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Abstract. In this paper we consider latent variable models and intro-
duce a new U-likelihood concept for estimating the distribution over hid-
den variables. One can derive an estimate of parameters from this distri-
bution. Our approach differs from the Bayesian and Maximum Likelihood
(ML) approaches. It gives an alternative to Bayesian inference when we
don’t want to define a prior over parameters and gives an alternative
to the ML method when we want a better estimate of the distribution
over hidden variables. As a practical implementation, we present a U-
updating algorithm based on the mean field theory to approximate the
distribution over hidden variables from the U-likelihood. This algorithm
captures some of the correlations among hidden variables by estimating
reaction terms. Those reaction terms are found to penalize the likelihood.
We show that the U-updating algorithm becomes the EM algorithm as a
special case in the large sample limit. The useful behavior of our method
is confirmed for the case of mixture of Gaussians by comparing to the
EM algorithm.

1 Introduction

Latent variable models are important tools for probabilistic methods and have
wide applications in machine learning, computer vision, pattern recognition, and
speech processing, to name a few. The Bayesian and the Maximum Likelihood
(ML) approaches have been extensively studied for learning such models in the
past decades.

In Bayesian Inference [1], we define a prior over parameters P (θ) and from
this all inference is automatically performed. In particular, using this prior we
can compute the marginal probability of data set Y = {y1, . . . , yn} and hidden
variable set X = {x1, . . . , xn}:

P (Y, X) =
∫

P (Y, X |θ)P (θ)dθ. (1)
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We can further marginalize out hidden variables to get the marginal probability
of just data set Y :

P (Y ) =
∑
X

P (Y, X), (2)

assuming all hidden variables are discrete. The Bayesian approach basically pro-
vides a way of solving the overfitting problem by eliminating model parameters
by integrating over them.

In certain settings it may be undesirable to define a prior over parameters. For
example, many statisticians don’t like the subjective nature of Bayesian inference
even though all modelling contains an element of subjectivity. Moreover, in some
cases it is very difficult to define one’s prior belief about the model parameters.
This motivates the use of ML method for parameter estimation.

Starting from the likelihood of the parameters, which is the probability of
data set Y given the parameters, in the ML approach one can find the parameters
which maximize the likelihood function given by

L(θ) =
∑
X

P (Y, X |θ). (3)

We wish to find the parameters that maximize the likelihood: θ∗=arg maxθ L(θ).
From this estimate of parameters, we can find the distribution over hidden vari-
ables P (X |Y, θ∗), regarding θ∗ as true parameters. The fundamental problem of
the ML approach is overfitting since it considers only a single estimate of ML
parameters, whereas the Bayesian approach solves this problem by integrating
over parameters.

If we don’t want a Bayesian approach, we can still eliminate the parameters,
not by marginalizing over them as in (1), but by maximizing over them. This is
the key of our work. By doing so, we obtain a method somewhat analogous to
the Bayesian approach without specifying the parameter prior.

In this paper, we introduce a new concept, U -likelihood, to infer the dis-
tribution over hidden variables, which differs from the Bayesian and the ML
approaches. We obtain the U -likelihood, which is an analogous quantity to the
marginal probability of data set in (2), by marginalizing the maximum of the
complete-data likelihood over hidden variables. We show that the U -likelihood
can be bounded using variational method [2] and this gives the joint distribution
over hidden variables Q(X) (Sec. 3). Like the Bayesian and the ML approaches,
the exact Q(X) is intractable to compute for large data sets. As a practical
implementation, we introduce a U-updating algorithm, which iteratively solves
mean field equations for hidden variables under Q(X). We show that the U-
updating algorithm estimates the reaction of all the other hidden variables and
it penalizes the likelihood term to alleviate the overfitting problem. The EM
algorithm appears as a special case of U-updating algorithm in the large sample
limit. (Sec. 4). We demonstrate the useful behavior of our U-updating algorithm,
compared to the EM algorithm, through the example of mixtures of Gaussians
on synthetic and real data sets (Sec. 5).
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2 General Framework

