Machine Vision

Techniques for enabling machines to interpret and understand visual information from the world, often used in image recognition and computer vision.


On sparsity and overcompleteness in image models

Pietro Berkes, Richard E. Turner, Maneesh Sahani, 2008. (In nips20). Edited by J. C. Platt, D. Koller, Y. Singer, S. Roweis. mit.

Abstract URL

Computational models of visual cortex, and in particular those based on sparse coding, have enjoyed much recent attention. Despite this currency, the question of how sparse or how over-complete a sparse representation should be, has gone without principled answer. Here, we use Bayesian model-selection methods to address these questions for a sparse-coding model based on a Student-t prior. Having validated our methods on toy data, we find that natural images are indeed best modelled by extremely sparse distributions; although for the Student-t prior, the associated optimal basis size is only modestly over-complete.

A Structured Model of Video Reproduces Primary Visual Cortical Organisation

Pietro Berkes, Richard E. Turner, Maneesh Sahani, 09 2009. (PLoS Computational Biology). Public Library of Science. DOI: 10.1371/journal.pcbi.1000495.

Abstract URL

The visual system must learn to infer the presence of objects and features in the world from the images it encounters, and as such it must, either implicitly or explicitly, model the way these elements interact to create the image. Do the response properties of cells in the mammalian visual system reflect this constraint? To address this question, we constructed a probabilistic model in which the identity and attributes of simple visual elements were represented explicitly and learnt the parameters of this model from unparsed, natural video sequences. After learning, the behaviour and grouping of variables in the probabilistic model corresponded closely to functional and anatomical properties of simple and complex cells in the primary visual cortex (V1). In particular, feature identity variables were activated in a way that resembled the activity of complex cells, while feature attribute variables responded much like simple cells. Furthermore, the grouping of the attributes within the model closely parallelled the reported anatomical grouping of simple cells in cat V1. Thus, this generative model makes explicit an interpretation of complex and simple cells as elements in the segmentation of a visual scene into basic independent features, along with a parametrisation of their moment-by-moment appearances. We speculate that such a segmentation may form the initial stage of a hierarchical system that progressively separates the identity and appearance of more articulated visual elements, culminating in view-invariant object recognition.

Scalable Gaussian Process Structured Prediction for Grid Factor Graph Applications

Sébastien Bratières, Novi Quadrianto, Sebastian Nowozin, Zoubin Ghahramani, 2014. (In 31st International Conference on Machine Learning).

Abstract URL

Structured prediction is an important and well studied problem with many applications across machine learning. GPstruct is a recently proposed structured prediction model that offers appealing properties such as being kernelised, non-parametric, and supporting Bayesian inference (Bratières et al. 2013). The model places a Gaussian process prior over energy functions which describe relationships between input variables and structured output variables. However, the memory demand of GPstruct is quadratic in the number of latent variables and training runtime scales cubically. This prevents GPstruct from being applied to problems involving grid factor graphs, which are prevalent in computer vision and spatial statistics applications. Here we explore a scalable approach to learning GPstruct models based on ensemble learning, with weak learners (predictors) trained on subsets of the latent variables and bootstrap data, which can easily be distributed. We show experiments with 4M latent variables on image segmentation. Our method outperforms widely-used conditional random field models trained with pseudo-likelihood. Moreover, in image segmentation problems it improves over recent state-of-the-art marginal optimisation methods in terms of predictive performance and uncertainty calibration. Finally, it generalises well on all training set sizes.

A Simple Bayesian Framework for Content-Based Image Retrieval

Katherine A. Heller, Zoubin Ghahramani, 2006. (In CVPR). IEEE Computer Society. ISBN: 0-7695-2597-0.

Abstract URL

We present a Bayesian framework for content-based image retrieval which models the distribution of color and texture features within sets of related images. Given a userspecified text query (e.g. “penguins”) the system first extracts a set of images, from a labelled corpus, corresponding to that query. The distribution over features of these images is used to compute a Bayesian score for each image in a large unlabelled corpus. Unlabelled images are then ranked using this score and the top images are returned. Although the Bayesian score is based on computing marginal likelihoods, which integrate over model parameters, in the case of sparse binary data the score reduces to a single matrix-vector multiplication and is therefore extremely efficient to compute. We show that our method works surprisingly well despite its simplicity and the fact that no relevance feedback is used. We compare different choices of features, and evaluate our results using human subjects.

