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Machine Learning

Other related terms:

• Pattern Recognition

• Neural Networks

• Deep Learning

• Data Mining

• Data Science

• Statistics

• Artificial Intelligence

• Machine Learning



Learning:
The view from different fields

• Engineering: signal processing, system identification, adaptive and optimal control,
information theory, robotics, ...

• Computer Science: Artificial Intelligence, computer vision, information retrieval, ...

• Statistics: learning theory, data mining, learning and inference from data, ...

• Cognitive Science and Psychology: perception, movement control, reinforcement
learning, mathematical psychology, computational linguistics, ...

• Computational Neuroscience: neuronal networks, neural information processing, ...

• Economics: decision theory, game theory, operational research, ...



Different fields, Convergent ideas

• The same set of ideas and mathematical tools have emerged in many of these fields,
albeit with different emphases.

• Machine learning is an interdisciplinary field focusing on both the mathematical
foundations and practical applications of systems that learn from data.

• The goal of these lectures: to introduce very basic concepts, models and algorithms.

• Much more on this topic:

– 4F10: Statistical Pattern Processing
– 4F13: Machine Learning
– Advanced Machine Learning (Lent)
– Information Theory (Lent)
– Reinforcement Learning and Decision Theory (Lent)



Applications of Machine Learning



Automatic speech recognition

Machine Translation, Dialog Systems, Text modelling and summarisation...



Computer vision: object, face and handwriting recognition,
image captioning

(NORB image from Yann LeCun, image captioning from Andrej Karpathy and Fei-Fei Li)



Information retrieval and Web Search

Google Search: Unsupervised Learning http://www.google.com/search?q=Unsupervised+Learning&sourceid=fir...
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Web    Images    Groups    News    Froogle    more »

 Search   Advanced Search
  Preferences    

 Web Results 1 - 10 of about 150,000 for Unsupervised Learning. (0.27 seconds) 

Mixture modelling, Clustering, Intrinsic classification ...
Mixture Modelling page. Welcome to David Dowe’s clustering, mixture modelling
and unsupervised learning page. Mixture modelling (or ... 
www.csse.monash.edu.au/~dld/mixture.modelling.page.html - 26k - 4 Oct 2004 - Cached - Similar pages

ACL’99 Workshop -- Unsupervised Learning in Natural Language ...
PROGRAM. ACL’99 Workshop Unsupervised Learning in Natural Language Processing.
University of Maryland June 21, 1999. Endorsed by SIGNLL ... 
www.ai.sri.com/~kehler/unsup-acl-99.html - 5k - Cached - Similar pages

Unsupervised learning and Clustering
cgm.cs.mcgill.ca/~soss/cs644/projects/wijhe/ - 1k - Cached - Similar pages

NIPS*98 Workshop - Integrating Supervised and Unsupervised ...
NIPS*98 Workshop ‘‘Integrating Supervised and Unsupervised Learning’’ Friday, December
4, 1998. ... 4:45-5:30, Theories of Unsupervised Learning and Missing Values. ... 
www-2.cs.cmu.edu/~mccallum/supunsup/ - 7k - Cached - Similar pages

NIPS Tutorial 1999
Probabilistic Models for Unsupervised Learning Tutorial presented at the
1999 NIPS Conference by Zoubin Ghahramani and Sam Roweis. ... 
www.gatsby.ucl.ac.uk/~zoubin/NIPStutorial.html - 4k - Cached - Similar pages

Gatsby Course: Unsupervised Learning : Homepage
Unsupervised Learning (Fall 2000). ... Syllabus (resources page): 10/10 1 -
Introduction to Unsupervised Learning Geoff project: (ps, pdf). ... 
www.gatsby.ucl.ac.uk/~quaid/course/ - 15k - Cached - Similar pages
[ More results from www.gatsby.ucl.ac.uk ]

[PDF] Unsupervised Learning of the Morphology of a Natural Language
File Format: PDF/Adobe Acrobat - View as HTML
Page 1. Page 2. Page 3. Page 4. Page 5. Page 6. Page 7. Page 8. Page 9. Page 10.
Page 11. Page 12. Page 13. Page 14. Page 15. Page 16. Page 17. Page 18. Page 19 ... 
acl.ldc.upenn.edu/J/J01/J01-2001.pdf - Similar pages

Unsupervised Learning - The MIT Press
... From Bradford Books: Unsupervised Learning Foundations of Neural Computation Edited
by Geoffrey Hinton and Terrence J. Sejnowski Since its founding in 1989 by ... 
mitpress.mit.edu/book-home.tcl?isbn=026258168X - 13k - Cached - Similar pages

[PS] Unsupervised Learning of Disambiguation Rules for Part of
File Format: Adobe PostScript - View as Text
Unsupervised Learning of Disambiguation Rules for Part of. Speech Tagging. Eric
Brill. 1. ... It is possible to use unsupervised learning to train stochastic. ... 
www.cs.jhu.edu/~brill/acl-wkshp.ps - Similar pages

