
3F3: Signal and Pattern Processing

Lecture 2: Regression

Zoubin Ghahramani
zoubin@eng.cam.ac.uk

Department of Engineering
University of Cambridge

Lent Term

Regression

Let x denote an input point with elements

x = (x1, x2, . . . , xD). The elements of x, e.g.

xd, represent measured (observed) features of the

data point; D denotes the number of measured

features of each point.

The data set D consists of N pairs of inputs and

corresponding real-valued outputs:

D = {(x(1)
, y

(1)
) . . . , (x

(N)
, y

(N)
)}

where y(n) ∈ <.

The goal is to predict with accuracy the output

given a new input (i.e. to generalize).

Linear and Nonlinear Regression

0 5 10
−20

0

20

40

M = 0

0 5 10
−20

0

20

40

M = 1

0 5 10
−20

0

20

40

M = 2

0 5 10
−20

0

20

40

M = 3

0 5 10
−20

0

20

40

M = 4

0 5 10
−20

0

20

40

M = 5

The Simplest Case...

1-D linear regression, with inputs x and outputs y.

Observed data:
D = {(x(1), y(1)) . . . , (x(N), y(N))}

Model:
y(n) = ax(n) + b

Is this reasonable? No!
Let’s try again...

Model:
y(n) = ax(n) + b+ εn

where εn is a model for the noise.

• What distribution should we assume for the noise?

• How should we fit a and b?

The Simplest Case...

1-D linear regression, with inputs x and outputs y.

Observed data: D = {(x(1), y(1)) . . . , (x(N), y(N))}

Model: y(n) = ax(n) + b+ εn where εn is a model for the noise. Assume:

• that the noise is Gaussian with mean zero and variance σ2, and

• that the data was independently and identically distributed (iid) from this model.

Let y = (y(1) . . . , y(N)) and x = (x(1) . . . , x(N)). What is the probability of the observed
outputs, y, given the inputs, x, and parameters θ = (a, b, σ2)?

P (y|x, θ) =
∏
n

P (y(n)|x(n), a, b, σ2)

where

P (y(n)|x(n), a, b, σ2) =
1√
2πσ

exp

{
− 1

2σ2
(y(n) − ax(n) − b)2

}

P (y|x, θ) is known as the likelihood for the parameters θ.

Solving for Maximum Likelihood (ML) Parameters

The ML method is one way of finding a point estimate for the parameters:

argmax
θ
P (y|x, θ) ≡ argmax

θ
lnP (y|x, θ) def

= argmax
θ
L(θ)

Let x̃(n) =

(
x(n)

1

)
and β =

(
a
b

)
.

L(θ) =
∑
n

lnP (y(n)|x(n), a, b, σ2)

= − 1

2σ2

∑
n

(y(n) − β>x̃(n))2 − N
2
ln(2πσ2)

= − 1

2σ2

[∑
n

y(n)2 − 2

(∑
n

y(n)x̃(n)>

)
β + β>

(∑
n

x̃(n)x̃(n)>

)
β

]
− N

2
ln(2πσ2)

Solving for Maximum Likelihood (ML) Parameters...

Solve by taking derivatives and setting to zero...

L(θ) = − 1

2σ2

[∑
n

y(n)2− 2

(∑
n

y(n)x̃(n)>

)
β + β>

(∑
n

x̃(n)x̃(n)>

)
β

]
− N

2
ln(2πσ2)

∂L(θ)
∂β

=
1

σ2

[(∑
n

y(n)x̃(n)>

)
− β>

(∑
n

x̃(n)x̃(n)>

)]
= 0

β̂ =

(∑
n

x̃(n)x̃(n)>

)−1(∑
n

y(n)x̃(n)

)
“Normal Equations”

∂L(θ)
∂σ

= σ−3

[∑
n

. . .

]
−Nσ−1 = 0

σ̂2 =

[∑
n

. . .

]
/N

Some Useful Rules for Derivatives wrt Vectors

• A very useful rule:
∂ a>x

∂x
= a>

We prove this simply by expanding out the dot product a>x =
∑
i aixi, and using the

convention that the derivative of a scalar wrt a column vector is a row vector:
∂
∑
i aixi
∂xj

= aj

• Similarly we can use the above and the product rule to show that:

∂x>Ax

∂x
= x>A+ x>A>

for symmetric A = A> we have ∂x>Ax
∂x = 2x>A.

