is the number of training sets and J the number of test cases. The expected mean is
simply the overall average loss. To evaluate the standard error we first need to estimate the
values of the o parameters. Here and in the following we will use the property that when
training sets are set up using the DELVE standard scheme (see section 6), the training sets
are disjoint subsets of the entire data set. We introduce the overall mean and the marginal
means:

;o L } S N
¥y =]JZZ:ZJ:?JU Yi = sz:ylj y] -]Zi:ymv (13)

38

8. ANALYSING THE RESULTS

and the the “mean squared error” for @, b and ¢ and their expectations:

J
MS. = 77— (g =) EMS,] = Joi +oX(14)
I
MSy, = —— _(yi—w)’ EMSy] = lof + 0Z(15)
J

MS. = = TR) -) = -0 ENS] = 2 (16)

Now we can use the empirical values of MS,, MS;, and MS. to estimate values for the o’s:

M5, — MS MS, — MS

~2 ~ 2 = ~2 a e

6z = MS. o, = ——— ol = — 17
€ b I a J ()
These estimators are uniform minimum variance unbiased estimators. Unfortunately how-
ever, the estimates for 02 and of are not guaranteed to be positive, so we set them to zero
if they are negative. We can then substitute back these variance estimates in eq. 12 to get

an estimate for the standard error for the estimated mean performance.

Note that the estimated standard error & diverges if we only have a single training set (as
is common practise!). This effect is caused by the hopeless task of trying to empirically
estimate a variance based on a single observation. At least two training sets must be used,
and probably more if accurate estimates of uncertainty are to be achieved.

Another important question is whether we have good evidence that one learning methods is
better than another. To settle this question we again use the model from eq. (11), only this
time we model the difference between the losses of the two models, k& and £':

Vijk = Yir =+ ai+ b+ €ij, (18)

under the same assumptions as above. The question now is whether the estimated overall
mean difference i is significantly different from zero. We can test this hypothesis using a
quasi-F test [Lindman, Harold R., “Analysis of Variance in Experimental Design”, Springer-
Verlag, 1992], which uses the F statistic and degrees of freedom:

Fow, = (SS,+MS.)/(MS,+MS;), where SS, = I[Jy° (19)
vi = (SSm+MS.)*/(SS;, + MS/((I = 1)(J = 1)) (20)
ve = (MS, +MSy)?/(MS2/(I —1) +MS;/(J —1)). (21)

The result of the F-test is a p-value, which is the probability that given the null-hypothesis

(0 = 0) is true, we would observed a difference in average performance of this magnitude
(positive or negative), or of a more extreme magnitude. In general, a low p-value produces
high confidence that the learning method with better performance in this experiment actually
has better performance. If the p-value is not low (say, greater than 0.05), it is not implausible
that the method whose performance appeared better in this experiment could actually be
worse in reality.

39

8. ANALYSING THE RESULTS

As is the case with the hierarchical model, the common test set model will pick up the
variability due to stochastic training and stochastic predictions, even though they are not
modeled explicitly. Whenever you apply a stochastic method you should initialize it with
a different random seed. The uncertainty due to stochastic training will then be lumped
together with the training set effects in the model, and the effects of stochastic predictions
will by lumped together with the interaction effects. Thus, the present analysis will take
these stochastic effects into account, but you will not be able to separate the effects according
to their causes. In future versions of DELVE we may support explicit evaluation of the
stochastic training set effect, if the method has been run several times on the same training
set with different random seeds.

8.3 Obtaining performance statistics: The mstats command

The mstats command implements the calculations described in the two previous sections.
When used to estimate the expected loss for a particular task, mstats is called from within
the task directory, or is given the path to such a directory in the DELVE hierarchy. The
command will look for 1loss.l.z files in this directory, and produce the statistics derived from
these files. You may specify the desired loss functions with the ‘-1’ option. As an example,
we can analyse the performance of a linear regression method in the demo/age/std.128
task, using absolute error loss:

unix> mstats -1 A /lin-1/demo/age/std.128
/lin-1/demo/age/std.128
Loss: A (Absolute error)
Raw value Standardized

Estimated expected loss: 15.0988 0.893246

Standard error for estimate: 0.667719 0.0395023

SD from training sets & stochastic training: 1.49368 0.0883662

SD from test cases & stoch. pred. & interactions: 13.0755 0.773547

Based on 8 disjoint training sets, each containing 128 cases and
8 disjoint test sets, each containing 128 cases.

Here, the values reported correspond to the parameters of the model in eq. (1); the overall
mean performance is followed by the standard error on this estimate. Also the standard
deviations for different sources of variability are printed.

In the second column, the values have been standardized, an a manner appropriate for the
loss function. The standardized domain is designed such that a simple baseline method has
a nearly pre-specified performance. This makes the standardized losses easier to interpret
than the raw losses. Note however, that these standardizations are obtained by imagining
the baseline methods applied to the union of all test cases, such that applying the same

60

8. ANALYSING THE RESULTS

simple methods to actual training instances will typically yield a standardized error a little
larger than might be expected. (We are forced to accept this, since the standardizations
must be the same for all instances in a task, whereas the training sets usually differ.)

For the °S’) “‘A’, ‘77 and ‘Q’ loss types, we obtain standardized losses by division by the
baseline loss. For squared error loss, the baseline method is prediction of the mean. For
absolute error loss, the baseline is prediction of the median. For 0/1-loss, the baseline
method is to always predict the majority class, yielding a loss of 1 — p*, where p* is the
frequency of the majority class. The baseline method for squared probability loss predicts
the empirical class probabilities as observed in the test cases, giving a loss of 1 — 3, p?, where
pi is the frequency of the ¢’th class over the test cases. Thus, these simple methods (which
don’t utilise the inputs) will have a standardized losses of close to 1.0 and better methods
will have losses closer to 0.0.

For log probability loss, the baseline method depends on whether the targets are discrete
or continuous. For continuous targets the baseline method produces a Gaussian predictive
distribution with mean and variance set to the empirical mean and variance of the test
cases. Thus, the standardized losses are obtained by subtracting %10g(27‘(’0‘2) + % from the
raw values. For discrete targets, the baseline method sets the class probabilities in accordance
with the test frequencies; the standardized values are consequently obtained by subtracting
— > pilog(p;) from the raw values, where p; is the frequencies of class ¢ in the test set.
Thus, methods which perform as well as the baseline methods will have a standardized
loss of around 0 and better methods will have negative losses. The negative value of the
standardized loss can be interpreted as the amount of information (measured in nats) that
the method predicts about the targets relative to the baseline method.

Specitfying the ‘-=c’ option to mstats causes it to compare losses with the method named after
the ‘-¢’” option. For example we can compare the linear method with a k-nearest-neighbor
method with respect to absolute-error loss on the /demo/age/std.128 task as follows:

61

8. ANALYSING THE RESULTS

unix> mstats -1 A -c knn-cv-1 /lin-1/demo/age/std.128
/lin-1/demo/age/std.128
Loss: A (Absolute error)

Raw value Standardized

Estimated expected loss for lin-1: 15.0988 0.893246

Estimated expected loss for /knn-cv-1: 13.2854 0.785965

Estimated expected difference: 1.8134 0.107281

Standard error for difference estimate: 0.350707 0.0207478

SD from training sets & stochastic training: 0.505922 0.0299304

SD from test cases & stoch. pred. & interactions: 9.65323 0.571086

Significance of difference (t-test), p = 0.00129409

Based on 8 disjoint training sets, each containing 128 cases and
8 disjoint test sets, each containing 128 cases.

62

A INSTALLING DELVE ON YOUR COMPUTER

DELVE consists of a set of utility programs for assessing learning methods, a number of
datasets that can be used for such assessments, and the results of assessing various learning
methods on these datasets. To use DELVE you must at least install the utility programs.
You will no doubt wish to install some of the datasets as well (unless you wish to use DELVE
only on your own data). If you want to compare your learning methods with others, you
will also need to install the relevant results.

Requirements

Currently, DELVE requires you to be running some variant of Unix. It has been tested under
IRIX 5.3 and Sun-OS 5.4, but should run under other variants without problems.

The datasets and method results have no requirements beyond a Unix file system. The
utilities currently require that you have an ANSI-compliant C compiler and an installed
copy of Tel (Tool Command Language). Tcl is freely available on the Internet and are
extremely portable (i.e. it has almost certainly been ported to whatever variant of Unix you
are running). If you do not already have Tcl installed, copies of the source are available at
the ftp site ftp.smli.com in the directory /pub/tcl.

Obtaining DELVE

The best way to obtain DELVE is to visit our web site: http://www.cs.utoronto.ca/~delve/.
You’ll find full instructions on getting and building delve there, as well as the latest news on
the software, results, and datasets.

If you don’t have access to a web browser, the DELVE distribution is available via anonymous
ftp, in multiple compressed tar files (Unix tape archive format). Currently the files are
available on the machine ftp.cs.toronto.edu in the directory /pub/neuron/delve.

