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Abstract 

Based on computational principles, with as yet no direct experi­
mental validation, it has been proposed that the central nervous 
system (CNS) uses an internal model to simulate the dynamic be­
havior of the motor system in planning, control and learning (Sut­
ton and Barto, 1981; Ito, 1984; Kawato et aI., 1987; Jordan and 
Rumelhart, 1992; Miall et aI., 1993). We present experimental re­
sults and simulations based on a novel approach that investigates 
the temporal propagation of errors in the sensorimotor integration 
process. Our results provide direct support for the existence of an 
internal model. 

1 Introduction 

The notion of an internal model, a system which mimics the behavior of a natural 
process, has emerged as an important theoretical concept in motor control (Jordan, 
1995). There are two varieties of internal models-"forward models," which mimic 
the causal flow of a process by predicting its next state given the current state 
and the motor command, and "inverse models," which are anticausal, estimating 
the motor command that causes a particular state transition. Forward models­
the focus of this article-have been been shown to be of potential use for solving 
four fundamental problems in computational motor control. First, the delays in 
most sensorimotor loops are large, making feedback control infeasible for rapid 
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movements. By using a forward model for internal feedback the outcome of an action 
can be estimated and used before sensory feedback is available (Ito, 1984; Miall 
et al., 1993). Second, a forward model is a key ingredient in a system that uses motor 
outflow ("efference copy") to anticipate and cancel the reafferent sensory effects of 
self-movement (Gallistel, 1980; Robinson et al., 1986). Third, a forward model can 
be used to transform errors between the desired and actual sensory outcome of a 
movement into the corresponding errors in the motor command, thereby providing 
appropriate signals for motor learning (Jordan and Rumelhart, 1992). Similarly 
by predicting the sensory outcome of the action, without actually performing it, a 
forward model can be used in mental practice to learn to select between possible 
actions (Sutton and Barto, 1981). Finally, a forward model can be used for state 
estimation in which the model's prediction of the next state is combined with a 
reafferent sensory correction (Goodwin and Sin, 1984). Although shown to be of 
theoretical importance, the existence and use of an internal forward model in the 
CNS is still a major topic of debate. 

When a subject moves his arm in the dark, he is able to estimate the visual loca­
tion of his hand with some degree of accuracy. Observer models from engineering 
formalize the sources of information which the CNS could use to construct this 
estimate (Figure 1). This framework consists of a state estimation process (the 
observer) which is able to monitor both the inputs and outputs of the system. In 
particular, for the arm, the inputs are motor commands and the output is sensory 
feedback (e.g. vision and proprioception). There are three basic methods whereby 
the observer can estimate the current state (e.g. position and velocity) of the hand 
form these sources: It can make use of sensory inflow, it can make use of integrated 
motor outflow (dead reckoning), or it can combine these two sources of information 
via the use of a forward model. 
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Figure 1. Observer model of state estimation . 
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2 State Estimation Experiment 

To test between these possibilities, we carried out an experiment in which subjects 
made arm movements in the dark. The full details of the experiment are described 
in the Appendix. Three experimental conditions were studied, involving the use 
of null, assistive and resistive force fields. The subjects' internal estimate of hand 
location was assessed by asking them to localize visually the position of their hand at 
the end of the movement. The bias of this location estimate, plotted as a function 
of movement duration shows a consistent overestimation of the distance moved 
(Figure 2). This bias shows two distinct phases as a function of movement duration, 
an initial increase reaching a peak of 0.9 cm after one second followed by a sharp 
transition to a region of gradual decline. The variance of the estimate also shows an 
initial increase during the first second of movement after which it plateaus at about 
2 cm2 . External forces had distinct effects on the bias and variance propagation. 
Whereas the bias was increased by the assistive force and decreased by the resistive 
force (p < 0.05), the variance was unaffected. 
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Figure 2. The propagation of the (a) bias and (b) variance of the state 
estimate is shown, with standard error lines, against movement duration. 
The differential effects on (c) bias and (d) variance of the external force, 
assistive (dotted lines) and resistive (solid lines), are also shown relative 
to zero (dashed line). A positive bias represents an overestimation of 
the distance moved. 
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3 Observer Model Simulation 

These experimental results can be fully accounted for only if we assume that the mo­
tor control system integrates the efferent outflow and the reafferent sensory inflow. 
To establish this conclusion we have developed an explicit model of the sensorimotor 
integration process which contains as special cases all three of the methods referred 
to above. The model-a Kalman filter (Kalman and Bucy, 1961)-is a linear dy­
namical system that produces an estimate of the location of the hand by monitoring 
both the motor outflow and the feedback as sensed, in the absence of vision, solely 
by proprioception. Based on these sources of information the model estimates the 
arm's state, integrating sensory and motor signals to reduce the overall uncertainty 
in its estimate. 

