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Abstract—Variational Bayesian Expectation-Maximization (VBEM), an

approximate inference method for probabilistic models based on factorizing over

latent variables and model parameters, has been a standard technique for

practical Bayesian inference. In this paper, we introduce a more general

approximate inference framework for conjugate-exponential family models, which

we call Latent-Space Variational Bayes (LSVB). In this approach, we integrate out

the model parameters in an exact way, leaving only the latent variables. It can be

shown that the LSVB approach gives better estimates of the model evidence as

well as the distribution over the latent variables than the VBEM approach, but, in

practice, the distribution over the latent variables has to be approximated. As a

practical implementation, we present a First-order LSVB (FoLSVB) algorithm to

approximate the distribution over the latent variables. From this approximate

distribution, one can also estimate the model evidence and the posterior over the

model parameters. The FoLSVB algorithm is directly comparable to the VBEM

algorithm and has the same computational complexity. We discuss how LSVB

generalizes the recently proposed collapsed variational methods to general

conjugate-exponential families. Examples based on mixtures of Gaussians and

mixtures of Bernoullis with synthetic and real-world data sets are used to illustrate

some advantages of our method over VBEM.

Index Terms—Bayesian inference, conjugate-exponential family, variational

method, mixture of Gaussians, mixture of Bernoullis.
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1 INTRODUCTION

BAYESIAN approaches have drawn attention in machine learning
and statistical analysis in recent decades since they have
advantages compared with maximum likelihood approaches.
Bayesian methods do not suffer from overfitting (since they do
not involve fitting parameters) and provide a coherent approach to
averaging over as well as comparing models.

Assuming a modelM, in the Bayesian approach, all inferences

are automatically done by applying Bayes’ rule starting from a

prior P ð��jMÞ over model parameters. For an example, we can

obtain a posterior distribution over latent variables X and model

parameters �� given data set Y :

P ðX; ��jY ;MÞ ¼ P ðY ;Xj��;MÞP ð��jMÞ
P ðY jMÞ ; ð1Þ

P ðY jMÞ ¼
Z
dXd��P ðY ;Xj��;MÞP ð��jMÞ: ð2Þ

The posterior distribution P ðX; ��jY ;MÞ is useful for cluster

analysis, dimensionality reduction, classification, and prediction

tasks. In particular, the probability P ðY jMÞ, called the marginal

likelihood or model evidence, has been shown to penalize over-
complex models by automatically encoding Occam’s Razor [1], [2],

so it is important for model comparison [3]. A more in-depth
introduction to Bayesian approaches is given in [4], [5], [6] and the
references therein.

Unfortunately, for many interesting latent variable models, true

Bayesian inferences are generally intractable due to the high-

dimensional integrals associated with them. Therefore, such

difficult integrals have to be approximated for practical Bayesian

inferences. There are two standard approximate methods, the

Monte Carlo method [7], [8], [9], [10] and the variational method

[6], [10], [11], [12]. Markov chain Monte Carlo (MCMC) methods

provide asymptotic theoretical guarantees but are often impractical

due to their computational cost as well as the difficulty of

monitoring convergence. On the other hand, the variational

method, which is called Variational Bayes (VB) for Bayesian

inferences, can require much less computation and comes with

an easy to evaluate convergence criterion, but does not have the

same asymptotic guarantees as MCMC.

Recently, Variational Bayesian Expectation-Maximization (VBEM)

[13], [14] has become one of the standard VB approximate

inference methods and has been successfully applied to many

interesting latent variable models [14], [15], [16], [17], [18], [19].

However, in practice, maximizing over hyperparameters can cause

VBEM to be fraught with spurious local maxima and to suffer from

the overfitting problem.

In this paper, we consider a more general VB approximate

inference framework, which we call Latent-Space VB (LSVB). LSVB

is constructed under a weaker independence assumption than

VBEM. In the VBEM approach, we assume that the latent variables

are independent of the model parameters. This assumption is too

strong since the fluctuation of the model parameters directly

affects the latent variables in general. Therefore, VBEM inherently

ignores some important correlations. In the LSVB approach, we

only assume that the latent variables over samples are independent

of each other, integrating out the model parameters exactly. This is

a more reasonable assumption in the real world since the

fluctuation of the latent variables on a single sample exhibits weak

influences on the other latent variables via summary statistics.

Moreover, such influences from a single sample will eventually be

negligible for large data sets. Fundamentally, it can be shown that

the LSVB approach achieves better estimates of the model evidence

as well as the distribution over the latent variables than the VBEM

approach. However, the distribution over the latent variables has

to be approximated in practice.
A similar idea, integrating out the model parameters, was

simultaneously proposed in [20]1 and extended in [21] and called
collapsed variational (CV) approximations. The work in these papers

was restricted to a specific Dirichlet-Multinomial model. We
consider, in our original technical report and here in this paper,
a more general class of latent variable models called the conjugate-

exponential family and propose First-order LSVB (FoLSVB), a new

practical VB approximate inference algorithm having the same
computational complexity as the VBEM algorithm. Integrating out
the model parameters like LSVB, the FoLSVB algorithm sometimes

has better convergence properties than the VBEM algorithm.
This paper is organized as follows: In Section 2, we introduce

the general idea of LSVB, briefly reviewing VBEM. In Section 3, we

apply LSVB to the conjugate-exponential model and derive the
FoLSVB algorithm. In Sections 4 and 5, we give examples of the
mixture of Gaussians (MoG) and the mixture of Bernoullis (MoB)
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and use synthetic and real-world data sets to demonstrate our

method as compared to VBEM. Finally, we conclude in Section 6.