The files are broken down as follows:
1. The source code for the DELVE utilities and documentation is available in one file:
delve-*.tar.gz.

2. Each dataset is in its own file, where the name of the file is the same as the dataset (with
the appropriate suffix added), e.g. demo.tar.gz. The easiest way to obtain datasets
is from the Delve web site at http://www.cs.toronto.edu/~delve or they can be ob-
tained by ftp from ftp.cs.toronto.eduin the directory /pub/neuron/delve/data/tarfiles

3. The complete results for each method that has been run on DELVE is in its own
file, named in a manner similar to the datasets, but with an all appended, e.g.

63

A, INSTALLING DELVE ON YOUR COMPUTER

lin-1-all.tar.gz. Results for a particular method and dataset are stored in files
with the -all suffix replaced with the dataset name: lin-1-demo.tar.gz. The source
code and description for the methods are stored in another tar file with -all replaced
with -Source: lin-1-Source.tar.gz. These files are only available from the Delve
web site at http://www.cs.toronto.edu/~delve.

A sample ftp session for obtaining DELVE might be as follows!':

ftp ftp.cs.toronto.edu

cd /pub/neuron/delve

binary

get software/delve-1.1.tar.gz
get data/tarfiles/demo.tar.gz
quit

Installation

Before installing the datasets and method results, you must build and install the DELVE
utilities as follows:

1. Obtain the distribution file from our ftp site:

ftp ftp.cs.toronto.edu
get /pub/neuron/delve/software/delve-1.1.tar.gz
bye

2. Uncompress and untar the distribution using the gunzip utility:

gunzip delve-1.1l.tar.gz
tar xvf delve-1.1.tar

3. Run the configuration script:

cd delve-1.1
./configure

or, for systems that don’t recognize #! in shell scripts:

cd delve-1.1
/bin/sh ./configure

By default, the configuration script will set things up to be installed in /usr/local
You can change this by specifying a different prefix in the configure command:

./configure --prefix=/your/install/path

!This example illustrates the process for version 1.1; for other versions replace “1.1”7 by the version/patch
number you wish.

64

A, INSTALLING DELVE ON YOUR COMPUTER

You can also add options for a particular cc compiler and compiler flags:
./configure --with-cc=gcc --with-cflags=-g
For a full list of the options configure takes, type:

./configure --help

The configure script generates new Makefiles from their respective templates (Make-
file.in). If configure can’t find something, you can make changes to the intermediate
config.status script, and invoke this script to reconfigure the Makefiles:

vi config.status
./config.status

As a last resort, you can edit the Makefiles in the current directory and doc/ by hand
and insert the proper paths.

4. Build the libraries and the executables. From the top-level directory type:
make all

5. Install the executables, libraries, documentation, and script files. From the top-level
directory type:

make install

If you have problems with the installation, you can use a subset of the commands:

make install-binaries
make install-libraries
make install-doc
make install-man

Once you’ve installed the utilities, you can install the datasets. This involves simply ex-
tracting the files from their tape archives into the proper directory: the installed top-level
DELVE data directory. By default this directory is /usr/local/lib/delve/data. If you
specified a --prefix to the configure command, replace the /usr/local prefix with the
path of that directory.

Each tape archive will create a directory with the same base name as the archive file. This
directory will contain all the data and specification files DELVE needs to generate the tasks.

mv demo.tar.gz /usr/local/lib/delve/data
cd /usr/local/lib/delve/data
zcat demo.tar.gz | tar xvf -

It you want to install a dataset in a private directory, you can do the following

65

A, INSTALLING DELVE ON YOUR COMPUTER

1. Create a directory called delve in your home directory (or anywhere else, for that
matter).

2. In that directory create two more directories: data and methods.
3. In the delve/data directory, untar the data file as described above.
Once you’ve done that, you can work in your own private delve directory and you will have ac-
cess to the datasets you’ve downloaded, as well the ones installed in /usr/local/lib/delve/data.

Once you've extracted the data, you can safely remove the tar file.

Setup

Once the software has been installed you can run any of the DELVE commands without
further setup. There are, however, 2 environment variables that make the software more

flexible
1. DELVE_PATH - (see also appendix C) allows multiple delve directories to be active.
It is similar in flavour to the normal Unix PATH environment variable.

2. DELVE_UNCOMPRESS - Set this environment variable to the name of the Unix utility
that will uncompress files on the “fly”, ie it can read compressed files and uncompress
them to stdout. If this environment variable is not set, zcat is assumed.

66

B CONTRIBUTING TO THE DELVE ARCHIVE

The ultimate aim of the DELVE project is to collect datasets, implementations of learn-
ing methods, and the results of learning experiments from a wide variety of sources. If
you have datasets, methods or results which might be of interest to other users you can
submit these to the DELVE archive. To make contributions, you can put files on our ftp-
server ftp.cs.utoronto.ca in the directory /pub/incoming, and notify us by email to
delveQcs.utoronto.ca. The submitted files should preferably conform to the usual DELVE
conventions, and be in the form of a compressed tar file.

We welcome contributions of datasets to DELVE. We are particularly seeking large real-
world datasets, and realistic simulation programs that can be used to create large datasets.
Contributions of datasets should be accompanied by descriptions of the data. For real
datasets both the data in its original form and in DELVE format should be supplied, as
well as descriptions of the relevant context and the attributes recorded. Also suggestions for
prototasks together with specifications of prior information should be included. Naturally,
proprietary data cannot be included in DELVE without permissions. For simulated and
artificial datasets, programs to generate the data should be supplied (if possible) as well as
descriptions of the data attributes and suggestions for prototasks and priors, etc.

You may also contribute new learning methods to the archive. Typically, you would also
provide results of running your method on various DELVE datasets. You can conveniently
submit the whole methods directory pertaining to your method. Also you need to supply
a detailed description of your method. Remember, that the description should be detailed
enough that someone else can re-implement the method and get comparable results to the
ones you might get for any dataset to which the method is applicable. The easiest way to
attain this, is if your method is fully automatic. In particular, you should make sure that
your description includes:

e implemetational details allowing someone else to re-implemet your method with similar
results

e discussion of the role of all parameters of the method

o discussion of the heuristic rules for setting all parameters of the method on the basis
of a particular application, including convergence criteria for iterative methods

o detailed discussion of how attributes should be encoded for the method

Finally, it would be convenient if source code of the program implementing you method
can be included in DELVE. This may help clarify details of the implementation, help other
researches to easily use the methods and help with identitying possible bugs. Authors should
take care not to submit implementations containing any parts whose copyrights prohibit
public distribution.

67

B. CONTRIBUTING TO THE DELVE ARCHIVE

For all contributions it should be considered that submission to DELVE is a form of publica-
tion, and once contributions are released with DELVE they cannot in general be retracted,
since other people may have used them in their research. Therefore, care should be taken to
avoid submissions of erroneous material. If a bug should be discovered in a learning method
a new corrected version can be submitted under a different name; eg. a buggy version of
loess-1 could be succeeded by a corrected version named loess-2 — but the original
method and its results would be retained in the archive.

You may also submit experimental results using new combinations of methods and datasets
that are already in DELVE. If you repeat experiments for which results are already in the
archive, it is of interest whether your results were comparable to the earlier results. Notes
of such confirmations can be included in DELVE, but for practical reasons only one set of
results can be maintained for each method.

All submitted material will be presented in DELVE with the date, name and address (or
email) of the contributor(s) allowing further clarifications and collaboration.

63

C DESCRIPTIONS OF DELVE COMMANDS

This appendix is a detailed reference for the commands that make up the DELVE working
environment. You will not necessarily need to use all these commands every day, as some of
them are needed only by people creating new datasets or prototasks.

Introduction to DELVE commands

Before describing the individual DELVE commands, we will describe the common aspects
that they all share.

Command syntax

All DELVE utilities have a common calling syntax, along the lines of:

command |[option | argument ...

[44 ”

Portions enclosed by “[” and “|” are optional; things before can be repeated several

times. A vertical bar, “|”, separates alternatives, only one of which should be present.

The command is the name of the DELVE utility, for example dinfo. Commands are named
so that those that act on dataset directories have names that begin with the letter ‘d’, while
those that act on method directories have names beginning with ‘m’.

The options are used to modify the behaviour of the command. They take the usual Unix
form — a dash followed by a single character, for example: “~h”. Some options also take a
single argument. In this case the argument must immediately follow the option, separated
by one or more blank spaces, for example: “-i foo”. If the argument contains spaces it
must be quoted: -i "this arg has spaces".

The arguments differ in number and meaning for each command. However, all commands
recognize the two following options:

-h This causes the command to print a short help message describing its usage and
options, after which it exits normally without doing anything else.

-- This marks the end of the options for the command. The arguments following this
one will be treated as regular command arguments even if they start with a -.

