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Moment Generating Functions

The computation of the central moments (e.g. expectation and variance) as well
as combinations of random variables such as sums are useful, but can be tedious
because of the sums or integrals involved.

Example: The expectation of the Binomial is

E[X] =

n∑
r=0

r p(X = r) =

n∑
r=0

r nCr pr(1 − p)n−r =

n∑
r=1

rn!
(n− r)!r!

pr(1 − p)n−r

= np

n∑
r=1

(n− 1)!
(n− r)!(r− 1)!

pr−1(1 − p)n−r

= np

ñ∑
r̃=0

ñ!
(ñ− r̃)!r̃!

pr̃(1 − p)ñ−r̃ = np,

where ñ = n− 1 and r̃ = r− 1, and using the fact that the Binomial normalizes to
one.

Moment Generating functions are a neat mathematical trick which sometimes
sidesteps these tedious calculations.
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The Discrete Moment Generating Function

For a discrete random variable, we define the moment generating function

g(z) =
∑
r

zrp(r).

This is useful, since when differentiated w.r.t. z an extra factor r appears in the
sum, thus

g ′(z) =
∑
r

rzr−1p(r), and g ′′(z) =
∑
r

r(r− 1)zr−2p(r).

So
g ′(1) =

∑
r

rp(r), and g ′′(1) =
∑
r

(r2 − r)p(r),

and
E[R] = g ′(1), and E[R2] = g ′′(1) + g ′(1).
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The Binomial Distribution

The Binomial has

g(z) =
∑
r

nCr zrpr(1 − p)n−r =
∑
r

nCr(pz)r(1 − p)n−r = (q+ pz)n,

by the Binomial theorem, where we have defined q = 1 − p.

Thus, we have

g ′(z) = np(q+ pz)n−1, and g ′′(z) = n(n− 1)p2(q+ pz)n−2.

So
g ′(1) = np, and g ′′(1) = n(n− 1)p2,

and
E[X] = np, and E[X2] = n2p2 − np2 + np,

which combine to

E[X] = np, and V[X] = E[X2] − E[X]2 = np− np2 = npq.
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Some Discrete Moment Generating Functions

distribution symbol probability moment generating function
Bernoulli Ber(p) p(x) = px(1 − p)1−x g(z) = q+ zp
Binomial B(n,p) p(r) = nCr pr(1 − p)n−r g(z) = (q+ zp)n

Poisson Po(λ) p(r) = exp(−λ)λr/r! g(z) = exp(λ(z− 1))

where we have defined q = 1 − p.
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Sums of Random Variables

Example: Consider W = X+ Y, where X ∼ Po(λx) and Y ∼ Po(λy) are
independent Poisson distributed. Then

p(W= w)

=
∑
x6w

p(X = x)p(Y = w− x) =

w∑
x=0

exp(−λx)
λxx
x!

exp(−λy)
λw−x
y

(w− x)!

=
exp(−λx − λy)

w!

w∑
x=0

w!
x!(w− x)!

λxxλ
w−x
y = exp(−λx − λy)

(λx + λy)
w

w!

= Po(λx + λy),

i.e. the Poisson distribution is closed under addition.
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Sums using Moment Generating Functions

Now W = X+ Y, then

gw(z) =
∑
w

zw
∑
x

p(X = x)p(Y = w− x)

=
∑
w

∑
x

zxp(X = x)zw−xp(Y = w− x)

=
∑
x

∑
y

zxp(X = x)zyp(Y = y)

=
∑
x

zxp(X = x)
∑
y

zyp(Y = y)

= gx(z)gy(z).

I.e., the sum of independent random variables has a moment generating function,
which is the product of the moment generating functions.

Example: we see immediately, that the sum of two independent Poisson is Poisson
with λ = λx + λy as g(z) = exp(λ(z− 1)).
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Moment Generating Functions in the Continuous case

For continuous distributions1

g(s) =

∫
x

exp(sx)p(x)dx,

which is related to the two-sided Laplace transform. We have

g ′(s) =

∫
x exp(sx)p(x)dx, and g ′′(s) =

∫
x2 exp(sx)p(x)dx,

and so on, which gives

E[X] = g ′(0), and E[X2] = g ′′(0).

