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Inference in a graphical model

Consider the following graph:

A

D

C

B

E which represents:

p(A,B,C,D,E) = p(A)p(B)p(C|A,B)p(D|B,C)p(E|C,D)

Inference: evaluate the probability distribution over some set of variables, given
the values of another set of variables.
For example, how can we compute P(A|C = c)? Assume each variable is binary.
Naive method:

p(A,C = c) =
∑
B,D,E

p(A,B,C = c,D,E) [16 terms]

p(C = c) =
∑
A

p(A,C = c) [2 terms]

p(A|C = c) =
p(A,C = c)

p(C = c)
[2 terms]

Total: 16+2+2 = 20 terms have to be computed and summed
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Inference in a graphical model

Consider the following graph:

A

D

C

B

E which represents:
p(A,B,C,D,E) = p(A)p(B)p(C|A,B)p(D|B,C)p(E|C,D)

Computing p(A|C = c).
More efficient method:

p(A,C = c) =
∑
B,D,E

p(A)p(B)p(C = c|A,B)p(D|B,C = c)p(E|C = c,D)

=
∑
B

p(A)p(B)p(C = c|A,B)
∑
D

p(D|B,C = c)
∑
E

p(E|C = c,D)

=
∑
B

p(A)p(B)p(C = c|A,B) [4 terms]

Total: 4+2+2 = 8 terms
Belief propagation methods use the conditional independence relationships in a
graph to do efficient inference (for singly connected graphs, exponential gains in
efficiency!).
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Belief Propagation (in singly connected DAGs)

Definition: A DAG is singly connected if its underlying undirected graph is a tree,
ie there is only one undirected path between any two nodes.

A

D

C

B

E
singly connected

A

D

C

B

E
multiply connected

Goal: For some node X we want to compute p(X|e) given evidence (i.e. observed,
visible variables) e.
Since we are considering singly connected graphs:

• every node X divides the evidence into upstream e+X and downstream e−X
• every edge X→ Y divides the evidence into upstream e+XY and downstream
e−XY .
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Three key ideas behind Belief Propagation

X

Y

U U

Y

1

1

n

......

......

m

Idea 1: The probability of a variable X can be found by combining upstream and
downstream evidence:

p(X|e) =
p(X, e)
p(e)

=
p(X, e+X , e−X)
p(e+X , e−X)

∝ p(X|e+X) × p(e−X |X, e+X)︸ ︷︷ ︸
X d-separates e−X from e+X

= p(X|e+X)p(e
−
X |X) = π(X)λ(X)

Idea 2: The upstream and downstream evidence can be computed via a local
message passing algorithm between the nodes in the graph.
Idea 3: “Don’t send back to a node (any part of) the message it sent to you!”

we will focus on factor graphs (simpler) instead of DAGs...
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Factor Graphs

Algorithmically and implementationally, it’s often easier to convert directed and
undirected graphs into factor graphs, and run factor graph propagation.

p(x) = p(x1)p(x2|x1)p(x3|x2)p(x4|x2)

≡ f1(x1, x2)f2(x2, x3)f3(x2, x4)

Singly connected vs Multiply connected factor graphs:

x3

x1

x2
x4

f1

f2

f3

x3

x1

x2
x4

f1

f2

f3

f4
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Factor graphs

In a factor graph, the joint probability distribution is written as a product of
factors. Consider a vector of variables x = (x1, . . . , xn)

p(x) = p(x1, . . . , xn) =
1
Z

∏
j

fj(xSj
)

where Z is the normalisation constant, Sj denotes the subset of {1, . . . ,n} which
participate in factor fj and xSj

= {xi : i ∈ Sj}.

x3

x1

x2
x4

f1

f2

f3

f4

variables nodes: we draw open circles for each variable xi in the distribution.
factor nodes: we draw filled dots for each factor fj in the distribution.
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Propagation in Factor Graphs

Let n(x) denote the set of factor nodes that are neighbors of x.
Let n(f) denote the set of variable nodes that are neighbors of f.
We can compute probabilities in a factor graph by propagating messages from
variable nodes to factor nodes and viceversa.
message from variable x to factor f:

µx→f(x) =
∏

h∈n(x)\{f}

µh→x(x)

message from factor f to variable x:

µf→x(x) =
∑
x\x

f(x) ∏
y∈n(f)\{x}

µy→f(y)


where x are the variables that factor f depends on, and

∑
x\x is a sum over all

variables neighboring factor f except x.
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Propagation in Factor Graphs
n(x) denotes the set of factor nodes that are neighbors of x.
n(f) denotes the set of variable nodes that are neighbors of f.

message from variable x to factor f:

µx→f(x) =
∏

h∈n(x)\{f}

µh→x(x)

message from factor f to variable x:

µf→x(x) =
∑
x\x

f(x) ∏
y∈n(f)\{x}

µy→f(y)


If a variable has only one factor as a neighbor, it can initiate message propagation.