Data and method path names

Throughout this appendix, we refer to data path names, or dpaths and method path names,
or mpaths. These paths look just like normal unix path names, but they differ in two

69

C. DESCRIPTIONS OF DELVE COMMANDS

important aspects:

e Dpaths and mpaths are defined only for files that exist inside the DELVE directory
hierarchy. Dpaths point into the data part of the hierarchy; mpaths point into the
methods part.

e A dpath or mpath may identify a file or directory in any of the active delve directories.
Dpaths and mpaths for directories can even resolve to several locations within differ-
ent delve directories (though this is not supposed to happen for dpaths and mpaths
identifying files).

The DELVE hierarchy is the collection of all the active delve directories. A delve directory
must have a name that starts with the five characters “delve”, and it must have two sub-
directories called data and methods. DELVE decides on the set of active delve directories
as follows. First of all, if your current working directory is inside a DELVE directory, that
delve directory will be considered active, for as long as you remain in it. In addition, you
may provide a list of delve directories in your DELVE_PATH environment variable. If you do
not have such an environment variable, DELVE will use a default list of directories that was

fixed when DELVE was installed.

The DELVE PATH environment variable, if set, should contain a colon separated list of DELVE
directories. You can use the command “dinfo -k delve path /” to find out which direc-
tories are currently in your DELVE_PATH, or what the default list of directories is, if you have
not set your DELVE_PATH.

All the files relating to DELVE datasets, methods, and the results of applying methods to
data are kept in the DELVE hierarchy. Files relating to datasets, but not to any particular
method, are stored in the data part of the hierarchy, and hence have a dpath. Methods
and the results of applying methods are stored in the methods part of the hierarchy, and
hence have an mpath. An mpath that points to a file or directory relating to the results
of a method on a particular dataset, prototask, or task can also be used to identify the
corresponding information in the data part of the hierarchy.

Dpaths and mpaths may be “absolute”, starting with a “/” character, or they may be
specified relative to the current directory.

Some examples may clarify these naming conventions. Consider the case where you have a
directory called /usr/local/lib/delve. Inside this directory are the directories data and
methods (and any number of other files and directories). This is a valid DELVE directory.

Inside the data directory there is another directory called demo. Its absolute unix path
name is: /usr/local/lib/delve/data/demo; however, its dpath is simply /demo. It does
not have a mpath because it is not in the methods directory. If your current directory were

demo, its relative Unix path would be “.”, as would its relative dpath.

Assume the methods directory contained 1in-1/demo. Its absolute unix path name would be:
/usr/local/lib/delve/methods/lin-1/demo; however, its mpath would be /1in-1/demo.

70

C. DESCRIPTIONS OF DELVE COMMANDS

It would not have a dpath because it is not in the data directory. If your current directory

“.”. This would also be its relative mpath.

[44 ”

were 1lin-1/demo, its relative unix path would be
Similarly, the relative path name of 1in-1 in both schemes would be

Finally, note that commands that create files inside a directory need to know the true
pathname for the directory, not just a dpath or mpath, since the latter might resolve to
more than Unix directory.

71

dcheck C. DESCRIPTIONS OF DELVE COMMANDS dcheck

dcheck — Validate DELVE data files

Note: This command is not yet implemented.

The dcheck command is used to verify that the data and specifications for a dataset and its
prototasks are legal and consistent.

Command Summary

dcheck [-1] [dpath | mpath |

The path given dcheck must identify a dataset, a prototask for a dataset, or a prior file
for a prototask. The default is “.”, the current directory, which must identify a dataset or
prototask. If a dataset is specified, its Dataset.spec and Dataset.data files are checked for
errors. Unless ‘=1’ is specified, all the prototasks for the dataset are also checked. A single
prototask can be checked by giving a path to that prototask. When a prototask is checked,
the Prototask.spec file is checked for consistency with the Dataset.spec, and, unless ‘-1’
is specified, all the .prior files for the prototask are also checked for errors. A single .prior
file can be checked by giving its pathname.

The dcheck command recognizes the -h “help” option described in the introduction to this
section, as well as:

-1 This causes dcheck to run locally. If a dataset is specified, only information on
the dataset itself is checked, not information on its prototasks. If a prototask is
specified, only information on the prototask itself is checked, not information in
prior files for the prototask.

72

dgenorder C. DESCRIPTIONS OF DELVE COMMANDS dgenorder

dgenorder — Generate random order for a prototask

The dgenorder command is used to set up a random ordering of cases in a prototask. This
will usually be necessary only for natural or cultivated datasets, not for simulated or artificial
ones, for which the order will presumably already be random.

Command Summary

dgenorder | path]

The argument given must be the true path name of a prototask directory (not the dpath
for a prototask); the default is “.”, the current directory. The dgenorder command creates
a file called Random-order within this directory that contains a random ordering of cases
in the prototask. This file has one line for each case used by the prototask, with each line
containing a number from one up to the total number of cases in the prototask.

This Random-order file is meant to be used as the ordering file in the specification for a
prototask. Use of a random ordering is advisable whenever the prototask is not sequential
(where the ordering is meaningful), unless the ordering is already known for certain to be
random (as would often be the case for simulated and artificial data).

Note: For prototasks with commonality indexes, or for which training sets are to be stratified,
dgenorder will have to do something cleverer, but such things are not implemented yet.

Files Used

/dataset /Dataset . spec
contains specifications describing the dataset with dpath /dataset.

/dataset/Dataset .data
contains all the data for the dataset with dpath /dataset in a DELVE standard
format.

/ dataset/ prototask/Prototask.spec
contains specifications describing the prototask with dpath /dataset/prototask.

/ dataset / prototask /Random-order
this is the output file produced by the command.

73

dgenproto C. DESCRIPTIONS OF DELVE COMMANDS dgenproto

dgenproto — Generate prototask data files

Prototasks are composed of a subset of the cases in a dataset, and a subset of the attributes
in each case. The prototask data file is an intermediate file between the dataset data file and
the task data files. It will be generated “on the fly” if it doesn’t exist, but some time will be
saved each time it is needed if the creator (or installer) of a prototask creates it once and for
all, using the dgenproto command. (On the other hand, keeping such prototask data files
around permanently takes up disk space.)

Command Summary

dgenproto [-i] [path]

The dgenproto command generates prototask data files (called Prototask.data) inside
prototask directories found within the data part of the DELVE hierarchy. The data put in
these files is taken from the corresponding dataset data files (called Dataset.data), which
are also found in the DELVE hierarchy.

The path argument is the true path of the directory to generate the data in (not its dpath,
as the dpath might not specify a unique directory). If path is a prototask directory — that
is, a subdirectory of a DELVE dataset directory — the prototask data file for that prototask
alone is generated. If path points to a dataset directory, data for all prototasks in the dataset
will be generated. If path points to the root of the data part of the DELVE hierarchy, data
files for all prototasks for all datasets will be generated.

The dgenproto command recognizes the -h “help” option described in the introduction to
this section, as well as:

-i This option causes the command to ignore errors when multiple data files are being
generated. The command will continue even if one or more of the files cannot be
created.

Example

After obtaining the dataset /demo from the DELVE archive and placing it in the archive
DELVE directory /usr/local/lib/delve, the installer will probably wish to run the fol-
lowing command:

74

dgenproto C. DESCRIPTIONS OF DELVE COMMANDS dgenproto

unix>dgenproto -i /usr/local/lib/delve/data/demo generating:
/usr/local/lib/delve/data/demo/age/Prototask.data
extracting cases...
creating file...
generating: /usr/local/lib/delve/data/demo/colour/Prototask.data
extracting cases...
creating file...
generating: /usr/local/lib/delve/data/demo/income/Prototask.data
extracting cases...
creating file...
generating: /usr/local/lib/delve/data/demo/sex/Prototask.data
extracting cases...
creating file...
generating: /usr/local/lib/delve/data/demo/siblings/Prototask.data
extracting cases...
creating file...

Files Used

/dataset /Dataset . spec
contains specifications describing the dataset with dpath /dataset.

/dataset /Dataset.data

contains all the data for the dataset with dpath /dataset in a DELVE standard
format.

/ dataset/ prototask/Prototask.spec
contains specifications describing the prototask with dpath /dataset/prototask.

/ dataset / prototask/Prototask.data
this is the output file produced by the command.

75

dinfo C. DESCRIPTIONS OF DELVE COMMANDS dinfo

dinfo — Get information about datasets

Although d1s and dmore can be used to browse through the directories and files that define
a dataset, the information the files contain is not presented in a very useful format. The
dinfo command takes all of the information available and puts it into a more accessible
format.

Command Summary

dinfo [-a | -k keys] [-q] [-t] [dpath | mpath]

The dinfo command prints human readable information summaries about the DELVE
dataset, prototask or task whose data path is dpath. It dinfo is given a method path name
instead of a data path name, it converts it to a data path name by removing the method
prefix. If not specified, the path defaults to °.”, which must be in the DELVE heirarchy.

