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Statistical Significance

To be able to support or refute statements about unobservable quantities, we can
collect statistical evidence, in the form of experiments.

Example: Can people, in a blind test, taste the difference between single malt and
blended whisky?

We get 10 people to blind test, each given a randomly selected drink. We observe
that 7 people correctly identify their drink, and 3 respond incorrectly. What do
we conclude?

Could the observations reasonably be accounted for by random fluctuations?

We repeat the experiment with 1000 people, 700 correct, 300 incorrect. What do
we now conclude?

Although the proportions are identical, the statistical significance is different.

Notice: “significantly different” and “statistically significantly different” are
different!
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Hypothesis

One way to assess statistical significance, is through hypothesis testing.

Informally

• Hypothetically, assume a null hypothesis, H0, to be true. For example, the
null hypothesis could be that people can’t tell the difference between
whiskies.

• Make some observations
• If the observed data has very low probability given the null hypothesis, then

the null hypothesis probably wasn’t true.

This is probabilistic reductio ad absurdum.
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Hypothesis testing

Consider again the binary case, 7 correct and 3 incorrect.

Let’s examine the null hypothesis, H0, that people can’t taste the difference.

Assuming the null hypothesis is true, what is the probability of the observed
outcome, or something more extreme?

10∑
i=7

p(i correct|H0) =

10∑
i=7

10Ci( 1
2 )
i(1 − 1

2 )
10−i

= ( 1
2 )

10
10∑
i=7

10Ci = (120 + 45 + 10 + 1)/210 ' 0.17

So, under the null hypothesis, that people respond randomly, this outcome or
something more extreme would happen in about 17% of cases.

So, this doesn’t constitute strong evidence against the hypothesis.

Typically, significance is judged against a 5% or a 1% threshold.

Notice: This process is fundamentally asymmetric.
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The 700 vs 300 case

To analyze the more extensive survey, we would need to compute:

( 1
2 )

1000
1000∑
i=700

1000Ci .

Direct computation of this quantity is not particularly attractive. Instead, as an
approximation we use the Gaussian with the same mean and variance as the
binomial under the null (recall E = np and V = npq)

N(µ = n/2, σ2 = n/4) = N(µ = 500, σ2 = 250).

To compute the desired probability we standardize the Gaussian

y =
x− 500√

250
,

and compute

p(y >
700 − 500√

250
) = p(y > 12.6) = 1 −Φ(12.6) < 10−6.

I.e., under the null hypothesis, this outcome or something more extreme would be
exceedingly unlikely, and we can thus reject the null hypothesis.
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The 70 vs 30 case
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Figure showing the discrete Binomial and the continuous Gaussian
approximation together with the empirical value 0.7.

The approximation is very good.

The tail probability is very small.
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. . . “or something more extreme”

Notice, that it is not adequate to simply compute the probability of the actual
outcome under the null hypothesis.

You need to order the possible outcomes, and compute the probability of the
observed outcome or something more extreme.

For example, in the case of 1000 binary trials discussed on the previous slide, any
particular outcome is actually unlikely, simply because there are so many. E.g.

p(500 correct|H0) =
1000!

500!500!21000 ' 0.025.
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One-sided and two-sided tests

Depending on the circumstances, it may be necessary to use a two-sided test.

Example: We want to establish whether a coin is fair. Out of 10 flips, we get 7
heads and 3 tails. What is the evidence against the null hypothesis, that the coin is
fair?

We need to evaluate the probability of the observed outcome, or something more
extreme:

3∑
i=0

p(i heads|H0) +

10∑
i=7

p(i heads|H0) = 1 −

6∑
i=4

p(i heads).

Note, how the coin example is different from the whisky tasting example: the
tasting example is asymmetric, in that it cannot really happen, that people are
worse than chance.

Figuring out whether one-sided or two-sided tests are appropriate, may require
some attention!
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Example

A bus company claims that on a certain route there is a service every 20 minutes.
Three people complain that this claim is false:

• A: had to wait 45 minutes on a particular day
• B: had to wait 45 minutes on both Monday and Tuesday
• C: had to wait 45 on two days of last week

Are any of these claims statistically significant?