Throughout this paper, we assume that data set Y = {y1, . . . , yn} of n data
points is always given. Let X = (x1, . . . , xn) denote hidden variable set. Allowing
yi and xi, to be multidimensional, we assume that a complete data point (yi, xi)
is IID from a sampling distribution which is parameterized by parameter vector
θ such as P (yi, xi|θ). For simplicity, we here focus on the discrete type hidden
variable xi, but the understanding of the case of continuous hidden variables is
straightforward by exchanging sums into integrals.

For Bayesian inference, we can form a lower bound of log P (Y ) in (2) for any
Q(X) using Jensen’s inequality:

log P (Y ) ≥
∑
X

Q(X) log
P (Y, X)
Q(X)

≡ FB(Q(X)), (4)

and then we can find Q(X) by maximizing FB. The maximization of FB is equiv-
alent to the minimization of the Kullback-Leibler divergence between Q(X) and
P (X |Y ) = P (Y, X)/P (Y ). Therefore, at maxima of FB, Q(X) gives the exact
P (X |Y ). However, for most models of interest this is intractable to compute.
For example, for a mixture model with m components, the sum

∑
X of P (Y )

in (2) contains mn terms. As practical implementations, MCMC [3] methods, the
Expectation-Propagation (EP) [4] and the variational Bayes (VB) [5] methods
were introduced but we will not tackle them in this paper.

For the ML approach, we can form the lower bound of log likelihood in a
similar way to (4):

log L(θ) ≥
∑
X

Q(X) log
P (Y, X |θ)

Q(X)
≡ FL(Q(X), θ). (5)

The maximization of FL is equivalent to the maximization of L since if (Q∗, θ∗)
occurs at maxima of FL, then θ∗ occurs at maxima of L(θ) and Q∗(X) becomes
P (X |Y, θ∗). Since the global maximization of FL is intractable in most cases
like in the Bayesian approach, the well-known EM algorithm [6] independently
maximizes FL w.r.t. Q or θ by fixing the other as a practical implementation.
Refer [6, 7] for more details on the EM algorithm.

3 U-Likelihood

If we don’t want a Bayesian approach, we can still eliminate the parameters, not
by marginalizing over them as in (1), but by maximizing over them. We start by
defining the U-function which is the maximum of the complete-data likelihood:

U(Y, X) ≡ max
θ

P (Y, X |θ) = P (Y, X |θ̂(Y, X)) > 0, (6)

where θ̂ (Y, X) denotes the ML parameter estimator, a function of the complete-
data set, defined by

θ̂ (Y, X) ≡ arg max
θ

P (Y, X |θ). (7)
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The U-function is analogous to the marginal probability in (1) except that it
maximizes over parameters rather than integrating over parameters. Another
way to think about it is that instead of a parameter prior, we substitute in (1)
a delta function of the ML parameter estimate on the complete-data set, e.g.
P (θ) = δ(θ − θ̂ (Y, X)). This is certainly not coherent from the point of view of
Bayesian inference since the prior cannot depend on the data, but we will see
some of the interesting properties of this approach.

We can take the U-function and marginalize out the hidden variable set X :

U(Y ) ≡
∑
X

U(Y, X). (8)

We call this quantity U-likelihood and it is analogous to P (Y ) in (2). Another
view of it is that it forms an upper bound of the likelihood function: U ≥ L∗ ≥
L(θ), where L∗ = maxθ L(θ) denotes the maximum likelihood value. Analogous
to (4), we can lower bound it for any distribution Q(X) over hidden variables:

log U(Y ) ≥
∑
X

Q(X) log
U(Y, X)
Q(X)

≡ FU (Q(X)). (9)

We can use the optimal Q(X) maximizing FU as a joint conditional distribution
over hidden variables given data set: P (X |Y ). The next theorem shows the form
of Q(X) at the maxima of FU .