For different types of paths, dinfo returns different types of information. The dpath argu-
ment may specify one of the following:

e The root data directory ‘/’; for which the information available includes: the DELVE_PATH
and a list of all installed datasets.

e A dataset, for which the available information includes: the name of the dataset; its
origin; its recommended usage; the order cases occur in it; the number of attributes
each case contains; a description of these attributes; and a list of all prototasks in the
dataset. An example of a dataset path is ‘/demo’.

e A prototask, for which the available information includes: the name of the prototask;
its origin; the number of cases it contains; the ordering of these case; the number of
cases in each test set; the sizes of the training sets for each task; the scheme used for
generating test sets; the maximum number of training instances a task may contain;
a list of the attributes to be used as inputs for tasks; a list of the attributes to be
used as targets; and a list of the available tasks. An example of a prototask path is
‘/demo/age’.

e A task, for which the available information includes: the name of the task, the number
of cases in each training set; a list of the attributes to be used as inputs; a list of the
attributes to be used as targets; the type, relevance, and default coding method for
each attribute. An example of a task path is ‘/demo/age/std.128".

The dinfo command recognizes the -h “help” option described in the introduction to this
section, as well as:

76

dinfo C. DESCRIPTIONS OF DELVE COMMANDS dinfo

-a Causes the command to print out all the information it knows about the path you
are querying. By default, it only prints “interesting” information.

-k keys
Print only information about fields in the keys list. Keys can be obtained with the
-q option. This is useful, for example, if you are only interested in what prototasks
a dataset contains.

-q Print, instead of the information normally printed, the keys for the information.
For example the command dinfo -q /demo would print:

dataset origin usage order number-of-attributes prototasks
These keys can be used as arguments for the -k option. Note that the -k and -a
options affect the behaviour of this option, i.e. -q causes the command to print the
keys for the information it would print given all other options.

-t Print information in a terse format: no headings are printed, and the format is
more suitable as input to another program than to a human. The -t and -k
options can conveniently be used together in scripts.

-v Print the software version number.

Example

An example of a command to obtain information about the demo dataset is:

unix> dinfo /demo
Dataset: /demo
Origin: artificial
Usage: development
Order: uninformative

Number of attributes: 5

Prototasks:

age
colour
income
sex
siblings

Similar results would be obtained if you were in a directory with dpath /demo and you typed

‘dinfo .’

or ‘dinfo’.

If you only wanted to know what prototasks the dataset contained, and you wanted the

output to

be machine readable, you could use the command:

unix> dinfo -t -k prototasks /demo

age

colour income sex siblings

77

dinfo C. DESCRIPTIONS OF DELVE COMMANDS dinfo

Files Used

/dataset /Dataset . spec
contains specifications describing the dataset with dpath /dataset.

/dataset/Dataset .data
contains all the data for the dataset with dpath /dataset in a DELVE standard
format. The contents of the file are not used, but its existence may be checked.

/ dataset/ prototask/Prototask.spec
contains specifications describing the prototask with dpath /dataset/prototask.

/ dataset/ prototask/* .prior
files contain prior information to be used when generating tasks for the prototask
with dpath /dataset/prototask.

78

dls C. DESCRIPTIONS OF DELVE COMMANDS dls

dls — List contents of DELVE data directories

In the DELVE environment, if a given dpath refers to a directory, it could resolve to multiple
true directories. This can be inconvenient if you want to list the files contained in the dpath.
To help in this situation, DELVE supplies the d1s utility for listing all files that reside in
directories with a common dpath.

Command Summary

dls [-1] [dpath | mpath]

The dls command lists the merged contents of all directories with the common data path
name dpath, or it dpath refers to a file, it repeats its name. If d1s is given a method path
name (an mpath) as an argument instead of a data path name, it converts it to a data path
name by removing the method prefix.

The output of the command is sorted alphabetically. If no path is given on the command
line, it defaults to ‘., which must be a dpath or an mpath.

The d1ls command recognizes the -h “help” option described in the introduction to this
section, as well as:

-1 Print a long listing, where files are grouped by the directory they are contained in,
and the true path name of each directory is printed.

Example

If you wished to list all files in the data directories with dpath /demo/age you could use dls
as follows:

unix> dls /demo/age
Prototask.data Prototask.spec std.prior

Since dls allows you to give either a dpath or a mpath as an argument, you could obtain
the same results using the command ‘dls /lin-1/demo/age’.

79

dmore C. DESCRIPTIONS OF DELVE COMMANDS dmore

dmore — Browse or page through DELVE data files

In a manner similar to the d1s and mls commands, DELVE provides a utility called dmore
for viewing text files given their dpath. This allows you to look at a file without knowing its
true path.

Command Summary

dmore dpath | mpath ...

The dmore command displays the contents of text files that reside in DELVE data directories.
The dpath arguments are the data path names of the files to be displayed. If dmore is given
method path names instead of data path names, it converts them to data path names by
removing the method prefix. Files are displayed on the terminal, one screenful at a time.

To view the files, dmore passes its output through a pager. The default pager is more, but
it can be changed by setting the environment variable PAGER to the name of the command
you wish to use.

The dmore command recognizes only the -h “help” option described in the introduction to
this section.

Example

To view the file containing the standard prior information for the demo/age prototask, you
could use the command:

unix> dmore /demo/age/std.prior
1 NLMH binary

3 NLMH integer

4 NLMH real

5 NLMH nominal

2 NLMH real

80

mgendata C. DESCRIPTIONS OF DELVE COMMANDS mgendata

mgendata — Generate task data files

Once you have created the directory hierarchy that will contain the data to train and test
your method on, you have to populate it with the actual data. To do this you use the
command mgendata.

Command Summary
mgendata [-c file] [-q | [path]

The mgendata command generates task data files inside a DELVE method directory from
dataset or prototask data files inside a DELVE data directory. The path argument is the true
path of the directory to generate the data in: not its mpath (since the mpath could easily
resolve to multiple directories). The path argument must be a subdirectory of a DELVE
methods directory.

It path points to a task directory, only data for that task will be generated. If it points to
a prototask, data for all tasks in the prototask will be generated. If it points to a dataset,
data for all tasks in all prototasks will be generated.

In each task directory, four sets of files are generated. Each set contains the same number
of files as there are training instances in the task. Each file in a set has a unique extension
‘.n’, where n is the integer index of the training instance which the file corresponds to.

e Each instance in the task has a training file called train.n. This file contains cases
that are to be used for training your learning method. Each line in the file contains the
data for one case. A case contains the encoded representation of all attributes to be
used for the task (see Section 7.3 for a description of encoding schemes) printed to the
file such that all values are separated by white space. In each case, input attributes
come first, followed by target attributes (i.e. each line contains both input values and
target values).

e As well as a training file, each instance in the task has a testing file called test.n.
These files contain encoded input attributes for all testing cases (one case per line,
all values separated by white space). Testing files do not contain target values; they
contain only input values.

e For each testing file, there is a corresponding target file. This file contains the en-
coded target attributes for the testing cases, one case per line. Target files are called
targets.n.

e Data attributes can be encoded using various forms of normalization. To keep track
of the normalization constants, a normalization file normalize.n is created for each
instance. This file contains the mean, variance, median, and average absolute deviation
from the median for each attribute (one attribute per line).

81

mgendata C. DESCRIPTIONS OF DELVE COMMANDS mgendata

As well as the above sets of files, two single files are generated: Coding-used which will
contain a description of the method used to encode each of the attributes (in the form
described below), and Test-set-stats which will contain statistics derived from the testing
data. These files are needed to calculate the losses and evaluate the method performance
after it has been run.

The mgendata command recognizes the -h “help” option described in the introduction to
this section, as well as:

-c file This option allows you to override the default encoding of attributes. The file
should contain one encoding specification per line, containing first an identifier of
an attribute (either number or name) followed by the desired encoding. If options
are to be given for the encoding, they should appear on the same line, in the form
option=value, where option is the option’s name (for example passive), and
value is the value it is to be set to. Multiple option/value pairs may appear on
the same line, separated by spaces. No spaces may appear between the option’s
name and the equal sign, or between the equal sign and the value. All attributes
which are not mentioned in the encoding file retain their default encodings.

The valid encodings and their options are described in section 7.3.

-q Command should run quietly. Normally mgendata prints the names of the files
that it is working on.

Example

Suppose that you are in a directory whose mpath is /1in-1, and that you have previously run
mgendata. If you now want to generate training and testing files for the task of the /demo/age
prototask based on standard prior information and using 256 cases in each training set, you
would use the command:

unix> mgendata ./demo/age/std.256

./demo/age/std.256
segmenting cases...
splitting test inputs and targets...
encoding instance O training data...
encoding instance O test inputs...
encoding instance 0 test targets...
encoding instance 1 training data...
encoding instance 1 test inputs...
encoding instance 1 test targets...
encoding instance 2 training data...
encoding instance 2 test inputs...
encoding instance 2 test targets...
encoding instance 3 training data...
encoding instance 3 test inputs...
encoding instance 3 test targets...

W W WwNNNEPE == OO

82

mgendata C. DESCRIPTIONS OF DELVE COMMANDS mgendata

Files Used

/dataset /Dataset . spec
contains specifications describing the dataset with dpath /dataset.

