Interpretability

Methods and techniques for making machine learning models understandable to humans, providing insights into how decisions are made.


Discovering interpretable representations for both deep generative and discriminative models

Tameem Adel, Zoubin Ghahramani, Adrian Weller, July 2018. (In 35th International Conference on Machine Learning). Stockholm Sweden.

Abstract URL

Interpretability of representations in both deep generative and discriminative models is highly desirable. Current methods jointly optimize an objective combining accuracy and interpretability. However, this may reduce accuracy, and is not applicable to already trained models. We propose two interpretability frameworks. First, we provide an interpretable lens for an existing model. We use a generative model which takes as input the representation in an existing (generative or discriminative) model, weakly supervised by limited side information. Applying a flexible and invertible transformation to the input leads to an interpretable representation with no loss in accuracy. We extend the approach using an active learning strategy to choose the most useful side information to obtain, allowing a human to guide what “interpretable” means. Our second framework relies on joint optimization for a representation which is both maximally informative about the side information and maximally compressive about the non-interpretable data factors. This leads to a novel perspective on the relationship between compression and regularization. We also propose a new interpretability evaluation metric based on our framework. Empirically, we achieve state-of-the-art results on three datasets using the two proposed algorithms.

Getting a CLUE: A Method for Explaining Uncertainty Estimates

Javier Antorán, Umang Bhatt, Tameem Adel, Adrian Weller, José Miguel Hernández-Lobato, April 2021. (In 9th International Conference on Learning Representations).

Abstract URL

Both uncertainty estimation and interpretability are important factors for trustworthy machine learning systems. However, there is little work at the intersection of these two areas. We address this gap by proposing a novel method for interpreting uncertainty estimates from differentiable probabilistic models, like Bayesian Neural Networks (BNNs). Our method, Counterfactual Latent Uncertainty Explanations (CLUE), indicates how to change an input, while keeping it on the data manifold, such that a BNN becomes more confident about the input’s prediction. We validate CLUE through 1) a novel framework for evaluating counterfactual explanations of uncertainty, 2) a series of ablation experiments, and 3) a user study. Our experiments show that CLUE outperforms baselines and enables practitioners to better understand which input patterns are responsible for predictive uncertainty..

On the Utility of Prediction Sets in Human-AI Teams

Varun Babbar, Umang Bhatt, Adrian Weller, 2022. (In International Joint Conference on Artificial Intelligence).

Abstract URL

Research on human-AI teams usually provides experts with a single label, which ignores the uncertainty in a model’s recommendation. Conformal prediction (CP) is a well established line of research that focuses on building a theoretically grounded, calibrated prediction set, which may contain multiple labels. We explore how such prediction sets impact expert decision-making in human-AI teams. Our evaluation on human subjects finds that set valued predictions positively impact experts. However, we notice that the predictive sets provided by CP can be very large, which leads to unhelpful AI assistants. To mitigate this, we introduce D-CP, a method to perform CP on some examples and defer to experts. We prove that D-CP can reduce the prediction set size of non-deferred examples. We show how D-CP performs in quantitative and in human subject experiments (n=120). Our results suggest that CP prediction sets improve human-AI team performance over showing the top-1 prediction alone, and that experts find D-CP prediction sets are more useful than CP prediction sets.

Uncertainty as a form of transparency: Measuring, communicating, and using uncertainty

Umang Bhatt, Javier Antorán, Yunfeng Zhang, Q Vera Liao, Prasanna Sattigeri, Riccardo Fogliato, Gabrielle Melançon, Ranganath Krishnan, Jason Stanley, Omesh Tickoo, others, 2021. (In 4th AAAI/ACM Conference on Artificial Intelligence, Ethics and Society).