2 LATENT-SPACE VARIATIONAL BAYES

Assume a data set Y ¼ fyyigNi¼1 and a latent variable set X ¼
fxxigNi¼1 of N i.i.d. samples, drawn from a joint distribution

P ðyyi; xxij��Þ parameterized by model parameters ��. A complete

data set consists of Y and X. We allow both yyi and xxi to be

multidimensional.
In the VB approximate framework, we form a lower bound

of log marginal likelihood, logP ðY Þ, with respect to an

approximating distribution for the posterior distribution and

then approximate inferences are done by maximizing the lower

bound. For an example, VBEM employs a factorized approx-

imating distribution over the latent variables and the model

parameters, such as QðX; ��Þ ¼ QXðXÞQ��ð��Þ; the approximating

distribution QX exhibits additional factorizations over samples,

that is, QXðXÞ ¼
QN

i¼1 Qxxi ðxxiÞ. From this, we can form a lower

bound FQXQ��
by using Jensen’s inequality:

logP ðY Þ �
Z
dXd��QXðXÞQ��ð��Þ log

P ðY ;Xj��ÞP ð��Þ
QXðXÞQ��ð��Þ

�FQXQ��
:

ð3Þ

The VBEM algorithm guarantees finding a local maximum of

FQXQ��
by iteratively performing the following two steps:

. VBE Step: fix Q�� and update

Qxxi ðxxiÞ / exp hlogP ðyyi; xxij��ÞiQ��

n o
;

. VBM Step: fix QX and update

Q��ð��Þ / P ð��Þ exp
XN
i¼1

hlogP ðyyi; xxij��ÞiQxxi

( )
;

where h�iQ denotes the expectation under a distribution Q. The

maximal value of FQXQ��
gives an approximate log marginal

likelihood and the optimal QX and Q�� at the maximum of FQXQ��

provides an approximate posterior over the latent variables and

the model parameters. The quality of approximations is evaluated

by the tightness of the lower bound. To simplify notation, we have

here and will henceforth assume a given particular modelM, even

when this is not explicitly stated as the notation in (3).
Next, we consider a more general VB framework than the

VBEM approach, which we call LSVB. Rather than exploiting the

factorized distribution over the latent variables and the model

parameters, in LSVB we integrate out the model parameters in an

exact way and then form a lower bound FQX
with respect to a

factorized approximating distribution QXðXÞ ¼
QN

i¼1 Qxxi ðxxiÞ over

samples by using Jensen’s inequality:

logP ðY Þ �
Z
dXQXðXÞ log

P ðY ;XÞ
QXðXÞ

� FQX
; ð4Þ

where P ðY ;XÞ �
R
d��P ðY ;Xj��ÞP ð��Þ denotes the complete data

marginal likelihood. Although high-dimensional integrals in the

marginal likelihood P ðY Þ for Bayesian inference can be intractable,

for many models, the complete data marginal likelihood P ðY ;XÞ is

a simple function of sufficient statistics. Thus, no explicit

optimization is necessary to compute P ðY ;XÞ. Applying the

Jensen’s inequality to FQX
with respect to Q��, it is easy to see

that the lower bound of LSVB is always tighter than the lower

bound of VBEM, that is, FQX
� maxQ��

FQXQ��
.

Since the lower bound FQX
is a concave functional over QX , if

we set the functional derivative of FQX
with respect to Qxxi to zero,

we can find the optimal Qxxi at the unique maximum of FQX
in the

form of

Qxxi ðxxiÞ / exp logP ðY ;XÞh i�Qxxi

n o
; ð5Þ

where h�i�Qxxi
denotes the expectation under all Qxxi0 for i0 6¼ i.

Analytical solutions for all fQxxig do not generally exist due to the

couplings among them, but, analogously to VBEM, we can locally

maximize FQX
by iteratively updating Qxxi at one time by fixing all

of the others fQxxi0 : i0 6¼ ig in a round-robin or random updating

schedule. We call this iterative updating procedure the LSVB

algorithm, which never decreases the lower bound FQX
and

therefore guarantees finding a local maximum of FQX
.

In contrast to the VBEM approach, the LSVB approach no

longer gives an estimate of the posterior over the model

parameters, but it gives better estimates of the model evidence as

well as the distribution over the latent variables at the tighter lower

bound FQX
than the VBEM approach. From this distribution over

the latent variables, one can later estimate the posterior over the

model parameters. A simple example that is used here is to

estimate the posterior over the model parameters by taking a single

VBM step with the estimated QX .