/dataset/Dataset .data
contains all the data for the dataset with dpath /dataset in a DELVE standard
format.

/ dataset/ prototask/Prototask.spec
contains specifications describing the prototask with dpath /dataset/prototask.

/ dataset / prototask/Prototask.data
contains all the data for the prototask with dpath /dataset/prototask in a DELVE
standard format.

/ dataset/ prototask/* .prior
files contain prior information to be used when generating tasks for the prototask
with dpath /dataset/prototask.

/ dataset / prototask /Random-0rder
contains the ordering to use when extracting cases from the Dataset file and gen-
erating the Prototask file for the prototask with dpath /dataset/prototask.

/ method/ dataset/ prototask/task/train.n
created to hold the encoded inputs and targets for training cases.

/ method/ dataset/ prototask/task/test.n
created to hold the encoded inputs for test cases.

/method/ dataset/ prototask/task/targets.n
created to hold the encoded targets for test cases.

/ method/ dataset/ prototask/task/normalize.n
created to hold the normalization constants used in the encoding.

/method/ dataset/ prototask/task/Coding-used
created to hold coding actually used in creating the data files for
/ dataset / prototask [task.

/ method/ dataset/ prototask/task/Test-set-stats
created to hold statistics of the testing data for the task with dpath
/ dataset / prototask [task.

83

mgendir C. DESCRIPTIONS OF DELVE COMMANDS mgendir

mgendir — Generate task directories

When you first want to run a new method on a dataset, you must build the directory tree that
will contain all of the training and testing data. You could use a normal Unix command such
as mkdir, but that would be quite tedious, or you could use the DELVE command mgendir.

Command Summary

mgendir [-1] [-q | [path]

The mgendir command generates directory trees for DELVE datasets, prototasks, or tasks
inside a method directory. The path argument is the true path of the root of the tree to
create: not its mpath (since the mpath could easily resolve to multiple directories). The
path must be a subdirectory of a DELVE methods directory.

If path specifies a method, directories for all available datasets are created in the method
directory. If it specifies a dataset, directories for all prototasks and tasks of that dataset
are generated. If it specifies a prototask or a task, only directories associated with them are
generated.

mgendir will not complain if parts of the directory tree already exist.

The mgendir command recognizes the -h “help” option described in the introduction to this
section, as well as:

-1 This causes mgendir to run locally. This means that sub-directories are not created.
If you specify a method name, no dataset directories are generated. If you specity
a dataset name, no prototask directories are generated. If you specify a prototask
name, no task directories are generated.

-q Command should run quietly. Normally mgendir prints the names of the subdi-
rectories as they are created.

Example

Assuming that you were in a directory with mpath 1in-1, and you wanted to generate the
directory tree files for the entire demo dataset, you could use the command:

84

mgendir C. DESCRIPTIONS OF DELVE COMMANDS mgendir

unix> mgendir ./demo
./demo

./demo/age
./demo/age/std.32
./demo/age/std.64
./demo/age/std.128
./demo/age/std.256
./demo/age/std.512
./demo/colour
./demo/colour/std.32

./demo/siblings/std.512
Similarly, you could generate the directories for just the age prototask using the command:

unix> mgendir ./demo/age
./demo

./demo/age
./demo/age/std.32
./demo/age/std.64
./demo/age/std.128
./demo/age/std.256
./demo/age/std.512

Files Used

/dataset /Dataset . spec
contains specifications describing the dataset with dpath /dataset.

/dataset/Dataset .data
contains all the data for the dataset with dpath /dataset in a DELVE standard

format. The contents of the file are not used by dinfo but its existence is checked.

/ dataset/ prototask/Prototask.spec
contains specifications describing the prototask with dpath /dataset/prototask.

/ dataset/ prototask/* .prior
files contain prior information to be used when generating tasks for the prototask
with dpath /dataset/prototask.

89

minfo C. DESCRIPTIONS OF DELVE COMMANDS minfo

minfo — Get information about learning methods

In a manner similar to dinfo the minfo command can be used to obtain information about

DELVE methods.

Command Summary
minfo [-a |-k keys] [-q] [-t] [mpath]

The minfo command prints human readable information summaries about the DELVE
method, dataset, prototask or task whose DELVE method path name is given by the mpath
argument. If no path is specified, it defaults to ., which must be a DELVE methods direc-
tory. The minfo command returns information about datasets, prototasks, or tasks as they
were used by the method, not as they appear in the data directory. For example, when the
mpath argument specifies a dataset, the list of prototasks returned by minfo will contain
only those the method was run on, not all of the ones available to be run on.

For different types of paths, minfo returns different types of information. The mpath argu-
ment may specify one of the following:

e Information available for the root data directory / includes: the DELVE_PATH and a list
of the methods that have been run on DELVE datasets.

e For a method directory, the information available includes a list of all datasets the
method has been run on. An example of a method path is ‘/1in-1".

e For a dataset, the available information includes all the information returned by dinfo
for datasets, with the exception that the list of prototasks includes only those that the
method has been run on. An example of a dataset path is ‘/1lin-1/demo’.

e For a prototask, the available information includes all the information returned by
dinfo for prototasks, with the exception that the list of tasks includes only those that
the method has been run on. An example of a prototask path is ‘/1lin-1/demo/age’.

e For a task, the available information includes all the information returned by dinfo for
a task, with the exception that the actual coding method used for the data is printed,
not the default method. An example of a task path is ‘/1in-1/demo/age/std.128".

The minfo command recognizes the same options as dinfo.

Example

An example of a command line that could be used to obtain information about the demo
dataset as it was used by lin-1 would be:

86

minfo C. DESCRIPTIONS OF DELVE COMMANDS minfo

unix> minfo /lin-1/demo
Dataset: /demo
Origin: artificial
Usage: development
Order: uninformative
Number of attributes: &
Prototasks:

age

income

Similar results would be obtained if your current working directory had the mpath /1in-1/demo,
and you typed ‘minfo .’ or ‘minfo’.

If you only wanted to know what demo prototasks the 1in-1 method was run on, and you
wanted the output to be machine readable, you could use the command:

unix> minfo -t -k prototasks /lin-1/demo
age income

Files Used

/dataset /Dataset . spec
contains specifications describing the dataset with dpath /dataset.

/dataset/Dataset .data
contains all the data for the dataset with dpath /dataset in a DELVE standard
format. The contents of the file are not used, but its existence may be checked.

/ dataset/ prototask/Prototask.spec
contains specifications describing the prototask with dpath /dataset/prototask.

/ dataset/ prototask/* .prior
files contain prior information to be used when generating tasks for the prototask
with dpath /dataset/prototask.

/ method [/ *
used to get the list of datasets the method with mpath /method has been run on.

/ method/ dataset /*
used to get the list of prototasks from the dataset with dpath /dataset that the
method with mpath /method has been run on.

/ method/ dataset / prototask /*
used to get the list of tasks from the prototask with dpath /dataset/prototask that
the method with mpath /method has been run on.

/method/ dataset/ prototask/task/Coding-used
contains the coding scheme used to generate the task data files for the task with
mpath /method/dataset/prototask/task.

87

mloss C. DESCRIPTIONS OF DELVE COMMANDS mloss

mloss — Generate task loss files

Once you have run a method on a task and produced predictions, you will need to calculate
the loss from the true targets and your predictions. Loss functions are discussed in detail in
Section 5.

Command Summary

mloss [-1 instances| [-1 losses] [-q | [path]

The mloss command decodes prediction files and generates loss files. The path argument for
mloss is the true path of the directory to generate the decoded prediction and loss files in
(not its mpath, since the mpath could easily resolve to multiple directories). The prediction
files used to generate the losses can reside in any directory with the same mpath. If not
specified, path defaults to the current directory.

It path points to a task directory, only loss files for that task will be generated. If it points
to a prototask, loss files for all tasks in the prototask will be generated. If it points to a
dataset, loss files for all tasks in all prototasks will be generated. Finally, if it points to a
method, loss files will be generated for all tasks that the method has been run on.

The mloss command can generate losses using using any of the five following measures. Each
measure has a single-character code associated with it:

A Absolute error loss.

S Squared error loss.

Z Zero-one loss.

L Negative log-probability loss.

Q Squared-probability loss.

You must write your predictions to files with special names in order to get them evaluated
with the intended loss measure. Depending on the type of the prediction, the file may have
one of three root names: guess for files that contain guesses for the targets, prob for files
containing class probabilities and ptarg for files containing the probabilities (or densities)
of the true targets under the method’s predictive distribution. In general the methods do
not need to read the targets files, with the exception of the situations where the method
produces a predictive distribution and the targets are real, integer or angular. In these
cases there seems to be no general convenient way of conveying the predictive distribution;
instead the method must itself evaluate the probability (or density) of the true target under
the predictive distribution and write this to a prediction file with the ptarg root name.