Theorem 1. The optimal joint distribution Q(X) maximizing the lower bound
FU(Q(X)) is of the form

Q(X) =
U(Y, X)
U(Y )

. (10)

Proof: Let Q′(X) = U(Y,X)
U(Y ) . Then, the Kullback-Leibler divergence between

Q(X) and Q′(X) is given by KL [Q‖Q′] = log U(Y ) − FU (Q). It follows from
Gibbs inequality that KL [Q‖Q′] = 0 when Q(X) = Q′(X), implying that FU (Q)
is maximized at Q(X) = Q′(X). �

We illustrate the joint distribution Q(X) in (10) when data set Y consists
of 12 data points generated from the mixture of two Gaussians. The true X∗ is
a binary vector with 12 components. Figure 1 plots log Q(X) as a function of
Manhattan distance from the true X∗. This demonstrates that Q(X) tends to
give higher probability to hidden states that are similar to the true states.

We have seen the relationship of U-likelihood to Bayesian inference. We can
also see a simple relationship to maximum likelihood methods:

Maximum likelihood : L∗ = max
θ

∑
X

P (Y, X |θ) , (11)

U-likelihood : U =
∑
X

max
θ

P (Y, X |θ) , (12)

where we here dropped the data dependency. The former gives a single value of
the model parameters θ∗, from which a distribution over hidden variables can
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Fig. 1. Demonstration of Q(X) in Theorem 1 given data set Y of 12 data points
generated from the mixture of two Gaussians, i.e. N ([−3, 0], I) and N ([3, 0], I). (a)
data set Y . (b) log Q(X) as a function of Manhattan distance from the true state,∑12

i=1 |xi − x∗
i |. Each dot indicates a state of 212 possible configurations of X. The

symmetrical phenomenon stems from the identifiability of the mixture of Gaussians.

be derived: P (X |Y, θ∗). The latter no longer gives a single value of parameters.
However, it may give a better estimate of the distribution over hidden variables,
Q(X), which captures some of correlations among hidden variables. From this
distribution Q(X) one can derive an estimate of parameters.

We outline some of the possible advantages of U-likelihood approach over the
Bayesian and the ML approaches:

1. High dimensional integrals like (1) required for Bayesian inference can be
intractable. For many models, the optimum of θ given the complete-data
set (Y, X) is a simple function of the sufficient statistics. So no explicit
optimization is necessary to compute (6).

2. Many researchers may not wish to define a prior over parameters. The U-
likelihood method provides an alternative.

3. Optimizing over parameters in the ML method is often fraught with local
optima. By optimizing out parameters, the U-likelihood method is sometimes
found to have better convergence properties than the ML method. That is,
it can find good solutions without falling into local optima as often. We show
this empirically.

The distribution Q(X) in (10) may be intractable to compute, excepting
for small n, since it requires all possible configurations of X . As a practi-
cal implementation, we will use a mean field approximation and present the
U-updating algorithm as an alternative to the EM algorithm in the next
section.
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4 U-Updating Algorithm

We start by considering a case where the sampling distribution of the complete-
data (yi, xi) is in the exponential family with the following form

P (yi, xi|θ) = f(si(yi, xi))g(θ) exp
{
φ(θ)Tsi(yi, xi)

}
, (13)

where φ(θ) is a vector of natural parameters and si(yi, xi) is a vector of sufficient
statistics. The normalizing constant is denoted by g(θ). Probability distributions
of the exponential family have been widely used in latent variable models such
as mixture of Gaussians, factor analysis, hidden Markov models, state-space
models, and so on. For the case of the exponential family, the complete-data
likelihood depends on the complete-data set only through sufficient statistics:

P (Y, X |θ) =
[ n∏

i=1

f(si(yi, xi))
]
g(θ)n exp

{
φ(θ)Ts(Y, X)

}
, (14)

where s(Y, X) =
∑n

i=1 si(yi, xi). Moreover, a closed-form solution of θ̂ and U-
function always exists as a function of sufficient statistics: θ̂(Y,X) = θ̂(s(Y, X))
and U(Y, X) = U(s(Y, X)).