3 CONJUGATE-EXPONENTIAL FAMILY

Consider a class of exponential family distributions P ðyyi; xxij��Þ for

complete data point ðyyi; xxiÞ:

P ðyyi; xxij��Þ ¼ fðyyi; xxiÞgð��Þ exp ��ð��ÞTuiðyyi; xxiÞ
n o

; ð6Þ

where uiðyyi; xxiÞ is a function of the complete data and �� is called

the natural parameters. The functions f and g define the

exponential family and g is a constant with respect to yyi and xxi
ensuring that the distribution normalizes to one.

We further consider a conjugate prior P ð��j��; ���Þ over the

model parameters given hyperparameters �� and ��� to the

complete data likelihood P ðX; Y j��Þ ¼
QN

i¼1 P ðxxi; yyij��Þ; such priors

take the same form as the exponential family:

P ð��j��; ���Þ ¼ hð��; ���Þ�1gð��Þ�
�
exp ��ð��ÞT���
n o

: ð7Þ

The normalizing function, hð��; ���Þ �
R
d�� gð��Þ�

�
expf��ð��Þ>���g, is

known for many standard conjugate priors. This means that we

can analytically integrate out model parameters in models using,

e.g., Dirichlet, Gaussian, Wishart, Gamma, Beta, and Poisson

distributions, and many combinations thereof.

Especially, the exponential family distribution in (6) with the

conjugate prior in (7) is called the conjugate-exponential family [19],

which includes many practical latent variable models such as

mixtures of Gaussians, mixtures of Multinomials, mixtures of

Bernoullis, mixtures of factor analyzers, state-space models,

hidden Markov models, linear dynamical systems, and some

kinds of graphical models. In particular, the conjugate-exponential

family has the posterior P ð��jY ;X; ��; ���Þ over the model para-

meters after observing the complete data set ðY ;XÞ in the same

form as the prior in (7), that is, P ð��jY ;X; ��; ���Þ ¼ P ð��j�; ��Þ with

� ¼ N þ �� and �� ¼
PN

i¼1 uiðyyi; xxiÞ þ ���. We will use the term prior

hyperparameters to refer to �� and ���, and the term posterior

hyperparameters to refer to � and ��.

3.1 LSVB

The conjugate-exponential family has the complete data marginal

likelihood composed of analytically known functions in the form of
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P ðY ;Xj��; ���Þ ¼
Z
d��P ðY ;Xj��ÞP ð��j��; ���Þ

¼ hð�; ��Þ
hð��; ���Þ

YN
i¼1

fðyyi; xxiÞ;
ð8Þ

where � ¼ N þ �� and �� ¼
PN

i¼1 uiðyyi; xxiÞ þ ���. Plugging this
P ðY ;Xj��; ���Þ into FQX

in (4), the lower bound of LSVB can be

formulated by

FQX
¼ RQX

þ loghð�; ��Þh iQX
; ð9Þ

with

RQX
�
XN
i¼1

hlog fðyyi; xxiÞiQxxi
� loghð��; ���Þ þ

XN
i¼1

HðQxxi Þ;

where H denotes the entropy defined by

HðQÞ � �
Z
dtQðtÞ logQðtÞ:

The LSVB algorithm maximizes this FQX
by iteratively updating

Qxxi ðxxiÞ / fðyyi; xxiÞ exp loghð�; ��Þh i�Qxxi

n o
: ð10Þ

To see the relation to VBEM, let us consider the first-order
Taylor’s expansion of logh around ~�� given by

log ~hð�; ��; ~��Þ � loghð�; ~��Þ þ ð�� � ~��ÞTm��ð~��Þ; ð11Þ

where m��ð~��Þ � h��ð��ÞiP ð��j�;~��Þ is the gradient vector of logh

evaluated at �� ¼ ~��. Incorporating the inequality loghð�; ��Þ �
log ~hð�; ��; ~��Þ for all ~�� from the convexity of logh, we can form a
first-order lower bound FQX;~�� of FQX

:

FQX
� RQX

þ log ~h �; h��iQX
; ~��

� �
� FQX;~�� : ð12Þ

Theorem 1. For the conjugate-exponential family, the VBEM algorithm

maximizes the first-order lower bound FQX;~�� , applying the following

two steps:

. VBE Step: fix ~�� and find Qxxi  arg maxQxxi
FQX;~�� ,

. VBM Step: fix QX and find ~��  arg max~�� FQX;~�� .

(The proof is given in Appendix A.)

From Theorem 1, we can find that the VBEM algorithm is
essentially an Expectation-Maximization algorithm [22], a standard
method for maximum likelihood parameter estimation, at the level

of posterior hyperparameters. Therefore, the VBEM algorithm can
have the following problems: First, maximizing over the posterior
hyperparameters, the VBEM algorithm can fall into spurious local
maxima and suffer from overfitting the posterior hyperparameters.

Second, fixing the posterior hyperparameters in the VBE step
prevents the latent variables over samples from interacting with
each other, which can make the algorithm ignore some correlations
as well as converge slowly.

