Review Articles and Tutorials

Articles and resources that provide comprehensive overviews and tutorials on various topics in machine learning and related fields.


Mapping Intelligence: Requirements and Possibilities

Sankalp Bhatnagar, Anna Alexandrova, Shahar Avin, Stephen Cave, Lucy Cheke, Matthew Crosby, Jan Feyereisl, Marta Halina, Bao Sheng Loe, Sean o Heigeartaigh, Fernando Martínez-Plumed, Huw Price, Henry Shevlin, Adrian Weller, Alan Winfield, Jose Hernandez-Orallo, 2017. (In Philosophy and Theory of Artificial Intelligence (PT-AI)).

Abstract URL

New types of artificial intelligence (AI), from cognitive assistants to social robots, are challenging meaningful comparison with other kinds of intelligence. How can such intelligent systems be catalogued, evaluated, and contrasted, with representations and projections that offer meaningful insights? To catalyse the research in AI and the future of cognition, we present the motivation, requirements and possibilities for an atlas of intelligence: an integrated framework and collaborative open repository for collecting and exhibiting information of all kinds of intelligence, including humans, non-human animals, AI systems, hybrids and collectives thereof. After presenting this initiative, we review related efforts and present the requirements of such a framework. We survey existing visualisations and representations, and discuss which criteria of inclusion should be used to configure an atlas of intelligence.

Uncertainty as a form of transparency: Measuring, communicating, and using uncertainty

Umang Bhatt, Javier Antorán, Yunfeng Zhang, Q Vera Liao, Prasanna Sattigeri, Riccardo Fogliato, Gabrielle Melançon, Ranganath Krishnan, Jason Stanley, Omesh Tickoo, others, 2021. (In 4th AAAI/ACM Conference on Artificial Intelligence, Ethics and Society).

Abstract URL

Algorithmic transparency entails exposing system properties to various stakeholders for purposes that include understanding, improving, and contesting predictions. Until now, most research into algorithmic transparency has predominantly focused on explainability. Explainability attempts to provide reasons for a machine learning model’s behavior to stakeholders. However, understanding a model’s specific behavior alone might not be enough for stakeholders to gauge whether the model is wrong or lacks sufficient knowledge to solve the task at hand. In this paper, we argue for considering a complementary form of transparency by estimating and communicating the uncertainty associated with model predictions. First, we discuss methods for assessing uncertainty. Then, we characterize how uncertainty can be used to mitigate model unfairness, augment decision-making, and build trustworthy systems. Finally, we outline methods for displaying uncertainty to stakeholders and recommend how to collect information required for incorporating uncertainty into existing ML pipelines. This work constitutes an interdisciplinary review drawn from literature spanning machine learning, visualization/HCI, design, decision-making, and fairness. We aim to encourage researchers and practitioners to measure, communicate, and use uncertainty as a form of transparency.

Quantum machine learning: a classical perspective

Carlo Ciliberto, Mark Herbster, Alessandro Davide Ialongo, Massimiliano Pontil, Andrea Rocchetto, Simone Severini, Leonard Wossnig, 2018. (In Proc. R. Soc. A). DOI: 10.1098/rspa.2017.0551.

Abstract

Recently, increased computational power and data availability, as well as algorithmic advances, have led machine learning techniques to impressive results in regression, classification, data-generation and reinforcement learning tasks. Despite these successes, the proximity to the physical limits of chip fabrication alongside the increasing size of datasets are motivating a growing number of researchers to explore the possibility of harnessing the power of quantum computation to speed-up classical machine learning algorithms. Here we review the literature in quantum machine learning and discuss perspectives for a mixed readership of classical machine learning and quantum computation experts. Particular emphasis will be placed on clarifying the limitations of quantum algorithms, how they compare with their best classical counterparts and why quantum resources are expected to provide advantages for learning problems. Learning in the presence of noise and certain computationally hard problems in machine learning are identified as promising directions for the field. Practical questions, like how to upload classical data into quantum form, will also be addressed.