Once a variable has received all messages from its neighboring factor nodes we
can compute the probability of that variable by multiplying all the messages and
renormalising:

p(x) ∝
∏

h∈n(x)

µh→x(x)
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Propagation in Factor Graphs

x3

x1

x2
x4

f1

f2

f3

initialise all messages to be constant functions
an example schedule of messages resulting in computing p(x4):

message direction message value
x1 → f1 1(x1)
x3 → f2 1(x3)
f1 → x2

∑
x1
f1(x1, x2)1(x1)

f2 → x2
∑

x3
f2(x3, x2)1(x3)

x2 → f3
(∑

x1
f1(x1, x2)

) (∑
x3
f2(x3, x2)

)
f3 → x4

∑
x2
f3(x2, x4)

(∑
x1
f1(x1, x2)

) (∑
x3
f2(x3, x2)

)
where 1(x) is a constant uniform function of x

Ghahramani & Rasmussen (CUED) Lecture 5: Graphical Models: Inference January 28th, 2010 10 / 31



Propagation in Factor Graphs

x3

x1

x2
x4

f1

f2

f3

an example schedule of messages resulting in computing p(x4|x1 = a):
message direction message value
x1 → f1 δ(x1 = a)
x3 → f2 1(x3)
f1 → x2

∑
x1
f1(x1, x2)δ(x1 = a) = f1(x1 = a, x2)

f2 → x2
∑

x3
f2(x3, x2)1(x3)

x2 → f3 f1(x1 = a, x2)
(∑

x3
f2(x3, x2)

)
f3 → x4

∑
x2
f3(x2, x4)f1(x1 = a, x2)

(∑
x3
f2(x3, x2)

)
where δ(x = a) is a delta function
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Elimination Rules for Factor Graphs

x3

x1

x2
x4

f1

f2

f3

• eliminating observed variables
If a variable xi is observed, i.e. its value is given, then it is a constant in all
factor that include xi.

We can eliminate xi from the graph by removing the corresponding node and
modifying all neighboring factors to treat it as a constant.
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Elimination Rules for Factor Graphs

• eliminating hidden variables
If a variable xi is hidden and we are not interested in it we can eliminate it
from the graph by summing over all its values.

∑
xi

p(x) =
1
Z

∑
xi

∏
j

fj(xSj
)

=
1
Z

∏
j/∈n(xi)

fj(xSj
)

∑
xi

∏
k∈n(xi)

fk(xSk
)


=

1
Z

∏
j/∈n(xi)

fj(xSj
) fnew(xSnew)

where fnew(xSnew) =
∑

xi

∏
k∈n(xi)

fk(xSk
) and Snew =

⋃
k∈n(xi)

Sk \ {i}.

This causes all its neighboring factor nodes to merge into one new factor
node.
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Inference in hidden Markov models (HMMs) and
linear Gaussian state-space models (SSMs)

X 3
�

Y3
�

X 1

Y1

X 2
�

Y2
�

X T
�

YT
�

p(X1,...,T , Y1,...,T ) = p(X1)p(Y1|X1)

T∏
t=2

[p(Xt|Xt−1)p(Yt|Xt)]

• In HMMs, the states Xt are discrete.
• In linear Gaussian SSMs, the states are real Gaussian vectors.
• Both HMMs and SSMs can be represented as singly connected DAGs.
• The forward–backward algorithm in hidden Markov models (HMMs), and

the Kalman smoothing algorithm in SSMs are both instances of belief
propagation / factor graph propagation.
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Inference in multiply connected DAGs

The Junction Tree algorithm: Form an undirected graph from your directed
graph such that no additional conditional independence relationships have been
created (this step is called “moralization”). Lump variables in cliques together
and form a tree of cliques—this may require a nasty step called “triangulation”.
Do inference in this tree of cliques.

Cutset Conditioning: or “reasoning by assumptions”. Find a small set of
variables which, if they were given (i.e. known) would render the remaining
graph singly connected. For each value of these variables run belief propagation
on the singly connected network. Average the resulting beliefs with the
appropriate weights (given by normalizing constants).

Loopy Belief Propagation: just use BP although there are loops. In this case the
terms “upstream” and “downstream” are not clearly defined. No guarantee of
convergence, except for certain special graphs, but often works well in practice
(c.f. “turbo-decoding” for error-correcting codes).
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Summary

• inference consists of the problem of computing
p(variables of interest|observed variables)

• for singly connected DAGs, belief propagation solves this problem exactly.
• for factor graphs, the analogous algorithm is factor graph propagation.
• well-known algorithms such as Kalman smoothing and forward-backward

are special cases these general propagation algorithms.
• for multiply connected graphs, the junction tree algorithm solves the exact

inference problem, but can be very slow (exponential in the cardinality of the
largest clique).