Also, the sum of two independent continuous random variables, which is the
convolution of the probability densities, has a moment generating function which
is the product of the moment generating functions.

Similar to the discrete case and to Laplace transforms from signal analysis.

1In the past a different definition g(s) =
∫
x exp(−sx)p(x)dx was used.
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Moment Generating Functions in the Continuous case

distribution symbol probability moment generating function
Uniform Uni(a,b) p(x) = 1/(b− a) g(s) = exp(as)−exp(bs)

s(b−a)

Exponential Ex(λ) p(x) = λ exp(−λx) g(s) = λ/(λ− s)

Gaussian N(µ,σ2) p(x) =
exp(− (x−µ)2

2σ2 )
√

2πσ2
g(s) = exp(sµ+ s2σ2/2)

The moment generating functions for shifted and scaled random variables are

Y = X+ β, gy(s) = exp(βs)gx(s)

and
Y = αX, gy(s) = gx(αs),

which are both verified by plugging into the definition.
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The multivariate Gaussian

The multivariate Gaussian in D dimensions, where x is a vector of length D has
probability density

p(x) ∼ N(µ,Σ) = (2π)−D/2|Σ|−1/2 exp
(
− 1

2 (x − µ)>Σ−1(x − µ)
)
,

where µ is the mean vector of length D and Σ is the D×D covariance matrix.

The covariance matrix is positive definite and symmetric.

The entries of the covariance matrix Σij are the covariances between different
coordinates of x

Σij = E[(xi − µi)(xj − µj)] = E[xixj] − µiµj.

In a Gaussian, if all covariances Σi 6=j are zero, Σ is diagonal, and the components
xi are independent, since then p(x) =

∏
i p(xi).
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The Gaussian Distribution

In the multivariate Gaussian, the equi-probability contours are ellipses. The axis
directions are given by the eigenvectors of the covariance matrix and their lengths
are proportional to the square root of the corresponding eigenvalues.
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Correlation and independence

The covariance matrix is sometimes written as

Σ =
[
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

]
,

where −1 < ρ < 1 is the correlation coefficient. When

• ρ < 0, the variables are anti-correlated
• ρ = 0, uncorrelated
• ρ > 0, positively correlated

Independence: p(X, Y) = p(X)p(Y). Note: independence⇒ uncorrelated, but not
vice versa.

Example: Xi are independent, with Xi ∼ N(0, 1) and Yi = ±Xi (with random
sign). Here, X and Y are uncorrelated, but not independent.
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Conditionals and Marginals of a Gaussian

 

 

joint Gaussian
conditional

 

 

joint Gaussian
marginal

Both the conditionals and the marginals of a joint Gaussian are again Gaussian.
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Conditionals and Marginals of a Gaussian

Recall marginalization:

p(x) =

∫
p(x, y)dy.

For Gaussians:

p(x, y) = N
([ a

b

]
,
[
A C

C> B

])
=⇒ p(x) = N(a, A).

And conditioning

p(x|y) = N
(
a + CB−1(y − b), A− CB−1C>).
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The Central Limit Theorem

If X1,X2, . . . ,Xn are all identically independently distributed random variables
with mean µ and variance σ2, then in the limit of large n

X1 + X2 + . . . + Xn ∼ N(nµ,nσ2),

regardless of the actual distribution of Xi. Note: As we expect, the means and the
variances add up.

Equivalently
X1 + X2 + . . . + Xn − nµ

σ
√
n

∼ N(0, 1).

The Central Limit Theorem can be proven by examining the moment generating
function.
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Central Limit Theorem Example

The distribution of

Xn =
Y1 + Y2 + . . . + Yn − nµ

σ
√
n

where Yi ∼ Ex(1) for different values of n
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0
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n=2
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n=5
n=10
n→∞

Even for quite small values of n we get a good approximation by the Gaussian.
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