Unsupervised Learning

Zoubin Ghahramani, 2003. (In Advanced Lectures on Machine Learning). Edited by Olivier Bousquet, Ulrike von Luxburg, Gunnar Rätsch. Springer. Lecture Notes in Computer Science. ISBN: 3-540-23122-6.

Abstract URL

We give a tutorial and overview of the field of unsupervised learning from the perspective of statistical modelling. Unsupervised learning can be motivated from information theoretic and Bayesian principles. We briefly review basic models in unsupervised learning, including factor analysis, PCA, mixtures of Gaussians, ICA, hidden Markov models, state-space models, and many variants and extensions. We derive the EM algorithm and give an overview of fundamental concepts in graphical models, and inference algorithms on graphs. This is followed by a quick tour of approximate Bayesian inference, including Markov chain Monte Carlo (MCMC), Laplace approximation, BIC, variational approximations, and expectation propagation (EP). The aim of this chapter is to provide a high-level view of the field. Along the way, many state-of-the-art ideas and future directions are also reviewed.

Bayesian nonparametrics and the probabilistic approach to modelling

Zoubin Ghahramani, 2013. (Philosophical Transactions of the Royal Society A).

Abstract URL

Modelling is fundamental to many fields of science and engineering. A model can be thought of as a representation of possible data one could predict from a system. The probabilistic approach to modelling uses probability theory to express all aspects of uncertainty in the model. The probabilistic approach is synonymous with Bayesian modelling, which simply uses the rules of probability theory in order to make predictions, compare alternative models, and learn model parameters and structure from data. This simple and elegant framework is most powerful when coupled with flexible probabilistic models. Flexibility is achieved through the use of Bayesian nonparametrics. This article provides an overview of probabilistic modelling and an accessible survey of some of the main tools in Bayesian nonparametrics. The survey covers the use of Bayesian nonparametrics for modelling unknown functions, density estimation, clustering, time series modelling, and representing sparsity, hierarchies, and covariance structure. More specifically it gives brief non-technical overviews of Gaussian processes, Dirichlet processes, infinite hidden Markov models, Indian buffet processes, Kingman’s coalescent, Dirichlet diffusion tress, and Wishart processes.

Probabilistic machine learning and artificial intelligence

Zoubin Ghahramani, 2015. (Nature). DOI: doi:10.1038/nature14541.

Abstract URL

How can a machine learn from experience? Probabilistic modelling provides a framework for understanding what learning is, and has therefore emerged as one of the principal theoretical and practical approaches for designing machines that learn from data acquired through experience. The probabilistic framework, which describes how to represent and manipulate uncertainty about models and predictions, has a central role in scientific data analysis, machine learning, robotics, cognitive science and artificial intelligence. This Review provides an introduction to this framework, and discusses some of the state-of-the-art advances in the field, namely, probabilistic programming, Bayesian optimization, data compression and automatic model discovery.

The Indian buffet process: An introduction and review

Thomas L. Griffiths, Zoubin Ghahramani, April 2011. (Journal of Machine Learning Research).

Abstract URL

The Indian buffet process is a stochastic process defining a probability distribution over equivalence classes of sparse binary matrices with a finite number of rows and an unbounded number of columns. This distribution is suitable for use as a prior in probabilistic models that represent objects using a potentially infinite array of features, or that involve bipartite graphs in which the size of at least one class of nodes is unknown. We give a detailed derivation of this distribution, and illustrate its use as a prior in an infinite latent feature model. We then review recent applications of the Indian buffet process in machine learning, discuss its extensions, and summarize its connections to other stochastic processes.

An Introduction to Variational Methods for Graphical Models

Michael I. Jordan, Zoubin Ghahramani, Tommi Jaakkola, Lawrence K. Saul, 1999. (Machine Learning).