Integrating out the model parameters, LSVB does not involve
the problems of VBEM above, but, in practice, it requires the
difficult expectation of the nonlinear function logh to be

approximated. For easy and wide applicability, we next introduce
a new VB approximate inference method as a practical imple-
mentation of LSVB.

3.2 First-Order LSVB

Generally, the difficult expectation hloghð�; ��ÞiQX
under a distribu-

tion QX can be approximated by replacing the nonlinear function

logh with the first-order (linear) approximate log ~h at ~�� ¼ h��iQX
,

which reduces to

loghð�; ��Þh iQX
� logh �; h��iQX

� �
: ð13Þ

This standard approximation for the difficult expectation is quite

simple as neither the gradient nor the Hessian of logh is required
and it can be directly incorporated in LSVB.

Incorporating hloghð�; ��Þi�Qxxi
� loghð�; h��i�Qxxi

Þ in (10) makes

the first-order approximate Qxxi to be in the form of

Qxxi ðxxiÞ / fðyyi; xxiÞh �;uiðyyi; xxiÞ þ h��:ii�Qxxi

� �
; ð14Þ

where ��:i ¼
PN

i0¼1; 6¼i ui0 ðyyi0 ; xxi0 Þ þ ���. We use the notation :i for
excluding the ith sample. We can iteratively update the first-order

approximate Qxxi in (14) instead of the exact Qxxi in (10). We call this
approximate iterative procedure to infer the distribution over the
latent variables FoLSVB algorithm. The FoLSVB algorithm has
some advantages over the VBEM algorithm and requires the same

computational complexity. First, the FoLSVB algorithm directly
approximates the distribution over the latent variables obtained at
the tighter lower bound FQX

than FQX;~�� of VBEM. This means that
it can find a better distribution over the latent variables than the

VBEM algorithm. Second, the FoLSVB algorithm can alleviate the
problem of overfitting the posterior hyperparameters since no
maximization over the posterior hyperparameters is associated
with it. Third, direct interactions among the latent variables over

samples can make the FoLSVB algorithm capture more correlations
and converge faster than the VBEM algorithm. A weakness of the
FoLSVB algorithm is a lack of theoretical convergence guarantees,
but it turns out that it converges very well in practice.

The FoLSVB algorithm gives an estimate of the distribution over
the latent variables, but, in contrast to the VBEM algorithm, does not
explicitly give an estimate of the model evidence. However, in the

FoLSVB framework, the optimal lower bound FQX
can be directly

approximated by incorporating hloghð�; ��ÞiQX
� loghð�; h��iQX

Þ
with QX estimated by the FoLSVB algorithm such as

FQX
� RQX

þ logh �; h��iQX

� �
� eFQX

: ð15Þ

Since the first-order lower boundFQX;~�� of VBEM becomes tight after
the VBM step, it reduces to the same form of eFQX

, that is,eFQX
¼ max~�� FQX;~�� . Therefore, both FoLSVB and VBEM estimate

the log evidence by the same form of eFQX
but use different estimates

of QX to do so. Note that, in the FoLSVB framework, we estimateeFQX
at the last stage after estimating QX by the FoLSVB algorithm

rather than explicitly maximizing eFQX
. This means that, in

principle, the VBEM algorithm directly maximizing eFQX
can find

a tighter lower bound than FoLSVB at the global maximum.
However, we will see that, in practice, the VBEM algorithm is
fraught with local maxima, which lead to a looser lower bound
than FoLSVB.

Recently, the CV approximation was proposed for specific
Dirichlet-Multinomial models called Latent Dirichlet Allocation
[20] and Hierarchical Dirichlet Process [21]. Our LSVB framework
here generalizes their CV approximation to a more general class of

conjugate-exponential models. Especially, it can be shown that
their practical CV approximation for Dirichlet-Multinomial models
that incorporates Gaussian approximation technique is a special
case of the second-order extension of FoLSVB in which the first-

order approximation of logh in FoLSVB is replaced by the second-
order approximation. The proof is straightforward but is long, so
we will not give it here.

4 MIXTURE OF GAUSSIANS

Finite mixture [23], [24] is a latent variable model which provides a

natural framework for cluster analysis and density estimation of an
unknown distribution. For a finite mixture, the number of mixture
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components, K, represents the model M. Also, it is convenient to

use a K-dimensional indicator variable to represent the latent

variables such as xxi ¼ ðxi1; . . . ; xiKÞ with only a single element

taking on the value one and all other elements being zero.
We consider here the mixture of Gaussians (MoG), a standard

mixture model for continuous observed data that has Gaussian

densities as its mixture components. Consider a D-dimensional

continuous data yyi. For MoG, the joint distribution P ðyyi; xxij��Þ given

model parameters �� ¼ f�k; ��k; ��kg
K
k¼1 can be written as

P ðyyi; xxij��Þ ¼
YK
k¼1

�kNðyyij��k; ��kÞ½ 	xik ; ð16Þ

where the mixing coefficient �k satisfies 0 
 �k 
 1 andPK
k¼1 �k ¼ 1. The standard Gaussian density Nð�j��k; ��kÞ with mean