The mean field theory [8], originally from statistical physics, has been widely
used in the machine learning community to approximate joint distributions in
graphical models when exact inference is intractable because of highly-coupled
interactions among variables. Consider the marginal distribution over xi:

Q(xi) =
∑
X\i

Q(X) =
1

U(Y )

∑
X\i

U(s(Y, X)), (15)

where X\i denotes a subset of hidden variables where xi is excluded: X\i =
X \ xi. In general, the exact calculation of Q(xi) is intractable since it requires
all possible realizations of X\i. Assuming weak dependencies among hidden vari-
ables, the mean field theory suggests that the influence of the other hidden vari-
ables sj(yj , xj) in the marginal distribution Q(xi) can be approximated by the
expected values 〈sj(yj , xj)〉. This leads to the mean field distributions Qi(xi):

Qi(xi) ≡ 1
Ui

U(s̄i(xi)) ≈ Q(xi), (16)

where s̄i(xi) = si(yi, xi) +
∑n

j=1,j �=i〈sj(yj , xj)〉 and Ui =
∑

xi
U(s̄i(xi)) is

the normalizing constant. The joint distribution Q(X) is approximated by the
factored form with all mean field distributions Qi(xi): Q(X) ≈

∏n
i=1 Qi(xi).

Moreover, the expected sufficient statistics 〈s(Y, X)〉 can be obtained by solv-
ing self-consistent equations called mean field equations, which are stationary
conditions:

〈si(yi, xi)〉 =
∑
xi

si(yi, xi)Qi(xi) . (17)
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Table 1. U-updating algorithm and EM algorithm

U-updating algorithm EM algorithm

Initialize 〈s〉(0) =
∑n

i=1〈si(yi, xi)〉(0) .
Set 〈s〉(1) = 〈s〉(0) .
Repeat t = 1, 2, . . . until convergence .
Repeat i = 1, . . . , n .
Update Q

(t)
i (xi) ∝ U(s̄(t)

i (xi)) ,
s̄
(t)
i (xi) =

〈s〉(t) + si(yi, xi) − 〈si(yi, xi)〉(t−1) .
Refine
〈s〉(t) ←
〈s〉(t) + 〈si(yi, xi)〉(t) − 〈si(yi, xi)〉(t−1)

with 〈si(yi, xi)〉(t) under new Q
(t)
i (xi) .

End (Repeat)
Set 〈s〉(t+1) = 〈s〉(t) .

End (Repeat)

Initialize θ(0) .
Repeat t = 1, 2, . . . until convergence.
E-Step :

Update Q
(t)
i (xi) = P (xi|yi, θ

(t))
for all i = 1, . . . , n.

M-Step :
Estimate θ(t+1) = θ̂(〈s〉(t))
with 〈s〉(t) =

∑n
i=1〈si(yi, xi)〉(t)

under new {Q
(t)
i (xi)} .

End (Repeat)

Therefore, the distribution Qi(xi) in (16) can be computed by iterative proce-
dure solving the mean field equations in (17). This iterative procedure is referred
to as the U-updating algorithm and gives an alternative to the EM algorithm.

The Table 1 summarizes the U-updating algorithm in comparison with the
EM algorithm. In order to estimate ML parameter θ(t+1) in M-Step, the EM
algorithm requires distributions P (xi|yi, θ

(t)) in E-Step built on the ML pa-
rameter θ(t) which may be overfitted to the data set at the previous itera-
tion.Therefore, the overfitting effects may accumulate throughout iterations in
the EM algorithm. However, the U-updating algorithm alleviates this overfitting-
accumulation problem by estimating the reaction of all the other hidden
variables, which penalizes the likelihood. Therefore, it can give better distri-
bution Qi(xi) than the EM algorithm. We can simply use all Qi(xi) resulted
from the U-updating algorithm to estimate parameters like the M-Step of the
EM algorithm.