88

mloss C. DESCRIPTIONS OF DELVE COMMANDS mloss

A number of prefixes and extensions may be added to these root names. The instance
number is always added as an extension, e.g. guess.3. Optionally, the name of a spcific loss
function can also be specified as an extension, e.g. guess.S.3. If no loss function is specified
then the predictions can be applied to any loss function for which that particular root is
meaningful (although, loss specific predictions always take precedence over generic ones).
Some prediction files may have a ‘c’ prefixed to their name, indicating that the predictions
are in the coded domain. This will normaly be the case for the files your method writes,
since it only sees that training and test files which have been encoded. The ‘¢’ prefix can
be applied to files with the guess or ptarg root names. Files which contain probabilities
(or densities) may have an ‘1’ prefixed their name indicating that the predictions are made
in the (natural) log domain. Some examples of names of prediction files are cguess.A.0,
prob.3and clptarg.L.7. Note, that the prefixes and extensions must follow the order given
in these examples.

The first task mloss performs is decoding the predictions. It places the decoded predictions in
files with the same names as those containing the coded ones with the initial ‘c’ removed. For
example the decoded predictions for cguess.A.0 would be placed in guess.A.0. Similarly,
the decoded predictions for clptarg.7 would be placed in lptarg.7.

Once the predictions have been decoded, mloss generates loss files based on those predictions
and the target values. The losses are placed in files named loss.l.n, where where the ‘I’
and ‘n’ characters have the same meanings as above. For loss files the ‘.[” extension is not
optional (as the values in the file are defined by the loss function).

The prediction files used to generate the losses for a particular measure are found by first
looking for all prediction files specific to that loss (i.e. files that have the appropriate “.I’
extension). If even one such file exists for a given measure, then only files with that extension
are used to generate the losses. If no such files exist for the given loss, mloss looks for
prediction files where the loss was not specified (i.e. files with the appropriate root name,
but without the ‘.I” extension). It then uses these to calculate the loss. If none of these files
exist, a warning message is printed, and no loss files for that measure are generated.

A table of the allowed combinations of target types and loss functions is given in section 5.2.
Whenever predictions are made in files with the prob root, mloss automatically normalises
the probabilites to sum to unity. However, this is not possible for predictions with the
ptarg root, so users should be careful to ensure that their method’s predictive distribution
is correctly normalised when using these predictions.

The mloss command recognizes the -h “help” option described in the introduction to this
section, as well as:

-1 instances This allows you to specify which training instances you want to evaluate the
loss for. It should be a list of integer values or the string ‘all’. It’s default value is
‘all’.

89

mloss C. DESCRIPTIONS OF DELVE COMMANDS mloss

-1 losses This allows you to specify the loss functions mloss attempts to evaluate. You
can specify any combination of A, S, L, Q, and Z. By default, mloss attempts to
evaluate all approriate types.

-q Command should run quietly. Normally mloss prints the names of the files that it
is working on.

Note: The mloss command does not yet support the specialised loss functions discussed in
section 5.53.

To generate the loss files, mloss must temporarily decode the target files. Because of this,
the target files must be present in the mpath of the task.

Files Used

/dataset /Dataset . spec
contains specifications describing the dataset with dpath /dataset.

/dataset/Dataset .data
contains all the data for the dataset with dpath /dataset in a DELVE standard
format. The contents of the file are not used by dinfo but its existence is checked.

/ dataset/ prototask/Prototask.spec
contains specifications describing the prototask with dpath /dataset/prototask.

/ dataset/ prototask/* .prior
files contain prior information to be used when generating tasks for the prototask
with dpath /dataset/prototask.

/method/ dataset/ prototask/task/targets.n
contains the coded targets for the n’th training instance of the task with dpath
/ dataset / prototask/task/, as made by the method with mpath /method.

/method/ dataset/ prototask/task/[clguess[.I].n
contains the guesses for the (optianally coded) targets of the n’th training instance
of the task with dpath /dataset/prototask/task/, as made by the method with
mpath /method, with an optionally specified loss function (A, S or Z).

/method/ dataset/ prototask/task/[c] [1]ptargl.L].n
contains the (optionally log) probabilities (or densities) for the (optionally coded)
targets of the n’th training instance of the task with dpath /dataset/prototask/task/,
as made by the method with mpath /method. The L loss function may optionally
be specified.

/ method/ dataset/ prototask/task/[1]prob[.l].n
contains the (optionally log) probabilities of the targets for the n’th training in-
stance of the task with dpath /dataset/prototask/task/, as made by the method
with mpath /method, with an optionally specified loss function (L or Q).

90

mloss C. DESCRIPTIONS OF DELVE COMMANDS mloss

/method/ dataset/ prototask/task/Coding-used
contains the coding scheme used to encode the data for the method with mpath
/ method/ dataset / prototask/ task.

/ method/ dataset/ prototask/task/normalize.n
contains the normalizing constants used to encode the data for the method with
mpath /method/dataset/prototask/task/

91

mls C. DESCRIPTIONS OF DELVE COMMANDS mls

mls — List contents of DELVE method directories

As with dpaths, if a given mpath refers to a directory, it could resolve to multiple true
directories. To list all files in directories with a common mpath, DELVE supplies the mls
utility.

Command Summary

mls [-1] [mpath]
The m1s command lists the merged contents of all directories with the common method path
name mpath, or if mpath refers to a file, it repeats its name.

The output of the command is sorted alphabetically. If no path is given on the command
line, it defaults to °.’, which must be a DELVE method directory.

The mls command recognizes the -h “help” option described in the introduction to this
section, as well as:

-1 Print a long listing, where files are grouped by the directory they are contained in,
and the true path name of each directory is printed.

Example

If you wished to list all files in the method directories with mpath /1in-1/demo you could
use the mls command as follows:

unix> mls /lin-1/demo
age income

92

mmore C. DESCRIPTIONS OF DELVE COMMANDS mmore

mmore — Browse or page through DELVE method files

The command corresponding to dmore for viewing DELVE method files is mmore.

Command Summary

mmore mpath ...

The mmore command displays the contents of text files that reside in DELVE method direc-
tories. The mpath arguments are the method path names of the files to be displayed. Files
are displayed on the terminal, one screenful at a time.

To view the files, mmore passes its output through a pager. The default pager is more, but
it can be changed by setting the environment variable PAGER to the name of the command
you wish to use.

The mmore command recognizes only the -h “help” option described in the introduction to
this section.

Example

To view the source program for the implementation of the 1in-1 method, you could use the
command:

unix> mmore /lin-1/Source/lin-1.c
/* lin-1.c: Robust linear method for regression.

Reads training examples from "train.n", test inputs from "test.n" and
targets from 'targets.n'". Produces point predictions in "cguess.n" and
densities of targets under a predictive distribution in "clptarg.L.n".
Here "n" is the instance number, supplied as a command argument. Handles
badly conditioned cases where inputs are (close to) linearly dependent.

¥ K X K ¥ X X X

(c) Copyright 1996 by Carl Edward Rasmussen. */

#include <stdio.h>

93

mstats C. DESCRIPTIONS OF DELVE COMMANDS mstats

mstats — Calculate or compare loss statistics

Once the loss files for a given method have been generated, you can see how well or poorly
the method performed, either in absolute terms, or in comparison to another method. This
is done with the mstats command.

Command Summary

mstats [-c methods]| [-1 base] [-1 losses| [mpath]

The mstats command prints summary statistics about a method’s loss files, or compares
the loss files of two methods, and prints summary statistics about the comparison. The
mpath argument is the DELVE method path name of the method whose losses are to be
summarized. If it is omitted, it defaults to *.” which must be a DELVE method directory.

Loss files are generated by mloss and are normally named loss.l.n, where [is a single
character describing the loss function used to generate the file, and n is an integer describing
the training instance the loss file corresponds to. See the description of mloss for further
details.

Full details of the statistics used to summarize the losses are described in Section 8; however
a quick summary is given here.

When summarizing the loss files for a single method, mstats returns:

e the estimated expected loss.

o the standard error of the estimate.

the standard deviation of the losses between training sets.
e the standard deviation of the losses between testing cases (if applicable).

o the standard deviation of the residuals.

Both the raw values and a standardized version of these terms are printed. See section 8.3
for a discussion of the standardization used.

When comparing the performance of two methods, mstats returns:
o the estimated expected loss for both methods.
o the estimated expected difference in the losses.
e the standard error of the estimate for the difference.

o the standard deviation of the losses between training sets.

94

mstats C. DESCRIPTIONS OF DELVE COMMANDS mstats

o the standard deviation of the residuals.

Both the raw values and a standardized version of these are printed. The report also includes
a probability describing the significance of the differences of the two loss estimates (calculated
using either a T-test, or F-test as appropriate).

Both reports include a listing of how many training sets and cases, and test sets and cases
were used to calculate the statistics.

The mstats command recognizes the -h “help” option described in the introduction to this
section, as well as:

-c methods This flag causes mstats to compare the current method with the selected
methods. Summary statistics about the differences of the loss files in mpath and
those of the other methods are returned. The method arguments may be proper
mpaths for a method, e.g. /1in-1, or you may omit the initial slash.