Learning to Parse Images

Geoffrey E. Hinton, Zoubin Ghahramani, Yee Whye Teh, 1999. (In NIPS). Edited by Michael J. Kearns, Sara A. Solla, David A. Cohn. The MIT Press. ISBN: 0-262-11245-0.

Abstract URL

We describe a class of probabilistic models that we call credibility networks. Using parse trees as internal representations of images, credibility networks are able to perform segmentation and recognition simultaneously, removing the need for ad hoc segmentation heuristics. Promising results in the problem of segmenting handwritten digits were obtained.

Towards causal generative scene models via competition of experts

J. von Kügelgen, I. Ustyuzhaninov, P. Gehler, M. Bethge, B. Schölkopf, 2020. (In ICLR 2020 Workshop "Causal Learning for Decision Making"). Note: *equal contribution.

Abstract URL

Learning how to model complex scenes in a modular way with recombinable components is a pre-requisite for higher-order reasoning and acting in the physical world. However, current generative models lack the ability to capture the inherently compositional and layered nature of visual scenes. While recent work has made progress towards unsupervised learning of object-based scene representations, most models still maintain a global representation space (i.e., objects are not explicitly separated), and cannot generate scenes with novel object arrangement and depth ordering. Here, we present an alternative approach which uses an inductive bias encouraging modularity by training an ensemble of generative models (experts). During training, experts compete for explaining parts of a scene, and thus specialise on different object classes, with objects being identified as parts that re-occur across multiple scenes. Our model allows for controllable sampling of individual objects and recombination of experts in physically plausible ways. In contrast to other methods, depth layering and occlusion are handled correctly, moving this approach closer to a causal generative scene model. Experiments on simple toy data qualitatively demonstrate the conceptual advantages of the proposed approach.

PolyViT: Co-training Vision Transformers on Images, Videos and Audio

Valerii Likhosherstov, Anurag Arnab, Krzysztof Choromanski, Mario Lucic, Yi Tay, Adrian Weller, Mostafa Dehghani, 2021. (CoRR).

Abstract URL

Can we train a single transformer model capable of processing multiple modalities and datasets, whilst sharing almost all of its learnable parameters? We present PolyViT, a model trained on image, audio and video which answers this question. By co-training different tasks on a single modality, we are able to improve the accuracy of each individual task and achieve state-of-the-art results on 5 standard video- and audio-classification datasets. Co-training PolyViT on multiple modalities and tasks leads to a model that is even more parameter-efficient, and learns representations that generalize across multiple domains. Moreover, we show that co-training is simple and practical to implement, as we do not need to tune hyperparameters for each combination of datasets, but can simply adapt those from standard, single-task training.

Occlusive Components Analysis

Jörg Lücke, Richard E. Turner, Maneesh Sahani, Marc Henniges, 2009. (In Advances in Neural Information Processing Systems 22). Edited by Y Bengio, D Schuurmans, J Lafferty, C K I Williams, A Culotta. mit.

Abstract URL

We study unsupervised learning in a probabilistic generative model for occlusion. The model uses two types of latent variables: one indicates which objects are present in the image, and the other how they are ordered in depth. This depth order then determines how the positions and appearances of the objects present, specified in the model parameters, combine to form the image. We show that the object parameters can be learnt from an unlabelled set of images in which objects occlude one another. Exact maximum-likelihood learning is intractable. However, we show that tractable approximations to Expectation Maximization (EM) can be found if the training images each contain only a small number of objects on average. In numerical experiments it is shown that these approximations recover the correct set of object parameters. Experiments on a novel version of the bars test using colored bars, and experiments on more realistic data, show that the algorithm performs well in extracting the generating causes. Experiments based on the standard bars benchmark test for object learning show that the algorithm performs well in comparison to other recent component extraction approaches. The model and the learning algorithm thus connect research on occlusion with the research field of multiple-causes component extraction methods.

