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Two useful rules for computing discrete probabilities

When a set of outcomes are all equally likely, the probability of an event is the
number of outcomes consistent with the event divided with the total number of
possible outcomes.

Example: What is the probability that someone has their birthday on Dec 31st?
Its 1/365.

Example: What is the probability that someone has their birthday in April?
Roughly 1/12.

The probability that two independent events happen simultaneously is given by
the product of the probabilities.

Example: What is the probability that two people both have their birthday in
January? It’s 1/144.

Example: What is the probability that two people both have their birthday in the
same month? It’s roughly 1/12. There a several ways to think about this.
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Computing the probability of more complicated events
What is the smallest number of people you need to ensure that the probability
that 2 people have identical birthdays is at least a half?

First, work out the probability q,, that with n people, none share birthdays.
Arbitrarily, order the people.

The birthday of the first person is irrelevant.

The second person must have a birthday different from the first, p, = 364/365.

The third person must have a birthday different from the first and the second,
p3 = 363/365.

Generally, for the 1’th person, p; = (366 —1)/365.

: T _ 365364 . 366—m _ 365!
Because of independence, qn = [[i_1 Pi = 33365 - 555+ = 36573605 1

We’re interested in the smallest value of n for which q,, < 1/2. A (tedious)
calculation shows n =23, q3 = 0.493.
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The Bernoulli Distribution

The simplest distribution is the Bernoulli distribution:
X ~ Ber(p), where 0 <p < 1.

The random variable X is binary, and takes on the value p(X =1) = p and
pX=0)=1-p.

The probability is sometimes written concisely as
pX=x) = p*(1—p)" .

Example: In a simple climate model, you might have the random variable X
indicating whether it rains on a particular day. You could then have X ~ Ber(p),
where different values of p would be used for different areas.

Warning: on this page the symbol p (intentionally) has two different meanings:
probability or a parameter. Underline all the occurrences where p is a parameter.
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Characterising the Bernoulli Distribution

The mean or expectation of the Bernoulli is
EX] = ) xp(x) = 0x(1-p)+1xp = p,
xeX
i.e., the mean of Bernoulli with parameter p is equal to p itself.

The variance of a distribution measures how much the outcomes “spread”. The
variance is defined as

V[X] = Var[X] = E[(X—EX))?] = Z (x —EX])*p(x).
xeX
For the Bernoulli random variable:
VIXI = ) (x—p)*p(x) = p*(1-p)+(1-p)*p = ((1-p)+p)p(1—p) = p(1-p).
xeX
Thus, the maximum variance of the Bernoulli is 1/4, attained when p = 1/2.
Does this seem reasonable?

The entropy of the Bernoulli —E[log(p)] = —p log(p) — (1 — p) log(1 —p) is
maximally 1 bit, attained when p = 1/2.
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Variance and Moments

The variance is always non-negative.

It is sometimes useful to write the variance as

3> (x—EX)’p(x) = Y (x* +EIX? — 2xEX))p(x)

xeX xeX
= E[X*] + E[X]? = 2E[X]* = E[X*] —E[X]?.

VIX]

Here, E[X?] is called the second moment. Similarly, E[X] is called the first
moment. The variance is also called the central second moment.

Example: Verify the above rule for Bernoulli. The second moment is
0 x (1 —p) + 12p = p. The square of the first moment is p>. The variance is thus

p—p>=p(l—p).
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The Binomial Distribution

The Binomial is the number of successes T in 1 independent, identical Bernoulli
trials, each with probability of success p.

We write

X ~ B(n,p), where n=0,1,2,..., and 0 <p < 1.

The value of the probability function is

pX=1) = 2Crp (1 —p) T,

The notation , C, are the combinations n choose r, the number of ways one can
choose r out of n when the order doesn’t matter:

n n!
nGr = <Y> B

The Bernoulli is a special case of the Binomial: Ber(p) = B(1, p).
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Refresher on Permutations and Combinations
If you don’t remember this, refer to part 1A math notes for more details.

