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Three main kinds of graphical models
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factor graph undirected graph directed graph

• Nodes correspond to random variables
• Edges represent statistical dependencies between the variables
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Why do we need graphical models?

• Graphs are an intuitive way of representing and visualising the relationships
between many variables. (Examples: family trees, electric circuit diagrams,
neural networks)

• A graph allows us to abstract out the conditional independence relationships
between the variables from the details of their parametric forms. Thus we
can answer questions like: “Is A dependent on B given that we know the
value of C ?” just by looking at the graph.

• Graphical models allow us to define general message-passing algorithms that
implement probabilistic inference efficiently. Thus we can answer queries like
“What is P(A|C = c)?” without enumerating all settings of all variables in
the model.

Graphical models = statistics × graph theory × computer science.
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Conditional Independence

Conditional Independence:

X⊥⊥Y|V ⇔ p(X|Y,V) = p(X|V)

when p(Y,V) > 0. Also

X⊥⊥Y|V ⇔ p(X, Y|V) = p(X|V)p(Y|V)

In general we can think of conditional independence between sets of variables:

X⊥⊥Y|V ⇔ p(X,Y|V) = p(X|V)p(Y|V)

Marginal Independence:

X⊥⊥Y ⇔ X⊥⊥Y|∅ ⇔ p(X, Y) = p(X)p(Y)
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Conditional and Marginal Independence (Examples)

• Amount of Speeding Fine ⊥⊥ Type of Car | Speed
• Lung Cancer ⊥⊥ Yellow Teeth | Smoking
• (Position, Velocity)t+1 ⊥⊥ (Position, Velocity)t−1 | (Position, Velocity)t,

Accelerationt

• Child’s Genes ⊥⊥ Grandparents’ Genes | Parents’ Genes
• Ability of Team A ⊥⊥ Ability of Team B
• not ( Ability of Team A ⊥⊥ Ability of Team B | Outcome of A vs B Game )
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Factor Graphs
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Two types of nodes:

• The circles in a factor graph
represent random variables (e.g.
A).

• The filled dots represent factors in
the joint distribution (e.g. g1(·)).

(a) P(A,B,C,D,E) = 1
Z
g1(A,C)g2(B,C,D)g3(C,D,E)

(b) P(A,B,C,D,E) = 1
Z
g1(A,C)g2(B,C)g3(C,D)g4(B,D)g5(C,E)g6(D,E)

The gi are non-negative functions of their arguments, and Z is a normalization
constant.

E.g. in (a), if all variables are discrete and take values in A×B× C×D× E:

Z =
∑
a∈A

∑
b∈B

∑
c∈C

∑
d∈D

∑
e∈E

g1(A = a,C = c)g2(B = b,C = c,D = d)g3(C = c,D = d,E = e)

Two nodes are neighbors if they share a common factor.
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Factor Graphs
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The circles in a factor graph represent random variables.
The filled dots represent factors in the joint distribution.

(a) P(A,B,C,D,E) = 1
Z
g1(A,C)g2(B,C,D)g3(C,D,E)

(b) P(A,B,C,D,E) = 1
Z
g1(A,C)g2(B,C)g3(C,D)g4(B,D)g5(C,E)g6(D,E)

Two nodes are neighbors if they share a common factor.

Definition: A path is a sequence of neighboring nodes.
Fact: X⊥⊥Y|V if every path between X and Y contains some node V ∈ V

Corollary: Given the neighbors of X, the variable X is conditionally independent
of all other variables: X⊥⊥Y|ne(X), ∀Y /∈ {X ∪ ne(X)}
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Proving Conditional Independence
Assume:

p(X, Y,V) =
1
Z
g1(X,V)g2(Y,V),

X V Y
g1 g2

(1)

We want to show conditional independence:

X⊥⊥Y|V ⇔ p(X|Y,V) = p(X|V) (2)

Summing (1) over X we get:

p(Y,V) =
1
Z

[∑
X

g1(X,V)

]
g2(Y,V) (3)

Dividing (1) by (3) we get:

p(X|Y,V) =
g1(X,V)∑
X g1(X,V)

(4)

Since the rhs. of (4) doesn’t depend on Y, it follows that X is independent of Y
given V.
Therefore factorizaton (1) implies conditional independence (2).
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Undirected Graphical Models

In an Undirected Graphical Model, the joint probability over all variables can be
written in a factored form:

P(x) =
1
Z

∏
j

gj(xCj
)

where x = (x1, . . . , xK), and
Cj ⊆ {1, . . . ,K}

are subsets of the set of all variables, and xS ≡ (xk : k ∈ S).
Graph Specification: Create a node for each variable. Connect nodes i and k if
there exists a set Cj such that both i ∈ Cj and k ∈ Cj. These sets form the cliques
of the graph (fully connected subgraphs).