-i base This allows you to change the base name of the input loss files. These files are
generated by mloss and normally have the base name loss.

-1 losses This allows you to change what loss functions mstats attempts to summarize.
You can specify any combination of A, S, L, Q, and Z. By default, it attempts to
summarize all of them, using whatever files exist. Mstats will only print warnings
if it attempts to summarize a loss measure for which there are no loss files.

Example

Suppose you wished to know how well the /1in-1 method did on the /demo/age/std.128
task, using the squared error loss measure. You could use the command:

unix> mstats -1 S /lin-1/demo/age/std.128
/lin-1/demo/age/std.128
Loss: S (Squared error)
Raw value Standardized

Estimated expected loss: 400.73 0.819745

Standard error for estimate: 28.6111 0.0585277

SD from training sets & stochastic training: 40.898 0.0836622

SD from test cases & stoch. pred. & interactions: 790.029 1.61611

Based on 8 disjoint training sets, each containing 128 cases and
8 disjoint test sets, each containing 128 cases.

If you then wanted to compare its performance to the /knn-cv-1 method, you could use:

95

mstats C. DESCRIPTIONS OF DELVE COMMANDS mstats

mstats -c knn-cv-1 -1 S /lin-1/demo/age/std.128
/lin-1/demo/age/std.128
Loss: S (Squared error)
Raw value Standardized

Estimated expected loss for lin-1: 400.73 0.819745

Estimated expected loss for /knn-cv-1: 368.003 0.752798

Estimated expected difference: 32.727 0.0669473

Standard error for difference estimate: 14.075 0.0287922

SD from training sets & stochastic training: 27.6978 0.0566594

SD from test cases & stoch. pred. & interactions: 323.515 0.661792

Significance of difference (t-test), p = 0.052988

Based on 8 disjoint training sets, each containing 128 cases and
8 disjoint test sets, each containing 128 cases.

Files Used

/dataset /Dataset . spec
contains specifications describing the dataset with dpath /dataset.

/dataset/Dataset .data
contains all the data for the dataset with dpath /dataset in a DELVE standard
format. The contents of the file are not used, but its existence is checked.

/ dataset/ prototask/Prototask.spec
contains specifications describing the prototask with dpath /dataset/prototask.

/ dataset/ prototask/* .prior
files contain prior information to be used when generating tasks for the prototask
with dpath /dataset/prototask.

/method/ dataset/ prototask/task/loss.l.n
contains the losses for the n’th training instance of the task calculated using the
loss function 1 with dpath /dataset/prototask/task/, as made by the method with
mpath /method.

/ method/ dataset/ prototask/task/Test-set-stats
contains statistics of the testing data for the task with dpath /dataset/prototask/task

96

D GLOSSARY OF DELVE TERMINOLOGY

absolute-error loss

angular attribute

artificial dataset/prototask

assessment dataset

attribute

binary attribute

categorical attribute

case

censored value

classification prototask/task

A loss function for regression tasks in which the loss is the ab-
solute value of the difference between the guess and the target.
When there is more than one target, the absolute loss is the sum
of such absolute differences for all the targets.

An attribute whose value is an angle or some other circular quan-
tity, such as time-of-day. By default, such attributes are encoded
as the sine and the cosine of the equivalent angle, so as to avoid
introducing an artificial discontinuity.

A dataset generated by a program (usually with a random com-
ponent) on the basis of some mathematical specification, without
any connection with a real-world problem. Prototasks based on
such datasets are also referred to as artificial.

A dataset that is recommended for use in formally assessing learn-
ing methods.

One of the quantities associated with each case in a dataset.
The dataset specification classifies attributes as controlled or
uncontrolled, according to how their values were determined.
The prior information for a task will characterize attributes as
binary, nominal, ordinal, integer, angular, or real.

A categorical attribute that can take on exactly two possible
values (not counting missing values) — for example, an attribute
with possible values of “male” and “female”, or one with values
of “0” and “1”.

An attribute that takes on values from some finite set. The tar-
gets for a classification prototask must be categorical. The prior
information for a task further characterizes categorical attributes
as binary, nominal, or ordinal, and may designate one of the
values as passive.

A collection of attribute values that all apply to the same thing.
For example, in a dataset of medical tests on patients, a case
might consist of all the test results for a particular patient.

An indication of the value for an attribute in a case that says
only that the value is known to be greater than or equal to (or
less than or equal to) a specified value. In DELVE dataset files,
a censored value is recorded as “number:” (if the actual value is
greater than or equal to number), or as “:number” (if the actual
value is less than or equal to number).

A prototask (or task) in which all the target attributes are cat-
egorical.

97

D. GLOSSARY OF DELVE TERMINOLOGY

controlled attribute

common testing scheme

commonality index

cultivated dataset/prototask

dataset

default encoding

dependency (between cases)

development dataset

encoding (of an attribute)

An attribute whose values were fixed by the investigators who
gathered the data. For example, the amount of fertilizer applied
to an agricultural test plot would likely be a controlled attribute.

An experimental set-up in which a single common test set is used
to assess the performance of a method with all the training sets;
distinguished from a hierarchical testing scheme.

An integer that may be associated with a case, indicating that
the case has something in common with the other cases with the
same commonality index. For example, in a dataset where a case
records features of a handwritten digit, all the digits written by
one person might have the same commonality index.

A dataset that comes from a real-world source, but has no real-
world context, having been collected or selected for the purpose
of creating a DELVE dataset rather than from any genuine in-
terest. Natural datasets that have been modified in some way,
such as by adding extra noise, are also in this class. Prototasks
based on cultivated datasets are also classified as cultivated, as
are prototasks that are based on natural datasets but which have
little resemblance to the original purpose for which the data was
gathered.

A collection of data, consisting of a number of cases, each associ-
ated with the values of several attributes. Datasets are classified
as natural, cultivated, simulated, or artificial according to
the data’s relationship to the real world. DELVE also distin-
guishes among development datasets, assessment datasets,
and historical datasets, on the basis of recommended usage.

The encoding of an attribute that DELVE will use by default
if a particular learning method does not specify otherwise. The
default encoding is based on the prior information for the task.

A situation where knowledge of the values of the targets in one
case would be informative regarding the values of the targets
in other cases with the same commonality index, or that are
nearby in a sequential prototask. Here, it is assumed that the
inputs in all cases are already known, and that the true nature
of the general relationship between inputs and targets is also
fully understood — ie, the dependency is between the “noise”
or “residuals” in the related cases (the part of the variation not
explainable by the relationship between inputs and targets).

A dataset that is recommended for use in developing learning
methods. To avoid bias, such datasets should not also be used in
formal assessments of performance.

The way that DELVE represents the value of an attribute (usu-
ally as one or more numbers) when generating data files for task
instances. The encoding to use is part of the specification of a

98

D. GLOSSARY OF DELVE TERMINOLOGY

estimated expected loss

expected loss

guess (for a test case)

hierarchical testing scheme

historical dataset

input attribute

informative ordering

integer attribute

learning experiment

learning method, but DELVE provides a default encoding that
will often be appropriate.

An estimate for the expected loss of a learning method on some
task, based on the results of a learning experiment. At present,
DELVE’s estimates are simply the average loss over training sets
and test cases tried. Fach estimate has an associated standard
error, that is indicative of its likely accuracy.

The expected performance of a learning method on some task
as judged by a specified loss function, the expectation being
with respect to random selection of a training set and a test case.
Put another way, the performance the method would achieve on
average if it were applied a great many times to training sets and
test cases obtained from the same source as the actual dataset.
Note that the true expected loss cannot be determined exactly,
but an estimated expected loss can be computed from the
results of a learning experiment.

A prediction for the targets in a test case consisting of a single
value for each target, these values being chosen by the learn-
ing method with the aim of minimizing the expected absolute-
error, squared-error, or 0-1 loss. If a no-guess penalty has
been specified, a learning method also has the option of making
no guess for a particular target in a particular test case.

An experimental set-up in which separate, non-overlapping test
sets are used to assess the performance of a method as trained
on different training sets; distinguished from a common testing
scheme.

A dataset that is included in the DELVE archive because it has
been used to assess learning methods in the past, but which is
not recommended for future use, except when there is a need to
make comparisons with past results in the literature.

For a particular prototask, an attribute that is available for use
in predicting the values of the target attributes in the same
case, but whose values do not themselves need to be predicted.

An ordering of cases in a dataset (as originally obtained) that
conveys information that may be significant — for instance, an
ordering of data on patients by date of admission to hospital.

An attribute whose values are integers, and for which the prior
information does not specify an interpretation as a categorical
attribute. Note that the range of an integer attribute may be
restricted (eg, to the positive integers).

An experiment in which the performance of one or more learn-
ing methods on one or more tasks is assessed by applying the
learning methods to several task instances. DELVE defines a
standard scheme for conducting such experiments.

99

D. GLOSSARY OF DELVE TERMINOLOGY

learning method

log-probability loss

loss function

loss matrix

missing value

natural dataset/prototask

no-guess penalty

nominal attribute

non-standard task instance

noise level (for a target)

A well-defined procedure for discovering relationships among at-
tributes on the basis of prior information and empirical data,
and for making predictions for new cases using the relationships
learned. Learning can be supervised or unsupervised.