The number of ways in which you can permute r elements from a total of n
(when order is important) is

n!
aPr = ot =nn—-1)n-2)---(n—r+1),

since, for the first item you can choose between n, for the second n — 1 and so on.

The number of ways in which you can choose r elements from a total of n (when
order is not important) is
P n!
7! m—r)r?’

as there are 1! orderings of the permutations which gives rise to the same choices.
Warning: n! is difficult to compute with for large n. Stirling’s approximation
n! ~ v2mmexp(—m)n™.
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Binomial Example

A semiconductor factory produces CPUs on silicon wafers, 100 CPU’s on each
wafer. Some of the CPUs don’t work. Cutting the chips from the wafer is
expensive so wafers with many failing units are discarded.

Assume that the probability of a CPU failing is independent and p = 0.05. What
is the probability p(> 5) that 5 or more CPUs fail?

Answer: Let the random variable X be the number of failures on a wafer:

p(X>=3) 1—-p(X<4 1fZB1|np —1onCp )100-t

1—-0.006 —0.031 — 0.081 —0.140 — 0.178 = 0.564,

R

where the notation B(i|n,p) is the probability of getting 1 successes in 1 trials in a
Binomial with probability p.

This shows that just over half the wafers will have 5 failures or more.
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Some Binomial Distributions

Below is an illustration of the Binomial probability distribution for various
settings of the parameters n and p.
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Characterising the Binomial Distribution

The expectation of the Binomial is

n n n ]
EX] = er(X:r) = ZrnCrpT(l—p)“’r = Zﬁpr(l—p)“*r
r=0 r=0 r=1 e
_ - (Tl—l)' r—1 n—r
“p; o (P
= n! T n—¥
= npf_Z:O AommP 1P =,

where i =n — 1 and ¥ = r — 1, and using the fact that the Binomial normalizes to
one.

In fact, the result is not surprising, since the Binomial gives the number of
successes in n independent Bernoulli trials; the Bernoulli has expectation p.
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Variance of the Binomial

We can compute the variance in an analogous way to the expectation, by doing
the substitution twice.

The result is
VIXI = np(1—1p).

These are instances of two general rules which we will see later:

When you add independent variables

e the means add up, and

e the variances add up.
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Independent Event Arrivals

Imagine phone calls arriving randomly and independently to a phone exchange,
with an average rate (or intensity) A.
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Above are 4 histograms of the same 25 arrivals at different time resolutions.
What is the probability distribution over 'number of arrivals per second’?
Note: as the histogram bins get smaller, the probability of multiple arrivals in a

bin decreases and each bin tends to a Bernoulli event.
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Examining a Sequence of Bernoulli Events

Therefore, we look at getting r arrivals in a Binomial B(n, p), where the number
of bins n grows.

When the bins get smaller, the probability of an arrival within a bin falls
proportional to the bin size, p = A/n.

So, we want: p(X =1) =B(n,A/n) asn — oo.

p(X=1) = lim B(n,A/n) = lim L(A)r(l_ﬁ)n_r

n—00 n—oo (N —1)Ir! \n n
. nn—1 n—r+1/A" A\ A\~T
e Ol
nocon M n T! n n
—_———— ——
=1 =exp(—A) =1
_ ATexp(—A)
- T!

This is called the Poisson distribution, with intensity A.
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The Poisson Distribution

If events happen randomly at independent times, with an average intensity
(number of events per unit time) A, then the probability that a certain number of
events T within a time interval is Poisson distributed, Po(A).

AT exp(—A)

pX=r1) = -

, where A > 0.

Examples: radioactive decay, network traffic, customer arrival, etc.

The expectation and variance of the Poisson are both E[X] = V[X] = A, which can
be derived from the limiting Binomial.
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Some Poisson Distributions

Below are some Poisson distributions with different intensities
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Because Binomial distributions with large n are tedious to compute with, one can
approximate the Binomial with the Poisson with the same mean, i.e.

B(n,p) ~ Po(np). The approximation is good when 1 is large (say n > 50) and p
small (say p < 0.1).
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