Orbit: A real-world few-shot dataset for teachable object recognition

Daniela Massiceti, Luisa Zintgraf, John Bronskill, Lida Theodorou, Matthew Tobias Harris, Edward Cutrell, Cecily Morrison, Katja Hofmann, Simone Stumpf, 2021. (In Proceedings of the IEEE/CVF International Conference on Computer Vision).

Abstract URL

Object recognition has made great advances in the last decade, but predominately still relies on many high-quality training examples per object category. In contrast, learning new objects from only a few examples could enable many impactful applications from robotics to user personalization. Most few-shot learning research, however, has been driven by benchmark datasets that lack the high variation that these applications will face when deployed in the real-world. To close this gap, we present the ORBIT dataset and benchmark, grounded in the real-world application of teachable object recognizers for people who are blind/low-vision. The dataset contains 3,822 videos of 486 objects recorded by people who are blind/low-vision on their mobile phones. The benchmark reflects a realistic, highly challenging recognition problem, providing a rich playground to drive research in robustness to few-shot, high-variation conditions. We set the benchmark’s first state-of-the-art and show there is massive scope for further innovation, holding the potential to impact a broad range of real-world vision applications including tools for the blind/low-vision community.

Concrete Problems for Autonomous Vehicle Safety: Advantages of Bayesian Deep Learning,

Rowan McAllister, Yarin Gal, Alex Kendall, Mark van der Wilk, Amar Shah, Roberto Cipolla, Adrian Weller, August 2017. (In International Joint Conference on Artificial Intelligence). Melbourne, Australia.

Abstract URL

Autonomous vehicle (AV) software is typically composed of a pipeline of individual components, linking sensor inputs to motor outputs. Erroneous component outputs propagate downstream, hence safe AV software must consider the ultimate effect of each component’s errors. Further, improving safety alone is not sufficient. Passengers must also feel safe to trust and use AV systems. To address such concerns, we investigate three under-explored themes for AV research: safety, interpretability, and compliance. Safety can be improved by quantifying the uncertainties of component outputs and propagating them forward through the pipeline. Interpretability is concerned with explaining what the AV observes and why it makes the decisions it does, building reassurance with the passenger. Compliance refers to maintaining some control for the passenger. We discuss open challenges for research within these themes. We highlight the need for concrete evaluation metrics, propose example problems, and highlight possible solutions.

Visual Representation Learning Does Not Generalize Strongly Within the Same Domain

L. Schott, J. von Kügelgen, F. Träuble, P. Gehler, C. Russell, M. Bethge, B. Schölkopf, F. Locatello, W. Brendel, 2022. (In 10th International Conference on Learning Representations).

Abstract URL

An important component for generalization in machine learning is to uncover underlying latent factors of variation as well as the mechanism through which each factor acts in the world. In this paper, we test whether 17 unsupervised, weakly supervised, and fully supervised representation learning approaches correctly infer the generative factors of variation in simple datasets (dSprites, Shapes3D, MPI3D) from controlled environments, and on our contributed CelebGlow dataset. In contrast to prior robustness work that introduces novel factors of variation during test time, such as blur or other (un)structured noise, we here recompose, interpolate, or extrapolate only existing factors of variation from the training data set (e.g., small and medium-sized objects during training and large objects during testing). Models that learn the correct mechanism should be able to generalize to this benchmark. In total, we train and test 2000+ models and observe that all of them struggle to learn the underlying mechanism regardless of supervision signal and architectural bias. Moreover, the generalization capabilities of all tested models drop significantly as we move from artificial datasets towards more realistic real-world datasets. Despite their inability to identify the correct mechanism, the models are quite modular as their ability to infer other in-distribution factors remains fairly stable, providing only a single factor is out-of-distribution. These results point to an important yet understudied problem of learning mechanistic models of observations that can facilitate generalization.

Augmented Attributes Representations

Viktoriia Sharmanska, Novi Quadrianto, Christoph Lampert, 2012. (In 12th European Conference on Computer Vision).

Abstract URL

We propose a new learning method to infer a mid-level feature representation that combines the advantage of semantic attribute representations with the higher expressive power of non-semantic features. The idea lies in augmenting an existing attribute-based representation with additional dimensions for which an autoencoder model is coupled with a large-margin principle. This construction allows a smooth transition between the zero-shot regime with no training example, the unsupervised regime with training examples but without class labels, and the supervised regime with training examples and with class labels. The resulting optimization problem can be solved efficiently, because several of the necessity steps have closed-form solutions. Through extensive experiments we show that the augmented representation achieves better results in terms of object categorization accuracy than the semantic representation alone.