In order to see how the U-updating algorithm penalizes the likelihood, de-
compose the U-function:

U(s̄i(xi)) = αi(xi)βi(xi), (18)

where αi(xi) = P (si(yi, xi) | θ̂(s̄i(xi))) and βi(xi) =
∏n

j=1, �=i ρ(〈sj(yj , xj)〉 |
θ̂(s̄i(xi))), given by

ρ(〈sj(yj , xj)〉 | θ̂(s̄i(xi))) = f(〈sj〉)g(θ̂(s̄i(xi))) exp
{
φ(θ̂(s̄i(xi)))T〈sj〉

}
.

The term αi(xi) is the likelihood on the complete data point i. The term βi(xi)
can be interpreted as a reaction of all the other hidden variables via the expected
values 〈sj(yj , xj)〉. When computing Qi(xi), the U-updating algorithm therefore
penalizes the likelihood αi(xi) by estimating the reaction βi(xi) of the other
hidden variables, which captures some correlations among hidden variables.
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The U-updating algorithm generalizes the EM algorithm since if we ignore the
reaction term βi(xi) in (18), it will be same to the EM algorithm. The following
theorem states the behavior of U-updating algorithm in the large sample limit.

Theorem 2. For the case of the exponential family, the U-updating algorithm
is equivalent to the EM algorithm in the limit of large samples.

Proof: In the large sample limit, the sufficient statistic s(Y, X) will be insensitive
to one hidden variable: si(yi, xi) +

∑n
j=1, �=i〈sj(yj , xj)〉 ≈ 〈s(Y, X)〉 as n → ∞.

Therefore, in the large sample limit, the reaction term βi(xi) becomes a constant
and Qi(xi) of the U-updating algorithm becomes the distribution resulted from
the E-step of the EM algorithm:

Qi(xi) =
P (yi, xi | θ̂(〈s〉))∑
x′

i
P (yi, x

′
i | θ̂(〈s〉))

= P (xi | yi, θ̂(〈s〉)) . (19)

From the fact that θ̂(〈s〉) gives the ML parameter in the M-step of the EM
algorithm, the U-updating algorithm is equivalent to the EM algorithm in the
large sample limit. �

5 Numerical Experiments

5.1 Mixture of Gaussians

For the p-dimensional observational vector yi ∈ Rp, the mixture model [9, 10] of
m components with parameter θ is generally defined as P (yi|θ) =

∑m
k=1 P (yi|xi =

k, θ)P (xi = k|θ), where xi ∈ {k = 1, . . . , m} denotes the hidden variable indi-
cating which mixture component is in charge of generating yi. The components
are labelled by k. Although our method can be applied to an arbitrary mix-
ture model, for simplicity, we consider the case of Gaussian components. In this
case, the mixture model parameterized by θ = ({µk}, {Σk}, {wk}) is given by
P (yi|θ) =

∑m
k=1 N (yi; µk, Σk) wk, where wk = P (xi = k|θ) is the mixing propor-

tion satisfying
∑m

k=1 wk = 1 and N (yi; µk, Σk) = P (yi|xi = k, θ) denotes the
kth Gaussian component distribution with the mean vector µk and covariance
matrix Σk. The sampling distribution of the mixture of Gaussians is given by

P (yi, xi|θ) =
m∏

k=1

[
N (yi; µk, Σk)wk

]δk(xi)
, (20)

where δk(xi) denotes the Kronecker delta function given by δk(xi) = 1 for xi = k
and δk(xi) = 0 for xi 
= k.