A loss function used with methods whose predictions are predic-
tive distributions over target values. The log-probability loss is
minus the log (base e) of the probability or probability density of
the target values. This loss function can be used with any task,
but for tasks with real-valued targets (such as regression tasks),
the loss must be computed by the learning method itself, rather
than by DELVE.

A measure of how far off a prediction is, given the actual values
of the targets. The standard loss functions DELVE supports are
squared-error loss, absolute-error loss, 0-1 loss, squared-
probability loss, and log-probability loss. Specialized loss
functions can also be constructed that incorporate a no-guess
penalty, or that are based on a loss matrix.

For a prototask with one categorical target, a matrix that spec-
ifies the loss that is suffered for every possible combination of a
guessed value for the target and an actual value for the target.
For each actual value of the target, the loss suffered when no
guess is made may also be specified.

An indicator that the actual value of an attribute for a particular
case is not known. In DELVE dataset files, a missing value starts
with a question mark; this may be followed by other characters
to distinguish values that are missing for different reasons.

A dataset that comes from a real-world source, and for which
there is or was a real interest in learning relationships among
the attributes (for either scientific or engineering purposes). A
prototask is classified as natural if it is based on a natural dataset,
and involves learning relationships that were of interest to the
original investigators.

The loss suffered when a learning method whose predictions take
the form of guesses decides to make no guess for a particular
target in a particular case.

A categorical attribute with at least three possible values (not
counting missing values) for which the prior information does not
specify any natural ordering of the values. An example might be
an attribute with values of “beef”, “pork”, and “lamb”.

A task instance in which the training and test sets are not selected
according the standard DELVE scheme.

The proportion of the variation in a target attribute that is not
explained by the variation in the input attributes, even given full
knowledge of the true relationship between inputs and targets.

100

D. GLOSSARY OF DELVE TERMINOLOGY

order (of a dataset)

ordinal attribute

p-value (for a comparison)

passive value

performance (of method)

prediction (for a test case)

predictive distribution

prior information

prototask

An indicator of whether the order of cases in the dataset (as
originally obtained) is informative or uninformative.

A categorical attribute with at least three possible values (not
counting missing values) for which the prior information spec-
ifies a natural ordering of the values. An example might be
an attribute with values of “no-education”, “primary-education”,

“secondary-education”, and “post-secondary-education”.

When comparing the estimated expected loss of two learning
methods on some task, the probability that a difference in es-
timated expected loss of equal or greater magnitude than that
observed might arise by chance even if the true expected loss
for the two methods is the same. A low p-value may give one
confidence that the apparently better method actually is better.

A value for a categorical attribute that is expected on the basis
of prior information to play a role different from that of the other
value or values of the attribute, with the passive value being as-
sociated with a lack of positive influence. If a binary attribute
has values of “hockey-player” and “not-a-hockey-player”, for ex-
ample, “not-a-hockey-player” might be regarded as passive.

In the DELVE context, usually the predictive performance of
the method on some task, formalized in terms of expected loss.
One might also be interested in the computational performance
of a method (its time and memory requirements).

The output of a learning method for a test case, embodying the
method’s prediction regarding the likely values of the targets in
this case. Predictions may be either single-valued guesses for
the target values, or predictive distributions that say how
likely each of the possible target values is.

A probability distribution produced by a learning method as its
prediction for the values of the targets in a test case. For classifi-
cation tasks, the predictive distribution consists of a finite num-
ber of probabilities, which may be output in explicit form. For
tasks with real targets, the predictive distribution consists of a
probability density function, which DELVE does not attempt to
represent explicitly; instead, the learning method itself calculates
the log-probability loss based on its internal representation of
the predictive distribution.

Information regarding the the possible or likely nature of the rela-
tionship being learned that is obtained from the prior knowledge
of the investigator (or a surrogate for the investigator), rather
than from the data itself.

A supervised learning problem associated with a dataset, con-
sisting of a set of target attributes that are to be predicted,

101

D. GLOSSARY OF DELVE TERMINOLOGY

range (of attribute)

real attribute

relevance (of an input)

regression prototask/task

sequential prototask

simulated dataset/prototask

squared-error loss

squared-probability loss

standard error (of estimate)

a set of input attributes that may be used in making predic-
tions, and a pool of cases that are seen by the learning method.
A prototask can have many associated tasks, in which the avail-
able prior information and the size of the training set are also
specified. Prototasks are classified as natural, cultivated, sim-
ulated, or artificial according to their relationship to the real
world. Regression and classification prototasks are distin-
guished by the nature of their target attributes.

The set of values that an attribute could conceivably take on,
including the set of missing values that are allowed for the
attribute.

An attribute whose values are real numbers, and for which the
prior information does not specify an interpretation as an angu-
lar, integer, or categorical attribute. Note that the range of
a real attribute may be restricted (eg, to some interval).

The degree to which variation in an input attribute (within its
observed range) affects the values of the target attributes. Put
another way, the degree to which knowledge of the input at-
tribute’s value helps in predicting the values of the targets, given
that the true nature of the relationship between inputs and tar-
gets is known.

A prototask (or task) in which all the targets attributes are real.

A prototask based on a dataset with an informative ordering
in which this ordering has been preserved, and in which there
may therefore be dependencies between nearby cases.

A dataset generated by a program (usually with a random com-
ponent) that simulates some actual phenomenon in a realistic
fashion. Prototasks based on such datasets are also referred to
as simulated.

A loss function for regression tasks in which the loss is the square
of the difference between the guess and the target. When there
is more than one target, the squared-error loss is the sum of such
squared differences for all the targets.

A loss function for classification tasks, used with methods whose
predictions are predictive distributions over target values. The
squared-probability loss is the square of one minus the probability
assigned to the correct target value, plus the sum of the squares of
the probabilities assigned to all the other target values. Squared-
probability loss cannot be used when there is more than one
target attribute.

The standard deviation of an estimate (eg, of expected loss) that
would be observed if the experiment on which the estimate is
based were to be repeated many times with new data randomly

102

D. GLOSSARY OF DELVE TERMINOLOGY

standard task instance

stratified training set

supervised learning

target attribute

task

task instance

test case

test set

training case

training set

uncontrolled attribute

obtained from the same source as the actual data. (In practice,
the standard errors quoted are themselves estimates, since the
true standard deviation usually depends on unknown quantities.)

One of the task instances that are used in DELVE’s standard
scheme for learning experiments.

A training set for a classification task in which training cases have
been selected in such a way that each of the different possible
target values appears the same number of times.

Learning whose goal is to discover the relationship of certain
target attributes to other input attributes, and on this basis
predict the values of the target attributes for a new case for which
only the input attributes are known.

For a particular prototask, an attribute whose values are to be
predicted, based on the values of other input attributes in the
same case.

A specific learning context for a prototask, consisting of the
prior information regarded as being available for use in learn-
ing, and the size and nature of the training set that will be
provided. A task is sufficiently well specified that each learn-
ing method has a well-defined expected loss for a given task
and loss function. A task may be associated with many task
instances, in which particular training sets and test cases are
specified.

A particular training set for a task, to which a learning method
can be applied as part of a learning experiment, together with
a test set that is used to evaluate the accuracy of the learn-
ing method’s predictions. In DELVE’s scheme for learning ex-
periments, a set of standard task instances are defined; it is
possible to define non-standard task instances as well.

A case that is used to evaluate the performance of a learning
method applied to a particular task instance.

The set of all test cases for a particular task instance. Note
that although a task instance will normally include many test
cases, the predictions for the targets in each test case are to be
made without using information from any other test case.

A case that is part of the training set made available to a
learning method.

The set of training cases that are made available to a learning
method in a particular task instance.

An attribute whose values were not fixed by the investigators who
gathered the data, but by some random process. For example,
the amount of rainfall on various agricultural test plots would be

103

D. GLOSSARY OF DELVE TERMINOLOGY

uninformative ordering

unsupervised learning

value (of an attribute)

0-1 loss

an uncontrolled attribute (even though the investigators influence
the amount of rainfall by where they decide to put the plots).

An ordering of cases in a dataset (as originally obtained) that
does not convey any useful information — for instance, a random
ordering, or an ordering that is sorted by the value of one of the
attributes.

Learning whose goal is to discover the relationships amongst all
attributes, without distinguishing some attributes as “inputs”
and others as “targets”. DELVE does not currently handle meth-
ods for unsupervised learning, but may do so in future.

The actual numerical or non-numerical quantity taken on by an
attribute in a particular case. Some cases may have attributes
with missing values, for which the actual value is not known,
or with censored values, for which the actual value is known
only to be beyond some given value.

A loss function for classification tasks in which the loss is 0 when
a guess matches the actual target value and 1 when the guess
does not match the actual target value. When there is more than
one target, the total loss is the number of mis-matches between
guesses and actual values.

104