vector ��k and precision matrix ��k represents the kth mixture

component. The Dirichlet(D) prior on �� ¼ ð�1; . . . ; �KÞ and the

Normal(N)-Wishart(W) prior on ð��k; ��kÞ constitute a conjugate

prior over the model parameters of MoG: given prior hyperpara-

meters ’’� ¼ f	�k; 
�k ; r�k; ���k; BB�kg
K
k¼1,

P ð��j’’�Þ ¼ Dð��j		�Þ
YK
k¼1

N ��kj���k; 
�k ��k
� �

W ��kjr�k; BB�k
� �

; ð17Þ

where 		� ¼ ð	�1; . . . ; 	�KÞ. The forms of standard distributions in

(17) are given in Appendix B. Also, the normalizing function h can

be written in the form of

hð’’�Þ ¼ 2
DK

2 �
DðDþ1ÞK

4

�
PK

k0¼1 	
�
k0

� �YK
k¼1

�ð	�kÞ
QD

l¼1 � r�k þ 1�l
2

� �
ð
�k Þ

D
2 BB�k
�� ��rk� ; ð18Þ

where �ð�Þ denotes the standard gamma function.

4.1 FoLSVB

For MoG, the first-order approximate Qxxi in (14) can be simplified

in the form of weighted Student distributions with the hyperpara-

meters ~’’:i ¼ f~	:ik ; ~
:ik ; ~r
:i
k ;

~��:ik ;
~BB:ik g

K
k¼1:

Qxxi ðxik ¼ 1Þ � �ik / ~	:ik S yyi
��~��:ik ; ~�:ik ; 2~r:ik �Dþ 1

� �
ð19Þ

with ~�:ik ¼
ð~r:i
k
�D2þ1

2Þ~
:ik
~
:i
k
þ1

ð~BB:ik Þ
�1, where S denotes the standard

Student distribution (see Appendix B). The hyperparameter ~’’:i

excluding the ith sample is given by

~	:ik ¼	�k þ n:ik
� �

; ~
:ik ¼ 
�k þ n:ik
� �

;

~r:ik ¼ r�k þ
1

2
n:ik
� �

; ~��:ik ¼ ~
:ik
� ��1


�k ��
�
k þ 

:ik

� �� �
;

~BB:ik ¼BB�k þ
1

2

�k ��

�
k��
�
k

T � ~
:ik
~��:ik

~��:ik
T þ WW:i

k

� �� �
;

ð20Þ

where hn:ik i ¼
PN

i0¼1; 6¼i �i0k, h

:ik i ¼
PN

i0¼1;6¼i �i0kyyi0 , and hWW:i
k i ¼PN

i0¼1; 6¼i �i0kyyi0yy
>
i0 . Note that �ik should be properly normalized to

be
PK

k¼1 �ik ¼ 1. Since there is no explicit maximization over the

posterior hyperparameters, the FoLSVB algorithm is quite simple

in that only Qxxi in (19) are repeatedly updated one by one, while

the others are fixed.
In practice, the hyperparameters ~’’:i at each updating can be

efficiently computed by taking out terms associated with the

ith sample from ~’’ ¼ f~	k; ~
k; ~rk; ~��k; ~BBkgKk¼1 given by

~	k ¼	�k þ hnki; ~
k ¼ 
�k þ hnki;

~rk ¼ r�k þ
1

2
hnki; ~��k ¼ ð~
kÞ�1 
�k ��

�
k þ h

ki

� �
;

~BBk ¼BB�k þ
1

2

�k ��

�
k��
�
k

T � ~
k~��k~��k
T þ hWWki

� �
;

ð21Þ

where hnki ¼
PN

i¼1 �ik, h

ki ¼
PN

i¼1 �ikyyi, and hWWki ¼
PN

i¼1 �ikyyiyy
>
i .

In Table 1, we present this efficient FoLSVB algorithm for

MoG. Also, we can efficiently compute the inverse of ~BB:ik
required in ~�:ik by using one-rank matrix inverse formula

such that ð~BB:ik Þ
�1 ¼ ~BB�1

k � C�1
k

~BB�1
k ðyyi � ~��kÞðyyi � ~��kÞ> ~BB�1

k , where

Ck ¼ ðyyi � ~��kÞ> ~BB�1
k ðyyi � ~��kÞ � 2ð~
k��ikÞ

~
k�ik
. The cost for these efficient

computations is only small additional storages for ~’’ and ~BB�1
k to

always keep them up-to-date after updating Qxxi .
After converging, the first-order lower bound estimates the log

evidence in the form of

eFQX
¼ �ND

2
log 2�� loghð’’�Þ

þ loghð~’’Þ �
XN
i¼1

XK
k¼1

�ik log �ik;
ð22Þ

where the posterior hyperparameters ~’’ incorporating all samples

are given in (21).