Learning to Rank Using Privileged Information

Viktoriia Sharmanska, Novi Quadrianto, Christoph Lampert, 2013. (In International Conference on Computer Vision).

Abstract

Many computer vision problems have an asymmetric distribution of information between training and test time. In this work, we study the case where we are given additional information about the training data, which however will not be available at test time. This situation is called learning using privileged information (LUPI). We introduce two maximum-margin techniques that are able to make use of this additional source of information, and we show that the framework is applicable to several scenarios that have been studied in computer vision before. Experiments with attributes, bounding boxes, image tags and rationales as additional information in object classification show promising results.

Unsupervised Object Learning via Common Fate

M. Tangemann, S. Schneider, J. von Kügelgen, F. Locatello, P. Gehler, T. Brox, M. Kümmerer, M. Bethge, B. Schölkopf, 2021.

Abstract URL

Learning generative object models from unlabelled videos is a long standing problem and required for causal scene modeling. We decompose this problem into three easier subtasks, and provide candidate solutions for each of them. Inspired by the Common Fate Principle of Gestalt Psychology, we first extract (noisy) masks of moving objects via unsupervised motion segmentation. Second, generative models are trained on the masks of the background and the moving objects, respectively. Third, background and foreground models are combined in a conditional “dead leaves” scene model to sample novel scene configurations where occlusions and depth layering arise naturally. To evaluate the individual stages, we introduce the Fishbowl dataset positioned between complex real-world scenes and common object-centric benchmarks of simplistic objects. We show that our approach allows learning generative models that generalize beyond the occlusions present in the input videos, and represent scenes in a modular fashion that allows sampling plausible scenes outside the training distribution by permitting, for instance, object numbers or densities not observed in the training set.

Beyond Dataset Bias: Multi-task Unaligned Shared Knowledge Transfer

Tatiana Tommasi, Novi Quadrianto, Barbara Caputo, Christoph Lampert, 2012. (In 11th Asian Conference on Computer Vision).

Abstract URL

Many visual datasets are traditionally used to analyze the performance of different learning techniques. The evaluation is usually done within each dataset, therefore it is questionable if such results are a reliable indicator of true generalization ability. We propose here an algorithm to exploit the existing data resources when learning on a new multiclass problem. Our main idea is to identify an image representation that decomposes orthogonally into two subspaces: a part specific to each dataset, and a part generic to, and therefore shared between, all the considered source sets. This allows us to use the generic representation as un-biased reference knowledge for a novel classification task. By casting the method in the multi-view setting, we also make it possible to use different features for different databases. We call the algorithm MUST, Multitask Unaligned Shared knowledge Transfer. Through extensive experiments on five public datasets, we show that MUST consistently improves the cross-datasets generalization performance.

A Maximum-Likelihood Interpretation for Slow Feature Analysis

Richard E. Turner, Maneesh Sahani, 2007. (Neural Computation). Cambridge, MA, USA. MIT Press. DOI: http://dx.doi.org/10.1162/neco.2007.19.4.1022. ISSN: 0899-7667.

Abstract URL

The brain extracts useful features from a maelstrom of sensory information, and a fundamental goal of theoretical neuroscience is to work out how it does so. One proposed feature extraction strategy is motivated by the observation that the meaning of sensory data, such as the identity of a moving visual object, is often more persistent than the activation of any single sensory receptor. This notion is embodied in the slow feature analysis (SFA) algorithm, which uses “slowness” as an heuristic by which to extract semantic information from multi-dimensional time-series. Here, we develop a probabilistic interpretation of this algorithm showing that inference and learning in the limiting case of a suitable probabilistic model yield exactly the results of SFA. Similar equivalences have proved useful in interpreting and extending comparable algorithms such as independent component analysis. For SFA, we use the equivalent probabilistic model as a conceptual spring-board, with which to motivate several novel extensions to the algorithm.

No matching items
Back to top