Representing the state of the hand at time t as x(t) (a 2 x 1 vector of position 
and velocity) acted on by a force u = [Uint, Uext]T, combining both internal motor 
commands and external forces, the system dynamic equations can be written in the 
general form of 

x(t) = Ax(t) + Bu(t) + w(t), (1) 

where A and B are matrices with appropriate dimension. The vector w(t) represents 
the process of white noise with an associated covariance matrix given by Q = 
E[w(t)w(t)T]. The system has an observable output y(t) which is linked to the 
actual hidden state x(t) by 

y(t) = Cx(t) + v(t), (2) 

where C is a matrix with appropriate dimension and the vector v(t) represents the 
output white noise which has the associated covariance matrix R = E[v(t)v(t)T]. In 
our paradigm, y(t) represents the proprioceptive signals (e.g. from muscle spindles 
and joint receptors). 

In particular, for the hand we approximate the system dynamics by a damped point 
mass moving in one dimension acted on by a force u(t). Equation 1 becomes 

(3) 

where the hand has mass m and damping coefficient {3. We assume that this system 
is fully observable and choose C to be the identity matrix. The parameters in 
the simulation, {3 = 3.9 N ,s/m, m = 4 kg and Uint = 1.5 N were chosen based 
on the mass of the arm and the observed relationship between time and distance 
traveled. The external force Uext was set to -0.3, 0 and 0.3 N for the resistive, null 
and assistive conditions respectively. To end the movement the sign of the motor 
command Uint was reversed until the arm was stationary. Noise covariance matrices 
of Q = 9.5 X 10-5 [ and R = 3.3 x 1O-4[ were used representing a standard deviation 
of 1.0 cm for the position output noise and 1.8 cm s-l for the position component 
of the state noise. 

At time t = 0 the subject is given full view of his arm and, therefore, starts with an 
estimate X(O) = x(O) with zero bias and variance-we assume that vision calibrates 
the system. At this time the light is extinguished and the subject must rely on 
the inputs and outputs to estimate the system's state. The Kalman filter, using a 
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model of the system A, Band C, provides an optimal linear estimator of the state 
given by 

i(t) = Ax(t) + Bu(t) + K(t)[y(t) - Cx(t)] 
, .I , I 

'V' V 

forward model sensory correction 

where K(t) is the recursively updated gain matrix. The model is, therefore, a com­
bination of two processes which together contribute to the state estimate. The first 
process uses the current state estimate and motor command to predict the next 
state by simulating the movement dynamics with a forward model. The second 
process uses the difference between actual and predicted reafferent sensory feed­
back to correct the state estimate resulting from the forward model. The relative 
contributions of the internal simulation and sensory correction processes to the final 
estimate are modulated by the Kalman gain matrix K(t) so as to provide optimal 
state estimates. We used this state update equation to model the bias and variance 
propagation and the effects of the external force. 

By making particular choices for the parameters of the Kalman filter, we are able 
to simulate dead reckoning, sensory inflow-based estimation, and forward model­
based sensorimotor integration. Moreover, to accommodate the observation that 
subjects generally tend to overestimate the distance that their arm has moved, we 
set the gain that couples force to state estimates to a value that is larger than 

its veridical value; B = ~ [1~4 1~6] while both A and C accurately reflected 

the true system. This is consistent with the independent data that subjects tend 
to under-reach in pointing tasks suggesting an overestimation of distance traveled 
(Soechting and Flanders, 1989). 

Simulations of the Kalman filter demonstrate the two distinct phases of bias prop­
agation observed (Figure 3). By overestimating the force acting on the arm the 
forward model overestimates the distance traveled, an integrative process eventu­
ally balanced by the sensory correction. The model also captures the differential 
effects on bias of the externally imposed forces. By overestimating an increased 
force under the assistive condition, the bias in the forward model accrues more 
rapidly and is balanced by the sensory feedback at a higher level. The converse 
applies to the resistive force. In accord with the experimental results the model 
predicts no change in variance under the two force conditions. 