Note: Undirected Graphical Models are also called Markov Networks.

Very similar to factor graphs.
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Undirected Graphical Models
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P(A,B,C,D,E) =
1
Z
g1(A,C)g2(B,C,D)g3(C,D,E)

Fact: X⊥⊥Y|V if every path between X and Y contains some node V ∈ V

Corollary: Given the neighbors of X, the variable X is conditionally independent
of all other variables: X⊥⊥Y|ne(X), ∀Y /∈ {X ∪ ne(X)}

Markov Blanket: V is a Markov Blanket for X iff X⊥⊥Y|V for all Y /∈ {X ∪ V}.
Markov Boundary: minimal Markov Blanket ≡ ne(X) for undirected graphs and
factor graphs
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Comparing Undirected Graphs and Factor Graphs
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(a) (b) (c)

All nodes in (a), (b), and (c) have exactly the same neighbors and therefore these
three graphs represent exactly the same conditional independence relationships.
(c) also represents the fact that the probability factors into a product of pairwise
functions.
Consider the case where each variables is discrete and can take on K possible
values. Then the functions in (a) and (b) are tables with O(K3) cells, whereas in
(c) they are O(K2).
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Problems with Undirected Graphs and Factor Graphs

In UGs and FGs, many useful independencies are unrepresented—two variables
are connected merely because some other variable depends on them:

Rain Sprinkler

Ground wet

Rain Sprinkler

Ground wet

This highlights the difference between marginal independence and conditional
independence.
R and S are marginally independent (i.e. given nothing), but they are
conditionally dependent given G.
“Explaining Away”: Observing that the spinkler is on, would explain away the
observation that the ground was wet, making it less probable that it rained.
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Directed Acyclic Graphs (Bayesian Networks)
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A DAG Model / Bayesian network1 corresponds to a factorization of the joint
probability distribution:

p(A,B,C,D,E) = p(A)p(B)p(C|A,B)p(D|B,C)p(E|C,D)

In general:
p(X1, . . . ,Xn) =

n∏
i=1

p(Xi|Xpa(i))

where pa(i) are the parents of node i.
1“Bayesian networks” can and often are learned using non-Bayesian (i.e. frequentist) methods;

Bayesian networks (i.e. DAGs) do not require that parameter or structure learning use Bayesian
methods.
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Directed Acyclic Graphs (Bayesian Networks)
A

D
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Semantics: X⊥⊥Y|V if V d-separates X from Y2.
Definition: V d-separates X from Y if every undirected path3 between X and Y is
blocked by V. A path is blocked by V if there is a node W on the path such that
either:

1 W has converging arrows along the path (→W ←)4 and neither W nor its
descendants are observed (in V), or

2 W does not have converging arrows along the path (→W → or←W →)
and W is observed (W ∈ V).

Corollary: Markov Boundary for X:
{parents(X) ∪ children(X) ∪ parents-of-children(X)}.

2See also the “Bayes Ball” algorithm in the Appendix
3An undirected path ignores the direction of the edges.
4Note that converging arrows along the path only refers to what happens on that path.
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Examples of D-Separation in DAGs
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Examples:

• A⊥⊥B since A→ C← B is blocked1 by C, A→ C→ D← B is blocked1 by
D, etc.

• not (A⊥⊥B|C ) since A→ C← B is not blocked.
• A⊥⊥D|{B,C} since A→ C→ D is blocked2 by C, A→ C← B→ D is

blocked2 by B, and A→ C→ E← D is blocked2 by C.
• not (A⊥⊥B|E) since A→ C← B is not blocked.

Note that it is the absence of edges that conveys conditional independence.
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Directed Graphs for Statistical Models:
Plate Notation
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σ

x2
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x1 xN...