The Unsupervised Learning Group (ULG) at UT Austin
The Unsupervised Learning Group (ULG). What ? The Unsupervised Learning Group
(ULG) is a group of graduate students from the Computer ... 
www.lans.ece.utexas.edu/ulg/ - 14k - Cached - Similar pages

Result Page: 1 2 3 4 5 6 7 8 9 10 Next

Unsupervised Learning

Web Pages

Retrieval
Categorisation
Clustering
Relations between pages
Personalised search
Targeted advertising
Spam detection



Financial Prediction and Automated Trading



Medical diagnosis

(image from Kevin Murphy)



Bioinfomatics, Drug discovery, Scientific data analysis



Autonomous Vehicles

from 1989 .... to 2015!



Playing Computer Games



Three Types of Learning

Imagine an organism or machine which experiences a series of sensory inputs:

x1, x2, x3, x4, . . .

Supervised learning: The machine is also given desired outputs y1, y2, . . ., and its goal is
to learn to produce the correct output given a new input.

Unsupervised learning: The goal of the machine is to build a model of x that can be
used for reasoning, decision making, predicting things, communicating etc.

Reinforcement learning: The machine can also produce actions a1, a2, . . . which affect
the state of the world, and receives rewards (or punishments) r1, r2, . . .. Its goal is to learn
to act in a way that maximises rewards in the long term.



Four Problems

Over the next few lectures we will cover these five topics:

• Classification

• Regression

• Clustering

• Dimensionality Reduction

We will make extensive use of probability, statistics, calculus and linear algebra.



Classification

We will represent data by vectors in some vector space.
Let x denote a data point with elements x = (x1, x2, . . . , xD)
The elements of x, e.g. xd, represent measured (observed) features of the data point; D
denotes the number of measured features of each point.

The data set D consists of N pairs of data points and corresponding discrete class labels:

D = {(x(1), y(1)) . . . , (x(N), y(N))}

where y(n) ∈ {1, . . . , C} and C is the number of classes.
The goal is to classify new inputs correctly (i.e. to generalise).
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Examples:

• spam vs non-spam

• normal vs disease

• 0 vs 1 vs 2 vs 3 ... vs 9



Classification: Example Iris Dataset

3 classes, 4 numeric attributes, 150 instances
A data set with 150 points and 3 classes. Each point is a random sample of
measurements of flowers from one of three iris species—setosa, versicolor,
and virginica—collected by Anderson (1935). Used by Fisher (1936) for
linear discrimant function technique.

The measurements are sepal length, sepal width, petal length, and petal width in cm.

Data:
5.1,3.5,1.4,0.2,Iris-setosa

4.9,3.0,1.4,0.2,Iris-setosa

4.7,3.2,1.3,0.2,Iris-setosa

...

7.0,3.2,4.7,1.4,Iris-versicolor

6.4,3.2,4.5,1.5,Iris-versicolor

6.9,3.1,4.9,1.5,Iris-versicolor

...

6.3,3.3,6.0,2.5,Iris-virginica

5.8,2.7,5.1,1.9,Iris-virginica

7.1,3.0,5.9,2.1,Iris-virginica 4 5 6 7 8
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Regression

Let x denote an input point with elements

x = (x1, x2, . . . , xD). The elements of x, e.g.

xd, represent measured (observed) features of the

data point; D denotes the number of measured

features of each point.

The data set D consists of N pairs of inputs and

corresponding real-valued outputs:

D = {(x(1)
, y

(1)
) . . . , (x

(N)
, y

(N)
)}

where y(n) ∈ <.

The goal is to predict with accuracy the output

given a new input (i.e. to generalize).

Linear and Nonlinear Regression
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Clustering

Given some data, the goal is to discover “clusters” of points.

Roughly speaking, two points belonging to the same cluster are generally more similar to
each other or closer to each other than two points belonging to different clusters.

Examples:

• cluster news stories into topics

• cluster genes by similar function

• cluster movies into categories

• cluster astronomical objects



Dimensionality Reduction

Given some data, the goal is to discover and model the intrinsic dimensions of the data,
and/or to project high dimensional data onto a lower number of dimensions that preserve
the relevant information.

in close second. However, the variance of correlation dimension is much higher
than that of the MLE (the SD is at least 10 times higher for all dimensions). The
regression estimator, on the other hand, has relatively low variance (though always
higher than the MLE) but the largest negative bias. On the balance of bias and
variance, MLE is clearly the best choice.

Figure 3: Two image datasets: hand rotation and Isomap faces (example images).

Table 1: Estimated dimensions for popular manifold datasets. For the Swiss roll,
the table gives mean(SD) over 1000 uniform samples.