4 Discussion 
We have shd-ttn that the Kalman filter is able to reproduce the propagation of the 
bias and variance of estimated position of the hand as a function of both movement 
duration and external forces . The Kalman filter also simulates the interesting and 
novel empirical result that while the variance asymptotes, the bias peaks after about 
one second and then gradually declines. This behavior is a consequence pf a trade 
off between the inaccuracies accumulating in the internal simulation of the arm's 
dynamics and the feedback of actual sensory information. Simple models which do 
not trade off the contributions of a forward model with sensory feedback, such as 
those based purely on sensory inflow or on motor outflow, are unable to reproduce 
the observed pattern of bias and variance propagation. The ability of the Kalman 
filter to parsimoniously model our data suggests that the processes embodied in the 
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Figure 3. Simulated bias and variance propagation, in the same rep-
resentation and scale as Figure 2, from a Kalman filter model of the 
sensorimotor integration process. 

filter, namely internal simulation through a forward model together with sensory 
correction, are likely to be embodied in the sensorimotor integration process. We 
feel that the results of this state estimation study provide strong evidence that a 
forward model is used by the CNS in maintaining its estimate of the hand location. 
Furthermore, the state estimation paradigm provides a framework to study the sen­
sorimotor integration process in both normal and patient populations. For example, 
the specific predictions of the sensorimotor integration model can be tested in both 
patients with sensory neuropathies, who lack proprioceptive reafference, and in pa­
tients with damage to the cerebellum, a proposed site for the forward model (Miall 
et al., 1993). 
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Appendix: Experimental Paradigm 

To investigate the way in which errors in the state estimate change over time and 
with external forces we used a setup (Figure 4) consisting of a combination of planar 
virtual visual feedback with a two degree of freedom torque motor driven manip­
ulandum (Faye, 1986). The subject held a planar manipulandum on which his 
thumb was mounted. The manipulandum was used both to accurately measure the 
position of the subject's thumb and also, using the torque motors, to constrain the 
hand to move along a line across the subject's body. A projector was used to create 
virtual images in the plane of the movement by projecting a computer VGA screen 
onto a horizontal rear projection screen suspended above the manipulandum. A 
horizontal semi-silvered mirror was placed midway between the screen and manip­
ulandum. The subject viewed the reflected image of the rear projection screen by 
looking down at the mirror; all projected images, therefore, appeared to be in the 
plane of the thumb, independent of head position. 
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Figure 4. Experimental Setup 

Eight subjects participated and performed 300 trials each. Each trial started with 
the subject visually placing his thumb at a target square projected randomly on 
the movement line. The arm was then illuminated for two seconds, thereby allow­
ing the subject to perceive visually his initial arm configuration. The light was 
then extinguished leaving just the initial target. The subject was then required to 
move his hand either to the left or right, as indicated by an arrow in the initial 
starting square. This movement was made in the absence of visual feedback of arm 
configuration. The subject was instructed to move until he heard a tone at which 
point he stopped. The timing of the tone was controlled to produce a uniform dis­
tribution of path lengths from 0-30 cm. During this movement the subject either 
moved in a randomly selected null or constant assistive or resistive 0.3N force field 
generated by the torque motors. Although it is not possible to directly probe a 
subject's internal representation of the state of his arm, we can examine a func­
tion of this state-the estimated visual location of the thumb. (The relationship 
between the state of the arm and the visual coordinates of the hand is known as 
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the kinematic transformation; Craig, 1986.) Therefore, once at rest the subject 
indicated the visual estimate of his unseen thumb position using a trackball, held 
in his other hand, to move a cursor projected in the plane of the thumb along the 
movement line. The discrepancy between the actual and visual estimate of thumb 
location was recorded as a measure of the state estimation error. The bias and 
variance propagation of the state estimate was analyzed as a function of movement 
duration and external forces. A generalized additive model (Hastie and Tibshirani, 
1990) with smoothing splines (five effective degrees of freedom) was fit to the bias 
and variance as a function of final position, movement duration and the interaction 
of the two forces with movement duration, simultaneously for main effects and for 
each subject. This procedure factors out the additive effects specific to each subject 
and, through the final position factor, the position-dependent inaccuracies in the 
kinematic transformation. 
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