Abstract URL

Algorithmic transparency entails exposing system properties to various stakeholders for purposes that include understanding, improving, and contesting predictions. Until now, most research into algorithmic transparency has predominantly focused on explainability. Explainability attempts to provide reasons for a machine learning model’s behavior to stakeholders. However, understanding a model’s specific behavior alone might not be enough for stakeholders to gauge whether the model is wrong or lacks sufficient knowledge to solve the task at hand. In this paper, we argue for considering a complementary form of transparency by estimating and communicating the uncertainty associated with model predictions. First, we discuss methods for assessing uncertainty. Then, we characterize how uncertainty can be used to mitigate model unfairness, augment decision-making, and build trustworthy systems. Finally, we outline methods for displaying uncertainty to stakeholders and recommend how to collect information required for incorporating uncertainty into existing ML pipelines. This work constitutes an interdisciplinary review drawn from literature spanning machine learning, visualization/HCI, design, decision-making, and fairness. We aim to encourage researchers and practitioners to measure, communicate, and use uncertainty as a form of transparency.

Evaluating and Aggregating Feature-based Model Explanations

Umang Bhatt, Adrian Weller, Jose M. F. Moura, 2020. (In International Joint Conference on Artificial Intelligence).

Abstract URL

A feature-based model explanation denotes how much each input feature contributes to a model’s output for a given data point. As the number of proposed explanation functions grows, we lack quantitative evaluation criteria to help practitioners know when to use which explanation function. This paper proposes quantitative evaluation criteria for feature-based explanations: low sensitivity, high faithfulness, and low complexity. We devise a framework for aggregating explanation functions. We develop a procedure for learning an aggregate explanation function with lower complexity and then derive a new aggregate Shapley value explanation function that minimizes sensitivity.

Explainable Machine Learning in Deployment

Umang Bhatt, Alice Xiang, Shubham Sharma, Adrian Weller, Ankur Taly, Yunhan Jia, Joydeep Ghosh, Ruchir Puri, José M. F. Moura, Peter Eckersley, 2020. (In ACM Conference on Fairness, Accountability, and Transparency (FAT*)).

Abstract URL

Explainable machine learning offers the potential to provide stakeholders with insights into model behavior by using various methods such as feature importance scores, counterfactual explanations, or influential training data. Yet there is little understanding of how organizations use these methods in practice. This study explores how organizations view and use explainability for stakeholder consumption. We find that, currently, the majority of deployments are not for end users affected by the model but rather for machine learning engineers, who use explainability to debug the model itself. There is thus a gap between explainability in practice and the goal of transparency, since explanations primarily serve internal stakeholders rather than external ones. Our study synthesizes the limitations of current explainability techniques that hamper their use for end users. To facilitate end user interaction, we develop a framework for establishing clear goals for explainability. We end by discussing concerns raised regarding explainability.

Motivations and Risks of Machine Ethics

Stephen Cave, Rune Nyrup, Karina Vold, Adrian Weller, 2019. (Proceedings of the IEEE).

Abstract URL

This paper surveys reasons for and against pursuing the field of machine ethics, understood as research aiming to build “ethical machines.” We clarify the nature of this goal, why it is worth pursuing, and the risks involved in its pursuit. First, we survey and clarify some of the philosophical issues surrounding the concept of an “ethical machine” and the aims of machine ethics. Second, we argue that while there are good prima facie reasons for pursuing machine ethics, including the potential to improve the ethical alignment of both humans and machines, there are also potential risks that must be considered. Third, we survey these potential risks and point to where research should be devoted to clarifying and managing potential risks. We conclude by making some recommendations about the questions that future work could address.

You shouldn't trust me: Learning models which conceal unfairness from multiple explanation methods

Botty Dimanov, Umang Bhatt, Mateja Jamnik, Adrian Weller, 2020. (In European Conference on Artificial Intelligence (ECAI)).

Abstract URL

Transparency of algorithmic systems has been discussed as a way for end-users and regulators to develop appropriate trust in machine learning models. One popular approach, LIME [26], even suggests that model explanations can answer the question “Why should I trust you?” Here we show a straightforward method for modifying a pre-trained model to manipulate the output of many popular feature importance explanation methods with little change in accuracy, thus demonstrating the danger of trusting such explanation methods. We show how this explanation attack can mask a model’s discriminatory use of a sensitive feature, raising strong concerns about using such explanation methods to check model fairness.