Dataset Data dim. Sample size MLE Regression Corr. dim.
Swiss roll 3 1000 2.1(0.02) 1.8(0.03) 2.0(0.24)
Faces 64 × 64 698 4.3 4.0 3.5
Hands 480 × 512 481 3.1 2.5 3.91

Finally, we compare the estimators on three popular manifold datasets (Table 1):
the Swiss roll, and two image datasets shown on Fig. 3: the Isomap face database2,
and the hand rotation sequence3 used in [14]. For the Swiss roll, the MLE again
provides the best combination of bias and variance.

The face database consists of images of an artificial face under three changing con-
ditions: illumination, and vertical and horizontal orientation. Hence the intrinsic
dimension of the dataset should be 3, but only if we had the full 3-d images of the
face. All we have, however, are 2-d projections of the face, and it is clear that one
needs more than one “basis” image to represent different poses (from casual inspec-
tion, front view and profile seem sufficient). The estimated dimension of about 4 is
therefore very reasonable.

The hand image data is a real video sequence of a hand rotating along a 1-d curve in
space, but again several basis 2-d images are needed to represent different poses (in
this case, front, back, and profile seem sufficient). The estimated dimension around
3 therefore seems reasonable. We note that the correlation dimension provides two
completely different answers for this dataset, depending on which linear part of the
curve is used; this is further evidence of its high variance, which makes it a less
reliable estimate that the MLE.

5 Discussion

In this paper, we have derived a maximum likelihood estimator of intrinsic dimen-
sion and some asymptotic approximations to its bias and variance. We have shown

1This estimate is obtained from the range 500...1000. For this dataset, the correlation
dimension curve has two distinct linear parts, with the first part over the range we would
normally use, 10...100, producing dimension 19.7, which is clearly unreasonable.

2http://isomap.stanford.edu/datasets.html
3http://vasc.ri.cmu.edu//idb/html/motion/hand/index.html
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Basic Rules of Probability

Let X be a random variable taking values x in some set X . Probabilities are non-
negative, P (X = x) ≥ 0 ∀x, and normalise:

∑
x∈X P (X = x) = 1 for distributions if x

is a discrete variable and
∫ +∞
−∞ p(x)dx = 1 for probability densities over continuous variables.

The joint probability of X = x and Y = y is: P (X = x, Y = y).

The marginal probability of X = x is: P (X = x) =
∑
y P (X = x, y), assuming y is

discrete. I will generally write P (x) to mean P (X = x).

The conditional probability of x given y is: P (x|y) = P (x, y)/P (y)

Sum Rule: P (x) =
∑
y P (x, y)

Product Rule: P (x, y) = P (x)P (y|x) = P (y)P (x|y)

Bayes Rule:

Sum and product rules ⇒ P (y|x) =
P (x|y)P (y)

P (x)
=

P (x|y)P (y)∑
y′ P (x|y′)P (y′)



Some distributions

Univariate Gaussian density (x ∈ <):

p(x|µ, σ) =
1√

2πσ2
exp

{
−(x− µ)2

2σ2

}
Multivariate Gaussian density (x ∈ <D):

p(x|µ,Σ) = |2πΣ|−1
2 exp

{
−1

2
(x− µ)>Σ−1(x− µ)

}
Bernoulli distribution (x ∈ {0, 1}):

p(x|θ) = θx(1− θ)1−x

Discrete distribution (x ∈ {1, . . . L}):

p(x|θ) =

L∏
`=1

θ
δ(x,`)
`

where δ(a, b) = 1 iff a = b, and
∑L
`=1 θ` = 1 and θ` ≥ 0 ∀`.



Some distributions (cont)

Uniform (x ∈ [a, b]):

p(x|a, b) =

{
1
b−a if a ≤ x ≤ b
0 otherwise

Gamma (x ≥ 0):

p(x|a, b) =
ba

Γ(a)
xa−1 exp{−bx}

Beta (x ∈ [0, 1]):

p(x|α, β) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1

where Γ(z) =
∫∞
0
tz−1e−tdt is the gamma function, a generalisation of the factorial:

Γ(n) = (n− 1)!.

Dirichlet (p ∈ <D, pd ≥ 0,
∑D
d=1 pd = 1):

p(p|α) =
Γ(
∑D
d=1αd)∏D

d=1 Γ(αd)

D∏
d=1

p
αd−1
d



Dirichlet Distributions

Examples of Dirichlet distributions over p = (p1, p2, p3) which can be plotted in 2D since
p3 = 1− p1 − p2:



Other distributions you should know about...

Exponential family of distributions:

P (x|θ) = f(x) g(θ) exp
{
φ(θ)>u(x)

}
where φ(θ) is the vector of natural parameters, u are sufficient statistics

• Binomial

• Multinomial

• Poisson

• ...



End Notes

It is very important that you understand all the material in the following cribsheet:
http://mlg.eng.cam.ac.uk/teaching/4f13/cribsheet.pdf

Here is a useful statistics / pattern recognition glossary:
http://alumni.media.mit.edu/~tpminka/statlearn/glossary/