4.2 Numerical Results

We used the common prior hyperparameters for all components

with 	�k ¼ 1, r�k ¼ 1þ 0:5D, and ���k ¼ sample mean. Especially, BB�k
was set for h��ki under the prior to be ð0:3�maxÞ�2IID and then 
�k was

set for the precision of ��k to be ð10�maxÞ�2IID, where �max denotes the

maximum standard deviation of data set among dimensions. These

prior hyperparameters represent that each component covers a

subregion of data set but places at a fairly uncertain location in the

range of data set. We note that a prior should not depend on a data

set in principle, but it is useful to set the prior over the model

paratmeters using a data set in practice when we do not have any

information about the model parameters a priori.
Both the FoLSVB and the VBEM algorithms were started with

the same initial f�ikg estimated by �ik / Nðyyijcck; ð0:3�maxÞ�2IIDÞ
with the center cck of the kth cluster found by k-means algorithm.

Also, we considered the algorithms to be strictly converged when

the successive changes in all f�ikg were very small such that
1
NK

PN
i¼1

PK
k¼1 j�

ðtÞ
ik � �

ðt�1Þ
ik j < 10�9, where t denotes iterations. A

single iteration means that all f�ikg are updated once for the

FoLSVB algorithm and the VBE and VBM steps are performed

once for the VBEM algorithm.

4.2.1 Synthetic Data Sets

To see the basic properties of the algorithms, we first used a 1D toy

data set of 20 data points shown in Fig. 1a, which were generated
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from the mixture of two Gaussians with �� ¼ ð0:5; 0:5Þ, �1 ¼ 1,
�2 ¼ �1, and �1 ¼ �2 ¼ 5. For this small data set, we can perform
the exact Bayesian inference and the exact LSVB algorithm. Fig. 1
compares the results between approximate inference and true
inference performed on the model with K ¼ 2. Obviously, LSVB
achieves the best estimates of the model evidence as well as the
distribution over the latent variables. For this data set, the VBEM
algorithm is considered to be finding a good solution without
falling into a local maximum, so it finds a tighter lower bound than
FoLSVB (Fig. 1b). Directly approximating the distribution over the
latent variables of LSVB, FoLSVB, however, gives better distribu-
tion over the latent variables than VBEM in terms of KL divergence
to the true distribution, showing a very accurate approximation of
LSVB (Fig. 1c).

In order to see the convergence speed of the algorithms, we next
prepared a well-clustered data set of 600 data points, shown in
Fig. 2a, which were generated from the mixture of three Gaussians
with �� ¼ ð1=3; 1=3; 1=3Þ, ��1 ¼ ð0; 1Þ, ��2 ¼ ð0; 0Þ, ��3 ¼ ð0;�1Þ, and
��k ¼ diagð1:3; 20Þ for k ¼ 1; . . . ; 3. Fig. 2 shows the results
performed on the model with K ¼ 3. Starting from the same
initial f�ikg by k-means algorithm, the FoLSVB algorithm converges
very well and much faster than the VBEM algorithm, while both
algorithms find almost the same solution. In Fig. 2c, FoLSVB meets
the convergence threshold, 10�9, at 124 iterations, but VBEM
requires 262 iterations to do so.

4.2.2 Real-World Data Sets

Next, we considered six real-world data sets in different dimen-
sions, called Enzyme, Old Faithful, Iris, Glass, Wine, and Ionosphere,
which have often been used to demonstrate inference algorithms in
the pattern recognition, statistics, and machine learning literatures
[6], [24], [25], [26]. The Ionosphere data were originally 34D, but the
dimension was reduced to 26 by using the standard Principle
Component Analysis (PCA) dimensionality reduction technique [6].
We further standardized these data sets along each dimension,
except for the 1D Enzyme data set, so that mean and variance

become zero and one, respectively. The prior hyperparameters were
set by using the standardized data set. The results are shown in
Fig. 3. For low-dimensional data sets up to Iris ðD 
 3Þ, both FoLSVB
and VBEM find the same model as the best while VBEM gives a
similar or tighter lower bound for the models with more
components than the best model. However, for high-dimensional
data sets with D � 9, FoLSVB finds a significantly tighter lower
bound than VBEM. Furthermore, the variance over 30 trials for
FoLSVB is smaller than VBEM, showing a lower sensitivity to initial
conditions. We can see that VBEM is very vulnerable to the high-
dimensional data sets. In most cases, VBEM falls into a different
spurious local maximum, depending on initial conditions.

To compare the convergence speed, we performed both the

FoLSVB and the VBEM algorithms 50 times with different initial

f�ikg for the cases where they found a similar model evidence in

Fig. 3. Differently from the previous examples, we initialized f�ikg
by randomly choosing cck among the data set rather than estimating

by k-means algorithm. Next, we chose trials over these 50 trials

such that both algorithms found almost the same model evidence

as well as the posterior over the model parameters. Based on final

chosen trials, the numbers of iterations reached at the convergence

threshold, 10�9, are shown in Table 2. In FoLSVB, direct

interactions among the latent variables over samples can make

the information propagate more rapidly than VBEM so we can see

that FoLSVB converges much faster than VBEM when they find a

near same solution.
Addressing the problem of data dimension, we last used a

64D numeral digit “1” data set of 500 data points, which is a part of

optical handwritten digit data sets in the UCI data repository [25].