Null hypothesis: bus arrivals are random, Poisson, with intensity λ = 3 buses per
hour. Thus, waiting times are exponentially distributed Ex(λ = 3).

p(wait > 3/4) =

∫∞
3/4

3 exp(−3t)dt =
[
− exp(−3t)

]∞
3/4

= exp(−9/4) ' 0.105
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Example, continued

• A: had to wait 45 mins on a particular day. Since p = 0.105 this is not
hugely unlikely, and cannot eg at the 5% level be used to reject H0.

• B: had to wait 45 mins both Monday and Tuesday. Both events happen
independently, so p = 0.1052 = 0.011. This seems quite unlikely under the
null, so we can reject the companies claim, say at the 5% level.

• C: had to wait 45 mins on two days of last week.

p =

5∑
i=2

nCi 0.105i(0.895)5−i ' 0.089,

again, not exceedingly strong evidence.

Notice: one has to be careful interpreting exactly what events are being evaluated.
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A Bayesian Alternative

Note, that in the classical test which we have just described

• we think of the observations as being random, and the underlying unknown
property as being fixed (through the null hypothesis).

• the test is asymmetric, where it is not so clear what the alternative is.
• the test is based on assuming something which is shown unlikely to be true

Could we possibly think of a more intuitive scheme?
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A Binary Test

Focus on the binary example, with 7 of one and 3 of the other outcomes. We
want to know whether the probability π could be a half:

• corresponding to people not being able to taste the difference, or
• corresponding to a fair coin, etc

We cannot simply find the probability that π = 1
2 as π is continuous, this

probability would be zero (because it is a probability density).

Instead, we can compare the probability of the observations under two alternative
models:

• Model A: observations independent Bernoulli with π = 1
2

• Model B: observations independent Bernoulli with unknown π.
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The probability of the data under the two models

Model A: probability of the observations:

p(D|A) = 10C3(
1
2 )

10 ' 0.117.

Model B: p(D|π,B) = 10C3 π
7(1 − π)3. But we do not know the value of π, so we

use

p(D|B) =

∫
p(D,π|B)dπ =

∫
p(D|π,B)p(π)dπ.

To this end we need p(π), the prior on π, our assumption about π. In this case,
one appropriate choice would be p(π) = Uni(0, 1), then

p(D|B) = 10C3

∫1

0
π7(1 − π)3dπ = 10C3

Γ(4)Γ(8)
Γ(12)

= 1/11 ' 0.091,

where we used
∫
πa(1 − π)bdπ = Γ(a+ 1)Γ(b+ 1)/Γ(a+ b+ 2), which comes

from the normalization of the beta distribution:

p(π) ∼ Beta(α,β) =
Γ(α+ β)

Γ(α)Γ(β)
πα−1(1 − π)β−1.
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Conclusion

The 10 observations have probability

• p(D|A) ' 0.117 for model A, and
• p(D|B) ' 0.091 for model B

which shows a slight preference for model A, but the two models are almost
equally good at accounting for the observations.

Consequently, these limited observations, provide no strong preference.

Notice that

p(D|π = 7/10) = 10C3(7/10)7(3/10)3 ' 0.267

assigns much higher probability to the data — but this is not a fair comparison,
why not?
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Conclusions for 8 and 2 outcome

If instead, the 10 outcomes had been distributed as 8 and 2, we would have

• classical one-sided test: p = (45 + 10 + 1)/210 ' 0.055 against the null
hypothesis

• classical two-sided test: p = 0.109 against the null hypothesis
• Bayesian comparison

• p(D|A) = 10C2 /210 = 0.044
• p(D|B) = 1/11 = 0.091

showing a preference for the B model over a model fixed at π = 1/2.

Rasmussen (CUED) Lecture 6: Testing and Statistical Significance March 6th, 2015 15 / 16



Hypothesis testing

The classical hypothesis test is used almost universally in practice.

It relies on assuming a null hypothesis, H0, and computing the evidence against
this.

It is asymmetric: a failure in rejecting the null is not evidence in support of the
null.

The statement made is complex:

• The probability of the observations, or something more extreme, given the
null hypothesis is p.

• The statement is not: The probability of the null hypothesis is p.

The significance level is often compared to a threshold of 5% or 1%, but this is
not really necessary.
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