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Regression

Let x denote an input point with elements
x = (x1,x2,...,xp). The elements of x, e.g.
x4, represent measured (observed) features of the
data point; D denotes the number of measured
features of each point.

The data set D consists of IN pairs of inputs and
corresponding real-valued outputs:

D={C" ") <Yy}
where y(") € R.

The goal is to predict with accuracy the output
given a new input (i.e. to generalize).

Linear and Nonlinear Regression
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The Simplest Case...

1-D linear regression, with inputs x and outputs y.

Observed data:
D = {(zW,yM) ... (™) ¢y}

Model:

Is this reasonable? No!
Let's try again...

Model:
y™ =az™ +b+e,

where ¢,, 1s a model for the noise.

e \What distribution should we assume for the noise?

e How should we fit @ and b?



The Simplest Case...

1-D linear regression, with inputs  and outputs y.
Observed data: D = {(a;(l), y(l)) o (;U(N)7 y(N))}

Model: y<”) — ax™ + b+ ¢, where ¢, is a model for the noise. Assume:

2

e that the noise is Gaussian with mean zero and variance o<, and

e that the data was independently and identically distributed (iid) from this model.

Let y = (y™M...,y™)) and x = (=M ... (M), What is the probability of the observed
outputs, y, given the inputs, x, and parameters § = (a, b, 0%)?

P(y|x,0) HP (™2™ a,b,02)

where

1 1

P(y|x,0) is known as the likelihood for the parameters 6.



Solving for Maximum Likelihood (ML) Parameters

The ML method is one way of finding a point estimate for the parameters:

arg max P(y|x,0) = arg max In P(y|x,0) ot arg max L(0)
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Solving for Maximum Likelihood (ML) Parameters...

Solve by taking derivatives and setting to zero...

L) = ——- SOy 2 [z ) g4 5T (S g™ ) 5| - N 1n(2r0?)
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B = <Z fc(”)fc(”)T> (Z y(”)fc(”)> “Normal Equations”
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Some Useful Rules for Derivatives wrt Vectors

-
da'x T

0x
We prove this simply by expanding out the dot product a'x = > . a;x;, and using the
convention that the derivative of a scalar wrt a column vector is a row vector:

0 Zz a;xT;
aﬂfj

e A very useful rule:

e Similarly we can use the above and the product rule to show that:

% —x'A+x'AT
X

) T
for symmetric A = A" we have % = 2x ' A.

dln |A|

— AT
0A '
where |A| denotes the determinant of A, and A is square and invertible ]

e The following is more tricky to prove:

Olna __ 1

Note, all the above are generalizations of the scalar cases: e.g. “5>* = —.

1 ) . Oln |A -1 . -1
If A is symmetric then §,4|1 [ — 941 _ diag(A™ 7).




Linear Regression with Vector Valued Inputs

Inputs x € RP

Model:

y™ = B+ Bal™ + . Bz + e,
g = BTk 4

where ¢,, is Gaussian noise, and x(") = ( X(ln) )

Easy!

We've solved this already.



Polynomial (Nonlinear)

M™ Order Polynomial Model:

y" = Bo+ Bra™) + Boa™? 4

where €,, i1s Gaussian noise.

Easy!

We've solved this already as well.

Regression
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Basis Function (Nonlinear) Regression

Instead of using polynomial bases, we can use all kinds of other bases (Gaussian radial
basis functions, sinusoids, wavelets, splines, etc).

K Basis Function Model: K
g =" B (x™) + €
k=1

where ¢, can be any function, and ¢,, is Gaussian noise.
For example, Gaussian radial basis functions with center c;. and width s;.:
1 2
B1(x) = exp{—5—[x — 4|’}
Sk
Easy! We've solved this already as well. Let X = ¢(x) = (d1(X) ... P (X)).

1
5 [ ggmT () g(n)
B=1>" >y

related to “kernel trick”



Linear Regression with Non-Gaussian Noise

Model:
y™ = 5Tx() 4

where ¢€,, is non-Gaussian noise.

For example, we might want to use heavy-tailed noise to model outliers.

Gaussian noise:

1 1
P(y™x™, 8,0%) = exp {——(y(m — 6TX<’”))2}

2o 2072

vs Laplacian noise:

1 1

}



Bayesian Learning

Apply the basic rules of probability to learning from data.

Data set: D ={y1,..-,Yn} Models: m, m' etc. Model parameters: 6
Prior probability of models: P(m), P(m’) etc.

Prior probabilities of model parameters: P(6|m)

Model of data given parameters (likelihood model): P(y|0,m)

If the data are independently and identically distributed then:

P(D|0,m) HP y;|0,m)

Posterior probability of model parameters:
P(D|0, m)P(6|lm)

P(O|D,m) = P(DJm)

Posterior probability of models:
P(m)P(D|m)

P(m[D) = =75




Maximum Likelihood, Maximum A Posteriori,
Regularization, and Bayesian Learning

Maximum Likelihood: )
0= argmeaxP(D]H,m)

Maximum A Posteriori: Assume a prior P(6|m)

0 = arg max P(0|D,m) = arg max In P(D|0,m) + In P(0|m)]

Regularization:

) = arg min [£(D, 6) + AR(0)]

where £(D, 0) is some loss on the training data, A > 0, and R() is called a regularizer for
0, eg. R(O)=|0]>

Bayesian Learning:
D|0, m)P(0|m)

PO|D,m) = il P(DJm)