Abstract URL

This paper presents a tutorial introduction to the use of variational methods for inference and learning in graphical models (Bayesian networks and Markov random fields). We present a number of examples of graphical models, including the QMR-DT database, the sigmoid belief network, the Boltzmann machine, and several variants of hidden Markov models, in which it is infeasible to run exact inference algorithms. We then introduce variational methods, which exploit laws of large numbers to transform the original graphical model into a simplified graphical model in which inference is efficient. Inference in the simpified model provides bounds on probabilities of interest in the original model. We describe a general framework for generating variational transformations based on convex duality. Finally we return to the examples and demonstrate how variational algorithms can be formulated in each case.

Using Inertial Sensors for Position and Orientation Estimation

Manon Kok, Jeroen D. Hol, Thomas B. Schön, 2017. (Foundations and Trends in Signal Processing).

Abstract URL

In recent years, MEMS inertial sensors (3D accelerometers and 3D gyroscopes) have become widely available due to their small size and low cost. Inertial sensor measurements are obtained at high sampling rates and can be integrated to obtain position and orientation information. These estimates are accurate on a short time scale, but suffer from integration drift over longer time scales. To overcome this issue, inertial sensors are typically combined with additional sensors and models. In this tutorial we focus on the signal processing aspects of position and orientation estimation using inertial sensors. We discuss different modeling choices and a selected number of important algorithms. The algorithms include optimization-based smoothing and filtering as well as computationally cheaper extended Kalman filter and complementary filter implementations. The quality of their estimates is illustrated using both experimental and simulated data.

Comment: arXiv

From statistical to causal learning

B. Schölkopf, J. von Kügelgen, 2022. (In Proceedings of the International Congress of Mathematicians (ICM)). EMS Press. Note: *equal contribution.

Abstract URL

We describe basic ideas underlying research to build and understand artificially intelligent systems: from symbolic approaches via statistical learning to interventional models relying on concepts of causality. Some of the hard open problems of machine learning and AI are intrinsically related to causality, and progress may require advances in our understanding of how to model and infer causality from data.

Gaussian Processes in Machine Learning

Carl Edward Rasmussen, 2004. (In Advanced Lectures on Machine Learning: ML Summer Schools 2003, Canberra, Australia, February 2 - 14, 2003, Tübingen, Germany, August 4 - 16, 2003, Revised Lectures). Edited by Olivier Bousquet, Ulrike von Luxburg, Gunnar Rätsch. Heidelberg. Springer-Verlag. Lecture Notes in Computer Science (LNCS).

Abstract URL

We give a basic introduction to Gaussian Process regression models. We focus on understanding the role of the stochastic process and how it is used to define a distribution over functions. We present the simple equations for incorporating training data and examine how to learn the hyperparameters using the marginal likelihood. We explain the practical advantages of Gaussian Process and end with conclusions and a look at the current trends in GP work.

Comment: Copyright by Springer, springerlink

Occam's Razor

Carl Edward Rasmussen, Zoubin Ghahramani, December 2001. (In Advances in Neural Information Processing Systems 13). Edited by T. G. Diettrich T. Leen, V. Tresp. Cambridge, MA, USA. The MIT Press.

Abstract URL

The Bayesian paradigm apparently only sometimes gives rise to Occam’s Razor; at other times very large models perform well. We give simple examples of both kinds of behaviour. The two views are reconciled when measuring complexity of functions, rather than of the machinery used to implement them. We analyze the complexity of functions for some linear in the parameter models that are equivalent to Gaussian Processes, and always find Occam’s Razor at work.

A Unifying Review of Linear Gaussian Models

Sam T. Roweis, Zoubin Ghahramani, 1999. (Neural Computation).