Algorithmic recourse under imperfect causal knowledge: a probabilistic approach

A.-H. Karimi, J. von Kügelgen, B. Schölkopf, I. Valera, 2020. (In Advances in Neural Information Processing Systems 33). Edited by H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, H. Lin. Curran Associates, Inc.. Note: *equal contribution.

Abstract URL

Recent work has discussed the limitations of counterfactual explanations to recommend actions for algorithmic recourse, and argued for the need of taking causal relationships between features into consideration. Unfortunately, in practice, the true underlying structural causal model is generally unknown. In this work, we first show that it is impossible to guarantee recourse without access to the true structural equations. To address this limitation, we propose two probabilistic approaches to select optimal actions that achieve recourse with high probability given limited causal knowledge (e.g., only the causal graph). The first captures uncertainty over structural equations under additive Gaussian noise, and uses Bayesian model averaging to estimate the counterfactual distribution. The second removes any assumptions on the structural equations by instead computing the average effect of recourse actions on individuals similar to the person who seeks recourse, leading to a novel subpopulation-based interventional notion of recourse. We then derive a gradient-based procedure for selecting optimal recourse actions, and empirically show that the proposed approaches lead to more reliable recommendations under imperfect causal knowledge than non-probabilistic baselines.

On the Fairness of Causal Algorithmic Recourse

J. von Kügelgen, A.-H. Karimi, U. Bhatt, I. Valera, A. Weller, B. Schölkopf, 2022. (In Proceedings of the 36th AAAI Conference on Artificial Intelligence (AAAI)).

Abstract URL

Algorithmic fairness is typically studied from the perspective of predictions. Instead, here we investigate fairness from the perspective of recourse actions suggested to individuals to remedy an unfavourable classification. We propose two new fairness criteria at the group and individual level, which – unlike prior work on equalising the average group-wise distance from the decision boundary – explicitly account for causal relationships between features, thereby capturing downstream effects of recourse actions performed in the physical world. We explore how our criteria relate to others, such as counterfactual fairness, and show that fairness of recourse is complementary to fairness of prediction. We study theoretically and empirically how to enforce fair causal recourse by altering the classifier and perform a case study on the Adult dataset. Finally, we discuss whether fairness violations in the data generating process revealed by our criteria may be better addressed by societal interventions as opposed to constraints on the classifier.

Diverse and Amortised Counterfactual Explanations for Uncertainty Estimates

Dan Ley, Umang Bhatt, Adrian Weller, 2022. (In Proceedings of the 36th AAAI Conference on Artificial Intelligence (AAAI)).

Abstract URL

To interpret uncertainty estimates from differentiable probabilistic models, recent work has proposed generating a single Counterfactual Latent Uncertainty Explanation (CLUE) for a given data point where the model is uncertain. We broaden the exploration to examine δ-CLUE, the set of potential CLUEs within a δ ball of the original input in latent space. We study the diversity of such sets and find that many CLUEs are redundant; as such, we propose DIVerse CLUE (∇-CLUE), a set of CLUEs which each propose a distinct explanation as to how one can decrease the uncertainty associated with an input. We then further propose GLobal AMortised CLUE (GLAM-CLUE), a distinct, novel method which learns amortised mappings that apply to specific groups of uncertain inputs, taking them and efficiently transforming them in a single function call into inputs for which a model will be certain. Our experiments show that δ-CLUE, ∇-CLUE, and GLAM-CLUE all address shortcomings of CLUE and provide beneficial explanations of uncertainty estimates to practitioners.

You Mostly Walk Alone: Analyzing Feature Attribution in Trajectory Prediction

O. Makansi, J. von Kügelgen, F. Locatello, P. Gehler, D. Janzing, T. Brox, B. Schölkopf, 2022. (In 10th International Conference on Learning Representations).