A data set of N points generated from a Gaussian:

p(x1, . . . , xN,µ,σ) = p(µ)p(σ)
N∏

n=1

p(xn|µ,σ)
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Summary

• Three kinds of graphical models: directed, undirected, factor
(there are other important classes, e.g. directed mixed graphs)

• Marginal and conditional independence
• Markov boundaries and d-separation
• Plate notation
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Appendix
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From Directed Trees to Undirected Trees
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p(x1, x2, . . . , x7) = p(x3)p(x1|x3)p(x2|x3)p(x4|x3)p(x5|x4)p(x6|x4)p(x7|x4)

=
p(x1, x3)p(x2, x3)p(x3, x4)p(x4, x5)p(x4, x6)p(x4, x7)

p(x3)p(x3)p(x4)p(x4)p(x4)

=
product of cliques

product of clique intersections

= g1(x1, x3)g2(x2, x3)g3(x3, x4)g4(x4, x5)g5(x4, x6)g6(x4, x7) =

=
∏
i

gi(Ci)

Any directed tree can be converted into an undirected tree representing the same
conditional independence relationships, and viceversa.
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Expressive Power of Directed and Undirected Graphs

No Directed Graph (Bayesian
network) can represent these
and only these independencies

No matter how we direct the arrows there will always be two non-adjacent
parents sharing a common child =⇒ dependence in Directed Graph but
independence in Undirected Graph.

No Undirected Graph or Fac-
tor Graph can represent these
and only these independencies

Directed graphs are better at expressing causal generative models, undirected
graphs are better at representing soft constraints between variables.
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Appendix: Some Examples of Directed Graphical
Models
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switching state-space models
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Appendix: Examples of Undirected Graphical Models

• Markov Random Fields (used in Computer Vision)

• Exponential Language Models (used in Speech and Language Modelling)

p(s) =
1
Z
p0(s) exp

{∑
i

λifi(s)

}

• Products of Experts (widely applicable)

p(x) =
1
Z

∏
j

pj(x|θj)

• Boltzmann Machines (a kind of Neural Network/Ising Model)
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Appendix: Clique Potentials and Undirected Graphs
Definition: a clique is a fully connected subgraph. By clique we usually mean
maximal clique (i.e. not contained within another clique)

Ci denotes the set of variables in the ith clique.

p(x1, . . . , xK) =
1
Z

∏
i

gi(xCi
)

where Z =
∑

x1···xK

∏
i gi(xCi

) is the normalization.

Associated with each clique Ci is a non-negative func-
tion gi(xCi

) which measures “compatibility” between
settings of the variables.

Example: Let C1 = {A,C},A ∈ {0, 1},C ∈ {0, 1}
What does this mean?

A

C

B

D

E

A C g1(A,C)
0 0 0.2
0 1 0.6
1 0 0.0
1 1 1.2

Ghahramani & Rasmussen (CUED) Lecture 4: Graphical Models January 27th, 2010 23 / 25



Appendix: Hammersley–Clifford Theorem (1971)

Theorem: A probability function p formed by a normalized product of positive
functions on cliques of G is a Markov Field relative to G.
Definition: The distribution p is a Markov Field relative to G if all conditional
independence relations represented by G are true of p.
G represents the following CI relations: If V ∈ V lies on all paths between X and
Y in G, then X⊥⊥Y|V.
Proof: We need to show that if p is a product of functions on cliques of G then a
variable is conditionally independent of its non-neighbors in G given its neighbors
in G. That is: ne(x`) is a Markov Blanket for x`. Let xm /∈ {x` ∪ ne(x`)}

p(x`, xm, . . .) =
1
Z

∏
i

gi(xCi
) =

1
Z

∏
i:`∈Ci

gi(xCi
)
∏

j:`/∈Cj

gj(xCj
)

=
1
Z ′
f1
(
x`, ne(x`)

)
f2
(

ne(x`), xm
)
=

1
Z ′′
p(x`|ne(x`)) p(xm|ne(x`))

It follows that:
p(x`, xm|ne(x`)) = p(x`|ne(x`)) p(xm|ne(x`))⇔ x`⊥⊥xm|ne(x`).
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Appendix: The “Bayes-ball” algorithm
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Game: can you get a ball from X to Y without being blocked by V?
Depending on the direction the ball came from and the type of node, the ball can
pass through (from a parent to all children, from a child to all parents), bounce
back (from any parent to all parents, or from any child to all children), or be
blocked.

• An unobserved (hidden) node (W /∈ V) passes balls through but also bounces
back balls from children.

• An observed (given) node (W ∈ V) bounces back balls from parents but
blocks balls from children.
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