We reduced the dimension by 5, 10, 20, and 30 by the PCA

technique as before. The results are shown in Fig. 4. The more the

dimension of data increases, the worse the local maxima problem

becomes with VBEM. In all cases with D ¼ 10, 20, and 30, FoLSVB

gives a much tighter lower bound than VBEM.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 12, DECEMBER 2008 5

Fig. 1. Results based on 20 trials with different random data sets of 20 data points,
generated from the mixture of two Gaussians. All inferences were performed on
the model with K ¼ 2. (a) Sampling distribution and a single case of random data
set. (b) Gap of the lower bound from the true log model evidence, i.e., logP ðY Þ �
FQX

for LSVB and logP ðY Þ � eFQX
for FoLSVB and VBEM. (c) KL divergence of

the true distribution over the latent variables from the approximate distribution.

Fig. 2. Demonstration of the convergence speed, based on a synthetic data set of

600 data points generated from the mixture of three Gaussians. Algorithms were

performed on the model with K ¼ 3. (a) Final Gaussian components by both the

FoLSVB and the VBEM algorithms. (b) Average intermediate eFQX
at each

iteration, annotated by one standard derivation, over 20 trials with different initial

f�ikg by k-means algorithm. (c) Successive changes in QX in terms of
1
NK

PN
i¼1

PK
k¼1 j�

ðtÞ
ik � �

ðt�1Þ
ik j on a single trial.

Fig. 3. Lower bounds, eFQX
, on the real-world data sets. The results are averaged and annotated by one standard deviation over 30 trials with different initial f�ikg by

k-means algorithm.



5 MIXTURE OF BERNOULLIS

We considered MoG as a finite mixture model for continuous

observed data. Next, we give another example of the finite mixture

model for discrete binary observed data, which has Bernoulli

distributions as its mixture components [23]. Suppose an i.i.d. data

set Y ¼ fyyigNi¼1 of D-dimensional binary data point yyi ¼ ðyijÞDj¼1

with yij 2 f0; 1g. The mixture of Bernoullis (MoB) has the joint

distribution of complete data point governed by mixing coeffi-

cients �k and mean parameters ��k ¼ ð�kjÞ
D
j¼1 of the kth Bernoulli

component: Given model parameters �� ¼ f�k; ��kg
K
k¼1,

P ðyyi; xxij��Þ ¼
YK
k¼1

�k
YD
j¼1

Bernðyijj�kjÞ
" #xik

; ð23Þ

where Bernðyijj�kjÞ � �yijkj ð1� �kjÞ
1�yij denotes the standard

Bernoulli distribution. The Dirichlet distribution and Beta

distributions (see Appendix B) give a conjugate prior over the

model parameters of MoB: Given prior hyperparameters

’’� ¼ f	�k; ð��kj;ð1ÞÞ
D
j¼1; ð��kj;ð2ÞÞ

D
j¼1g

K
k¼1,

P ð��j’’�Þ ¼ Dð��j		�Þ
YK
k¼1

YD
j¼1

Beta �kjj��kj;ð1Þ; ��kj;ð2Þ
� �

ð24Þ

and the normalizing function is given by

hð’’�Þ ¼ 1

�
PK

k0¼1 	
�
k0

� �YK
k¼1

� 	�k
� �YD

j¼1

� ��kj;ð1Þ

� �
� ��kj;ð2Þ

� �
� ��kj;ð1Þ þ ��kj;ð2Þ
� � :

5.1 FoLSVB

The FoLSVB algorithm iteratively updates f�ikgKk¼1 given all of the

others in the form of weighted Bernoulli distributions with

~’’:i ¼ f~	:ik ; ð ~�:ikj;ð1ÞÞ
D
j¼1; ð ~�:ikj;ð2ÞÞ

D
j¼1g

K
k¼1:

�ik / ~	:ik
YD
j¼1

Bern yijj ~�:ikj;ð1Þ= ~�:ikj;ð1Þ þ ~�:ikj;ð2Þ

� �� �
; ð25Þ

where ~	:ik ¼ 	�k þ hn:ik i, ~�:ikj;ð1Þ ¼ ��kj;ð1Þ þ h
:ikji, and ~�:ikj;ð2Þ ¼ ��kj;ð2Þ þ
hn:ik i � h
:ikj i with hn:ik i ¼

PN
i0¼1; 6¼i �i0k and h
:ikj i ¼

PN
i0¼1; 6¼i �i0kyi0j.

After converging, the log model evidence is estimated by eFQX
¼

� loghð’’�Þ þ loghð~’’Þ �
PN

i¼1

PK
k¼1 �ik log �ik with the posterior

hyperparameters ~’’ incorporating all samples.

5.2 Numerical Results

In order to see different behaviors of the algorithms, we
prepared a synthetic data set of 1,000 data points, each of
which has 500 dimensions. This data set was generated from
the mixture of four Bernoulli distributions having equal mixing
coefficients �� ¼ ð0:25; 0:25; 0:25; 0:25Þ and the component’s mean
parameters ��k ¼ ð�kjÞ

500
j¼1, each of which is randomly drawn

from �kj 2 f0:3; 0:7g. Especially, ��k was restricted to having
50 distinct elements from ��k�1. Fig. 5a visualizes the data set onto
2D space by using the PCA dimensionality reduction technique, in
which the data are well clustered by four clusters.