Abstract URL

Predicting the future trajectory of a moving agent can be easy when the past trajectory continues smoothly but is challenging when complex interactions with other agents are involved. Recent deep learning approaches for trajectory prediction show promising performance and partially attribute this to successful reasoning about agent-agent interactions. However, it remains unclear which features such black-box models actually learn to use for making predictions. This paper proposes a procedure that quantifies the contributions of different cues to model performance based on a variant of Shapley values. Applying this procedure to state-of-the-art trajectory prediction methods on standard benchmark datasets shows that they are, in fact, unable to reason about interactions. Instead, the past trajectory of the target is the only feature used for predicting its future. For a task with richer social interaction patterns, on the other hand, the tested models do pick up such interactions to a certain extent, as quantified by our feature attribution method. We discuss the limits of the proposed method and its links to causality.

Concrete Problems for Autonomous Vehicle Safety: Advantages of Bayesian Deep Learning,

Rowan McAllister, Yarin Gal, Alex Kendall, Mark van der Wilk, Amar Shah, Roberto Cipolla, Adrian Weller, August 2017. (In International Joint Conference on Artificial Intelligence). Melbourne, Australia.

Abstract URL

Autonomous vehicle (AV) software is typically composed of a pipeline of individual components, linking sensor inputs to motor outputs. Erroneous component outputs propagate downstream, hence safe AV software must consider the ultimate effect of each component’s errors. Further, improving safety alone is not sufficient. Passengers must also feel safe to trust and use AV systems. To address such concerns, we investigate three under-explored themes for AV research: safety, interpretability, and compliance. Safety can be improved by quantifying the uncertainties of component outputs and propagating them forward through the pipeline. Interpretability is concerned with explaining what the AV observes and why it makes the decisions it does, building reassurance with the passenger. Compliance refers to maintaining some control for the passenger. We discuss open challenges for research within these themes. We highlight the need for concrete evaluation metrics, propose example problems, and highlight possible solutions.

Identifying causes of Pyrocumulonimbus (PyroCb)

Emiliano Diaz, Kenza Tazi, Ashwin S Braude, Daniel Okoh, Kara Lamb, Duncan Watson-Parris, Paula Harder, Nis Meinert, 2022. (In NeurIPS Workshop on Causality for Real-world Impact).

Abstract URL

A first causal discovery analysis from observational data of pyroCb (storm clouds generated from extreme wildfires) is presented. Invariant Causal Prediction was used to develop tools to understand the causal drivers of pyroCb formation. This includes a conditional independence test for testing Y conditionally independent of E given X for binary variable Y and multivariate, continuous variables X and E, and a greedy-ICP search algorithm that relies on fewer conditional independence tests to obtain a smaller more manageable set of causal predictors. With these tools, we identified a subset of seven causal predictors which are plausible when contrasted with domain knowledge: surface sensible heat flux, relative humidity at 850 hPa, a component of wind at 250 hPa, 13.3 micro-meters, thermal emissions, convective available potential energy, and altitude

Pyrocast: a machine learning pipeline to forecast pyrocumulonimbus (pyrocb) clouds

Kenza Tazi, Emiliano Díaz Salas-Porras, Ashwin Braude, Daniel Okoh, Kara D Lamb, Duncan Watson-Parris, Paula Harder, Nis Meinert, 2022. (NeurIPS Workshop on Tackling Climate Change with Machine Learning).

Abstract URL

Pyrocumulonimbus (pyroCb) clouds are storm clouds generated by extreme wildfires. PyroCbs are associated with unpredictable, and therefore dangerous, wildfire spread. They can also inject smoke particles and trace gases into the upper troposphere and lower stratosphere, affecting the Earth’s climate. As global temperatures increase, these previously rare events are becoming more common. Being able to predict which fires are likely to generate pyroCb is therefore key to climate adaptation in wildfire-prone areas. This paper introduces Pyrocast, a pipeline for pyroCb analysis and forecasting. The pipeline’s first two components, a pyroCb database and a pyroCb forecast model, are presented. The database brings together geostationary imagery and environmental data for over 148 pyroCb events across North America, Australia, and Russia between 2018 and 2022. Random Forests, Convolutional Neural Networks (CNNs), and CNNs pretrained with Auto-Encoders were tested to predict the generation of pyroCb for a given fire six hours in advance. The best model predicted pyroCb with an AUC of 0.90±0.04.

No matching items
Back to top