• The following is more tricky to prove:
∂ ln |A|
∂A

= A−>,

where |A| denotes the determinant of A, and A is square and invertible.1

Note, all the above are generalizations of the scalar cases: e.g. ∂ ln a
∂a = 1

a.
1If A is symmetric then

∂ ln |A|
∂A = 2A−1 − diag(A−1).

Linear Regression with Vector Valued Inputs

Inputs x ∈ <D

Model:

y(n) = β0 + β1x
(n)
1 + . . . βDx

(n)
D + εn

y(n) = β>x̃(n) + εn

where εn is Gaussian noise, and x̃(n) =

(
1

x(n)

)
.

Easy!

We’ve solved this already.

Polynomial (Nonlinear) Regression

M th Order Polynomial Model:

y(n) = β0 + β1x
(n) + β2x

(n)2 + . . . βMx
(n)M + εn

where εn is Gaussian noise.

Easy!

We’ve solved this already as well.

0 5 10
−20

0

20

40

M = 0

0 5 10
−20

0

20

40

M = 1

0 5 10
−20

0

20

40

M = 2

0 5 10
−20

0

20

40

M = 3

0 5 10
−20

0

20

40

M = 4

0 5 10
−20

0

20

40

M = 5

Basis Function (Nonlinear) Regression

Instead of using polynomial bases, we can use all kinds of other bases (Gaussian radial
basis functions, sinusoids, wavelets, splines, etc).

K Basis Function Model:

y(n) =

K∑
k=1

βkφk(x
(n)) + εn

where φk can be any function, and εn is Gaussian noise.

For example, Gaussian radial basis functions with center ck and width sk:

φk(x) = exp{− 1

2sk
‖x− ck‖2}

Easy! We’ve solved this already as well. Let x̃ ≡ φ(x) = (φ1(x) . . . φK(x)).

β̂ =

(∑
n

x̃(n)x̃(n)>

)−1(∑
n

y(n)x̃(n)

)
related to “kernel trick”

Linear Regression with Non-Gaussian Noise

Model:
y(n) = β>x(n) + εn

where εn is non-Gaussian noise.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−20

−15

−10

−5

0

5

For example, we might want to use heavy-tailed noise to model outliers.

Gaussian noise:

P (y(n)|x(n), β, σ2) =
1√
2πσ

exp

{
− 1

2σ2
(y(n) − β>x(n))2

}

vs Laplacian noise:

P (y(n)|x(n), β, σ) =
1

Z
exp

{
−1

σ

∣∣∣y(n) − β>x(n)
∣∣∣}

Bayesian Learning

Apply the basic rules of probability to learning from data.

Data set: D = {y1, . . . , yn} Models: m, m′ etc. Model parameters: θ
Prior probability of models: P (m), P (m′) etc.
Prior probabilities of model parameters: P (θ|m)
Model of data given parameters (likelihood model): P (y|θ,m)

If the data are independently and identically distributed then:

P (D|θ,m) =

n∏
i=1

P (yi|θ,m)

Posterior probability of model parameters:

P (θ|D,m) =
P (D|θ,m)P (θ|m)

P (D|m)

Posterior probability of models:

P (m|D) = P (m)P (D|m)

P (D)

Maximum Likelihood, Maximum A Posteriori,
Regularization, and Bayesian Learning

Maximum Likelihood:
θ̂ = argmax

θ
P (D|θ,m)

Maximum A Posteriori: Assume a prior P (θ|m)

θ̂ = argmax
θ
P (θ|D,m) = argmax

θ
[lnP (D|θ,m) + lnP (θ|m)]

Regularization:
θ̂ = argmin

θ
[`(D, θ) + λR(θ)]

where `(D, θ) is some loss on the training data, λ > 0, and R(θ) is called a regularizer for
θ, e.g. R(θ) = ‖θ‖2.

Bayesian Learning:

P (θ|D,m) =
P (D|θ,m)P (θ|m)

P (D|m)