We set all prior hyperparameters to one such as 	�k ¼ 1,
��kj;ð1Þ ¼ 1, and ��kj;ð2Þ ¼ 1. Fig. 5 shows the results based on 30 trials
with different random initial f�ikg. Both FoLSVB and VBEM find a
correct model with K ¼ 4. However, in all cases, VBEM not only
gives a looser lower bound than FoLSVB (Fig. 5b) but also requires
more iterations to converge (Fig. 5c). In contrast to VBEM, FoLSVB
shows a very low sensitivity to the initial conditions, showing an
almost zero variance over 30 trials. Table 3 shows the component’s
responsibilities to explain the data set on the model with K ¼ 8.
Especially for this data set, FoLSVB uses only four mixture
components to explain the four data clusters, but VBEM tends to fit
all mixture components to the data points.

6 CONCLUSION

In this paper, we have introduced an LSVB approximate inference

framework for the conjugate-exponential family. LSVB does not
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TABLE 2
Number of Iterations

Fig. 4. Demonstration of the sensitivity to data dimension, based on the numeral digit “1” data set of 500 data points, by reducing the original 64-dimensions to be 5, 10,

20, and 30 by the PCA dimensionality reduction technique. The first figure shows the data set along with three dominant principle axes. The next four figures show the

lower bounds, eFQX
, as the dimension of data increases, where the results are averaged and annotated by one standard deviation over 30 trials with different initial f�ikg

by k-means algorithm.

Fig. 5. Results on the synthetic data set of 1,000 500D binary data points, drawn

from the mixture of four Bernoulli distributions. (a) Data set along with two

dominant principle axes. (b) Lower bounds, eFQX
. (c) Number of iterations to meet

the convergence criterion, 1
NK

PN
i¼1

PK
k¼1 j�

ðtÞ
ik � �

ðt�1Þ
ik j < 10�9. The results are

averaged and annotated by one standard deviation over 30 trials with different

random initial f�ikg.



involve overfitting the posterior hyperparameters, a problem in

VBEM, as it integrates out the model parameters. We showed that

the LSVB approach gives better estimates of the model evidence as

well as the distribution over the latent variables than the VBEM

approach.

However, the exact implementation of LSVB is hard to do in

general and we therefore presented the practical FoLSVB approx-

imation. Through numerical results on the MoG and the MoB, we

confirmed the useful behaviors of the proposed FoLSVB over the

standard VBEM with the same computational cost such as faster

convergence, lower sensitivity to initial conditions, and better

performance with high-dimensional data. We never saw a

nonconverging case with the FoLSVB algorithm in all of our

examples. We conclude that our method will also be promising for

other latent variable models in the conjugate-exponential family.

APPENDIX A

PROOF OF THEOREM 1

First, setting the functional derivative of FQX;~�� with respect to Qxxi

given ~�� to zero gives the optimal Qxxi ðxxiÞ maximizing FQX;~�� in the

form of Qxxi ðxxiÞ / fðyyi; xxiÞ expfm��ð~��Þ>uiðyyi; xxiÞg. From the defini-

tion m��ð~��Þ � h��ð��ÞiP ð��j�;~��Þ, this reduces to the solution in the VBE

step given in [14]. Next, from the property of the convex function

logh, we have

logh �; h��iQX

� �
¼ log ~h �; h��iQX

; h��iQX

� �
� log ~h �; h��iQX

; ~��
� �

:

Since ~�� is only associated with the term log ~h, it is obvious from the

inequality above that, given QX , the optimal ~�� maximizing FQX;~�� is

given by h��iQX
, which also reduces the solution in the VBM step

given in [14]. tu

APPENDIX B

STANDARD DISTRIBUTIONS

. Dirichlet distribution:

D �� ¼ ð�kÞKk¼1j		 ¼ ð	kÞ
K
k¼1

� �
¼

�
PK

k¼1 	k

� �
QK

k¼1 �ð	kÞ
YK
k¼1

�k
	k�1:

. Gaussian distribution:

Nðyyj��; ��Þ ¼ ð2�Þ�
D
2 j��j

1
2 exp � 1

2
ðyy� ��ÞT��ðyy� ��Þ

	 

:

. Wishart distribution:

Wð��jr; ��Þ ¼ ��DðD�1Þ=4j��jrQD
l¼1 � rþ 1�l

2

� � j��jr�ðDþ1Þ
2 exp �tr½��T��	

� �
:

. Student distribution:

Sðyyj��; ��; rÞ ¼
� rþD

2

� �
j��j1=2

� r
2

� �
ðr�ÞD=2

1þ 1

r
ðyy� ��ÞT��ðyy� ��Þ


 ��ðrþDÞ2

:

. Beta distribution:

Beta �j�ð1Þ; �ð2Þ
� �

¼
� �ð1Þ þ �ð2Þ
� �

� �ð1Þ
� �

� �ð2Þ
� ���ð1Þ�1ð1� �Þ�ð2Þ�1:
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