Let (Y, X) denote the complete data set of n IID observations, where Y =
{y1, . . . , yn} and X = {x1, . . . , xn}. Since the sampling distribution P (yi, xi|θ)
is in the exponential family, the complete data likelihood P (Y, X |θ) and the
ML parameter estimator θ̂(Y, X) become the function of the sufficient statistics.
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Table 2. U-updating Algorithm : Mixture of Gaussians

Initialize 〈γk〉(0) =
∑n

i=1〈δk(xi)〉(0),
〈ξk〉(0) =

∑n
i=1〈δk(xi)〉(0) yi,

〈λk〉(0) =
∑n

i=1〈δk(xi)〉(0) yiy
T
i ,

where 〈δk(xi)〉(0) = Q
(0)
i (xi = k).

Set 〈γk〉(1) = 〈γk〉(0), 〈ξk〉(1) = 〈ξk〉(0) and 〈λk〉(1) = 〈λk〉(0).
Repeat t = 1, 2, 3, . . . until convergence.

Repeat i = 1, . . . , n.
1) Update Q t

i (xi) ∝
∏m

k=1

(
γ̄

(t)
k (xi)1+

p
2 |C̄(t)

k (xi)|−
1
2

)γ̄
(t)
k

(xi)
,

where γ̄
(t)
k (xi) = 〈γk〉(t) + [δk(xi) − 〈δk(xi)〉(t−1) ] ,

ξ̄
(t)
k (xi) = 〈ξk〉(t) + [δk(xi) − 〈δk(xi)〉(t−1) ] yi ,

λ̄
(t)
k (xi) = 〈λk〉(t) + [δk(xi) − 〈δk(xi)〉(t−1) ] yiy

T
i ,

C̄
(t)
k (xi) = λ̄

(t)
k (xi) − γ̄

(t)
k (xi)

−1
ξ̄
(t)
k (xi)ξ̄

(t)
k (xi)T.

2) Refine sufficient statistics
〈γk〉(t) ← 〈γk〉(t) + [〈δk(xi)〉(t) − 〈δk(xi)〉(t−1) ] ,
〈ξk〉(t) ← 〈ξk〉(t) + [〈δk(xi)〉(t) − 〈δk(xi)〉(t−1) ] yi ,
〈λk〉(t) ← 〈λk〉(t) + [〈δk(xi)〉(t) − 〈δk(xi)〉(t−1) ] yiy

T
i

with 〈δk(xi)〉(t) = Q
(t)
i (xi).

End (Repeat)
Set 〈γk〉(t+1) = 〈γk〉(t), 〈ξk〉(t+1) = 〈ξk〉(t) and 〈λk〉(t+1) = 〈λk〉(t).

End (Repeat)

Therefore, the U-function is also a function of the sufficient statistics s(Y, X) =
({γk, ξk, λk}):

U
(
{γk, ξk, λk}

)
= c

m∏
k=1

(
γk

1+ p
2 |Ck|−

1
2

)γk

, (21)

where Ck = λk − γ−1
k ξkξT

k and

γk =
n∑

i=1

δk(xi), ξk =
n∑

i=1

δk(xi)yi, λk =
n∑

i=1

δk(xi)yiy
T
i , (22)

and c is a constant. Using 〈δk(xi)〉 = Qi(xi = k), we present the U-updating
algorithm for the mixture of Gaussians in Table 2. We can simply obtain the es-
timate of the parameters by θ∗ = θ̂

(
{〈γk〉, 〈ξk〉, 〈λk〉}

)
under all Qi(xi) resulted

from the U-updating algorithm like as the M-Step of the EM algorithm, where
the ML parameter estimator is given by

θ̂
(
{γk, ξk, λk}

)
=

({
ŵk =

γk

n
, µ̂k =

ξk

γk
, Σ̂k =

Ck

γk

})
. (23)

5.2 Numerical Results

In order to demonstrate U-updating algorithm in comparison with the EM algo-
rithm, we first used the data set of 800 data points generated from the mixture
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components m = 6 m = 9 m = 12 m = 16