Abstract URL

Factor analysis, principal component analysis, mixtures of gaussian clusters, vector quantization, Kalman filter models, and hidden Markov models can all be unified as variations of unsupervised learning under a single basic generative model. This is achieved by collecting together disparate observations and derivations made by many previous authors and introducing a new way of linking discrete and continuous state models using a simple nonlinearity. Through the use of other nonlinearities, we show how independent component analysis is also a variation of the same basic generative model. We show that factor analysis and mixtures of gaussians can be implemented in autoencoder neural networks and learned using squared error plus the same regularization term. We introduce a new model for static data, known as sensible principal component analysis, as well as a novel concept of spatially adaptive observation noise. We also review some of the literature involving global and local mixtures of the basic models and provide pseudocode for inference and learning for all the basic models.

The Need for Open Source Software in Machine Learning

Sören Sonnenburg, Mikio L. Braun, Cheng Soon Ong, Samy Bengio, Leon Bottou, Geoffrey Holmes, Yann LeCun, Klaus-Robert Müller, Fernando Pereira, Carl Edward Rasmussen, Gunnar Rätsch, Bernhard Schölkopf, Alexander Smola, Pascal Vincent, Jason Weston, Robert C. Williamson, October 2007. (Journal of Machine Learning Research).

Abstract URL

Open source tools have recently reached a level of maturity which makes them suitable for building large-scale real-world systems. At the same time, the field of machine learning has developed a large body of powerful learning algorithms for diverse applications. However, the true potential of these methods is not realized, since existing implementations are not openly shared, resulting in software with low usability, and weak interoperability. We argue that this situation can be significantly improved by increasing incentives for researchers to publish their software under an open source model. Additionally, we outline the problems authors are faced with when trying to publish algorithmic implementations of machine learning methods. We believe that a resource of peer reviewed software accompanied by short articles would be highly valuable to both the machine learning and the general scientific community.

Two problems with variational expectation maximisation for time-series models

Richard E. Turner, Maneesh Sahani, 2011. (In Bayesian Time series models). Edited by D. Barber, T. Cemgil, S. Chiappa. Cambridge University Press.

Abstract URL

Variational methods are a key component of the approximate inference and learning toolbox. These methods fill an important middle ground, retaining distributional information about uncertainty in latent variables, unlike maximum a posteriori methods (MAP), and yet generally requiring less computational time than Monte Carlo Markov Chain methods. In particular the variational Expectation Maximisation (vEM) and variational Bayes algorithms, both involving variational optimisation of a free-energy, are widely used in time-series modelling. Here, we investigate the success of vEM in simple probabilistic time-series models. First we consider the inference step of vEM, and show that a consequence of the well-known compactness property of variational inference is a failure to propagate uncertainty in time, thus limiting the usefulness of the retained distributional information. In particular, the uncertainty may appear to be smallest precisely when the approximation is poorest. Second, we consider parameter learning and analytically reveal systematic biases in the parameters found by vEM. Surprisingly, simpler variational approximations (such a mean-field) can lead to less bias than more complicated structured approximations.

Transcriptional data: a new gateway to drug repositioning?

Francesco Iorio, Timothy Rittman, Hong Ge, Michael Menden, Julio Saez-Rodriguez, April 2013. (Drug Discovery Today).

URL

Interoperability of statistical models in pandemic preparedness: principles and reality

George Nicholson, Marta Blangiardo, Mark Briers, Peter J Diggle, Tor Erlend Fjelde, Hong Ge, Robert J B Goudie, Radka Jersakova, Ruairidh E King, Brieuc C L Lehmann, Ann-Marie Mallon, Tullia Padellini, Yee Whye Teh, Chris Holmes, Sylvia Richardson, May 2022. (Stat. Sci.).

Abstract URL

We present interoperability as a guiding framework for statistical modelling to assist policy makers asking multiple questions using diverse datasets in the face of an evolving pandemic response. Interoperability provides an important set of principles for future pandemic preparedness, through the joint design and deployment of adaptable systems of statistical models for disease surveillance using probabilistic reasoning. We illustrate this through case studies for inferring and characterising spatial-temporal prevalence and reproduction numbers of SARS-CoV-2 infections in England.

No matching items
Back to top