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Abstract. We introduced a generalised Wishart process (GWP) for
modelling input dependent covariance matrices Σ(x), allowing one to
model input varying correlations and uncertainties between multiple re-
sponse variables. The GWP can naturally scale to thousands of response
variables, as opposed to competing multivariate volatility models which
are typically intractable for greater than 5 response variables. The GWP
can also naturally capture a rich class of covariance dynamics – period-
icity, Brownian motion, smoothness, . . . – through a covariance kernel.

1 Introduction

Modelling covariances between random variables is fundamental in statistics.
For convenience, covariances between multiple responses are usually assumed to
be constant. However, accounting for how these covariances depend on inputs
(e.g. time) can greatly improve statistical inferences. For example, to predict the
expression level of a gene at a particular time, it helps to consider the expression
levels of correlated genes, and how these correlations depend on time.

Modelling of dependent covariances between multiple responses is largely un-
charted territory. The small number of existing models for dependent covariances
are mostly found in the econometrics literature, and are referred to as multivari-
ate volatility models. In econometrics, a good estimate of a time varying covari-
ance matrix Σ(t) = cov[r(t)] for a vector of returns r(t) is useful for estimating
the risk of a particular portfolio. Multivariate volatility models are also used
to understand contagion: the transmission of a financial shock from one entity
to another (Bae et al., 2003). However, it is generally useful – in econometrics,
machine learning, or otherwise – to know input dependent uncertainty, and the
dynamic correlations between multiple entities.

Despite their importance, conventional multivariate volatility models suffer
from tractability issues and a lack of generality. MGARCH (Bollerslev et al.,
1988; Silvennoinen and Teräsvirta, 2009), multivariate stochastic volatility
(Harvey et al., 1994; Asai et al., 2006), and the original Wishart process (Bru,
1991; Gouriéroux et al., 2009), are typically highly parametrised, parameters are
often difficult to interpret or estimate (given the constraint Σ(t) must be posi-
tive definite), are typically intractable for more than 5 response variables, and are
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restricted to Brownian motion or Markovian covariance dynamics
(Silvennoinen and Teräsvirta, 2009; Gouriéroux, 1997; Gouriéroux et al., 2009).

Modelling of dependent covariances is beautifully suited to a Bayesian non-
parametric approach. We introduced the Bayesian nonparametric generalised
Wishart process (GWP) prior (Wilson and Ghahramani, 2010, 2011) over input
dependent matrices Σ(x), where x ∈ X is an arbitrary input variable. The gen-
eralised Wishart process volatility model has the following desirable properties:

1. The GWP is tractable for up to at least 1000× 1000 covariance matrices.
2. The small number of free parameters give information about the underlying

source of volatility, like whether there is periodicity (and if so what the period
would be), and how far into the past one should look for good forecasts.

3. The input variable can be any arbitrary x ∈ X just as easily as it can
represent time (useful for spatially varying dependencies, and for including
covariates like interest rates in time series models).

4. The dynamics of Σ(x) can easily be specified as periodic, smooth, Brownian
motion, etc., through a kernel function.

5. Missing data are handled easily, and there is prior support for any (uncount-
ably infinite) sequence of covariance matrices {Σ(x1), . . . , Σ(xn)}.

2 Construction

The Wishart distribution is a distribution over positive definite matrices. Given
a p × ν matrix A with entries Aij ∼ N (0, 1), and a lower triangular matrix of
constants L, the product LAA�L� has a Wishart distribution:

LAA�L� ∼ Wp(ν, LL
�) . (1)

To turn the Wishart distribution into a generalised Wishart process (in its sim-
plest form), one replaces the Gaussian random variables with Gaussian processes
(Rasmussen and Williams, 2006). We let the matrix A be a function of inputs
x, by filling each entry with a Gaussian process: Aij(x) ∼ GP(0, k). We let

Σ(x) = LA(x)A(x)�L� . (2)

At any given x, the matrix A(x) is a matrix of Gaussian random variables, since
a Gaussian process function evaluated at any input location is simply a Gaussian
random variable. Therefore at any x, Σ(x) has a Wishart marginal distribution.
Σ(x) is a collection of positive definite matrices, indexed by x, and dynamics con-
trolled by the covariance kernel k. Σ(x) has a generalised Wishart process prior,
and we write Σ(x) ∼ GWP(ν, L, k). The parameters are easily interpretable. L
controls the prior expectation of Σ(x) at any x: E[Σ(x)] = νLL�. The greater
ν the greater our confidence in this prior expectation. The covariance kernel
controls how the entries of Σ(x) vary with x: cov(Σij(x), Σij(x

′)) ∝ k(x, x′)2.
A single draw from a GWP prior over 2× 2 covariance matrices is illustrated in
Figure 1. Given vector valued observations r(x) (e.g. a vector of stock returns
indexed by x), we can efficiently infer a posterior over the generalised Wishart
process using Elliptical Slice Sampling (Murray et al., 2010), which is a recent
MCMC technique designed to sample from posteriors with Gaussian priors.
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Fig. 1. A draw from a generalised Wishart process (GWP). Each ellipse is a 2 × 2
covariance matrix indexed by time, which increases from left to right. The rotation in-
dicates the correlation between the two variables, and the axes scale with the diagonals
of the matrix. Like a draw from a Gaussian process is a collection of function values
indexed by time, a draw from a GWP is a collection of matrices indexed by time.

3 Results

We generated a 2 × 2 time varying covariance matrix Σp(t) with periodic com-
ponents, simulating data at 291 time steps from a Gaussian:

y(t) ∼ N (0, Σp(t)) . (3)

Periodicity is especially common to financial and climate data, where daily trends
repeat themselves. For example, the intraday volatility on equity indices and
currency exchanges has a periodic covariance structure. Andersen and Bollerslev
(1997) discuss the lack of – and critical need for – models that account for this pe-
riodicity. With a GWP, we can simply use a periodic kernel function, whereas in
previous Wishart process volatility models (Bru, 1991; Gouriéroux et al., 2009),
we are stuck with a Markovian covariance structure. Figure 2 shows the results.
We also performed step ahead forecasts of Σ(t) on financial data with promising
results, elucidated in Wilson and Ghahramani (2010, 2011). The recent Gaus-
sian process regression network (GPRN) (Wilson et al., 2011, 2012) uses a GWP
noise model, and extends the multi-task Gaussian process framework to handle
input dependent signal and noise correlations between multiple responses. The
GPRN has strong predictive performance and scalability on many real datasets,
including a gene expression dataset with 1000 response variables.

Fig. 2. Reconstructing the historical Σp(t) for the periodic data set. We show the
truth (green), and GWP (blue), WP (dashed magenta), and MGARCH (thin red)
predictions. a) and b) are the diagonal elements of Σp(t), c) is the covariance.
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