(a) true (c) U-updating algorithm
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Fig. 2. Results on a mixture of 6 well-clustered Gaussian components: (a) true
Gaussian-mixture distribution, where the more bright, the higher probability is there.
(b) 800 data points generated from the true distribution. (c) and (d) learned distri-
butions by U-updating and EM algorithms when the models have the components
m = 6, 9, 12, 16.
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Fig. 3. Intermediate log likelihood values, subtracted from the maximum value, of the
U-updating and the EM algorithms in the case of m = 16 on data set shown in Figure 2

of 6 well-clustered Gaussian components having equal mixing proportion wk but
having different volume. Both algorithms started by the same initial guess from
k-means algorithm. Figure 2 shows that the U-updating algorithm alleviates the
overfitting in comparison with the EM algorithm. Although models were more
complicated than the true model (m = 6), the U-updating algorithm demon-
strated that all of the learned distributions (m = 6, 9, 12, 16) were very similar
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Acidity Data Set (155 data points)

3 3.5 4 4.5 5 5.5 6 6.5 7
0

0.2

0.4

0.6

0.8

1
m=2
m=4
m=6

3 3.5 4 4.5 5 5.5 6 6.5 7
0

0.2

0.4

0.6

0.8

1
m=2
m=4
m=6

U-updating algorithm EM algorithm

Galaxy Data Set (82 data points)

10 15 20 25 30 35
0

0.05

0.1

0.15

0.2

0.25 m=2
m=4
m=6

10 15 20 25 30 35
0

0.05

0.1

0.15

0.2

0.25 m=2
m=4
m=6

U-updating algorithm EM algorithm

Fig. 4. Learned distributions by U-updating and EM algorithms when the models
have the components m = 2, 4, 6

to the true distribution. However, for the EM algorithm, the more complicated
the model we considered, the more overfitted the distribution that resulted.

As a practical issue, overfitting leads to slow convergence. Figure 3 shows the
convergence curves in term of log likelihood subtracted from the maximum value
in the case of m = 16. By penalizing the likelihood term αi by the reaction term
βi, the U-updating algorithm achieved much faster convergence, approximately
more than three times, than the EM algorithm. The U-updating algorithm met
the convergence threshold, that was

√∑m
k=1 |w(t)

k
−w

(t−1)
k

|2 < 10−4, after 153 iter-
ations, whereas the EM algorithm met the same threshold after 563 iterations.

Next, we used real data sets, acidity and galaxy data sets shown in [10].
Figure 4 shows the learned distributions when the models have 2, 4, and 6
components and the Table 3 shows that the optimized mixing proportions ŵk

when the model has 6 components.

6 Conclusions

In this paper, we introduced the U-likelihood approach for learning latent vari-
able models, which differs from the Bayesian and the ML approaches. We pre-
sented some advantages of our approach over them in section 3. Our U-likelihood
method gives an alternative to Bayesian inference and the ML method when we
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Table 3. Optimized mixing proportions (ŵk) of learned model having 6 components

Component 1 2 3 4 5 6

Acidity Data Set
U-updating algorithm 0.295 0.259 0.187 0.086 0.086 0.086

EM algorithm 0.386 0.188 0.171 0.169 0.073 0.013

Galaxy Data Set
U-updating algorithm 0.267 0.267 0.267 0.083 0.058 0.058

EM algorithm 0.403 0.277 0.171 0.085 0.037 0.026

don’t want to use these. As a practical implementation, we presented the U-
updating algorithm to compute the distribution over hidden variables, which
was found to penalize the likelihood by estimating the reaction of the other hid-
den variables and to alleviate the overfitting-accmulation problem of the EM
algorithm.

We leave some of issues for the future work: 1) How can we more accurately
approximate Q(X) in (10) than the U-updating algorithm. 2) How can we per-
form the model selection in the framework of the U-likelihood. 3) Comparison
with the Bayesian approach, e.g. EP and VB.
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