• one approximate inference algorithm is “loopy belief propagation”—we will
see other approximate inference algorithms in a later lecture.
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Appendix: Belief Propagation in Directed Graphs

X

Y

U U

Y

1

1

n

......

......

m

top-down upstream evidence:
(message Ui sends to X)

πX(Ui) = p(Ui|e
+
UiX

)

bottom-up downstream evi-
dence:
(message Yj sends to X)

λYj
(X) = p(e−XYj

|X)

To update the probability of X given the observed data:

BEL(X) = p(X|e) =
1
Z
λ(X)π(X)

λ(X) =
∏
j

λYj
(X)

π(X) =
∑

U1···Un

p(X|U1, . . . ,Un)
∏
i

πX(Ui)
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Belief Propagation (cont.)

X

Y

U U

Y

1

1

n

......

......

m

top-down upstream evidence: (message Ui sends
to X)

πX(Ui) = p(Ui|e
+
UiX

)

bottom-up downstream evidence: (message Yj
sends to X)

λYj
(X) = p(e−XYj

|X)

Bottom-up propagation, message X sends to Ui:

λX(Ui) =
∑
X

λ(X)
∑

Uk:k6=i

p(X|U1, . . . ,Un)
∏
k6=i

πX(Uk)

Top-down propagation, message X sends to Yj:

πYj
(X) =

1
Z

[∏
k6=j

λYk
(X)
] ∑
U1···Un

p(X|U1, . . . ,Un)
∏
i

πX(Ui) =
1
Z

BEL(X)
λYj

(X)

Z is the normaliser ensuring
∑

X πYj
(X) = 1 Demo?
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Appendix: Understanding BP equations

X

Y

U U

Y

1

1

n

......

......

m

p(X|e) = BEL(X) = 1
Z
λ(X)π(X) = p(e−X |X)p(X|e

+
X) (1)

p(e−X |X) = λ(X) =
∏

j λYj
(X) =

∏
j p(e

−
XYj

|X) (2)

p(X|e+X) = π(X) =
∑

U1···Un
p(X|U1, . . . ,Un)

∏
i πX(Ui) (3)

=
∑

U1···Un
p(X|U1, . . . ,Un)

∏
i p(Ui|e

+
UiX

) (4)

Z is a normalization constant.
All equations follow from the conditional independencies in the graph.
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Appendix: The Junction Tree Algorithm
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The Junction Tree Algorithm 1

A

DC

B

EF
starting with a DAG...
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The Junction Tree Algorithm 2

A

DC

B

EF
moralize by marrying the parents of each node
remove edge directions
this results in an undirected graph with no additional C.I. relations
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The Junction Tree Algorithm 3

A

DC

B

EF
triangulate so that there is no loop of length > 3 without a chord
this is necessary so that the final junction tree satisfies the running intersection
property
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The Junction Tree Algorithm 4

A

DC

B

EF

find cliques of the moralized, triangulated graph
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The Junction Tree Algorithm 5

A
C
B

B
D
C

C
E
D

C
F
E

BC

CD

CE

• form junction tree: tree of (overlapping) sets of variables
• the running intersection property means that if a variable appears in more

than one clique (e.g. C), it appears in all intermediate cliques in the tree.
• the junction tree propagation algorithm ensures that neighboring cliques

have consistent probability distribution
• local consistency→ global consistency
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Fluffy and Moby: A Belief Propagation Demo
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1. Model Structure

x1 x2

x4x3 x5

x6

���������
y = pet cat

Moby = pet fish

Moby is dead

���������
y ate Moby

���������
y's food 

bowl is full

���������
y has flu

���������
y is

hungry

���������
y has high 

temperature
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2. Model Parameters

x1 x2

x4x3 x5

x6

���������
y = pet cat

Moby = pet fish

Moby is dead

���������
y ate Moby

���������
y's food 

bowl is full

���������
y has flu

���������
y is

hungry

���������
y has high 

temperature

P(x1=1)=0.01 P(x2=1)=0.01

P(x3=1|x1=0)=0.1
P(x3=1|x1=1)=1.0

P(x5=1|x2=0)=0.1
P(x5=1|x2=1)=0.9

P(x6=1|x4=0)=0.9
P(x6=1|x4=1)=0.1

  P(x4=1|x1,x2)
  x1, x2    x4=1
  0    0     0.9
  0    1     0.1
  1    0     0.1
  1    1     0.01
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3. Propagating Evidence

x1 x2

x4x3 x5

x6

Moby is dead

���������
y ate Moby

���������
y's food 

bowl is full

���������
y has flu

���������
y is

hungry

���������
y has high 

temperature

P(x3=1|x1=0)=0.1
P(x3=1|x1=1)=1.0

x 3

x 1

P(x1=1)=0.01

1 Observe “Moby is dead”, i.e. x3 = 1

2 Send λx3(x1) ≡ p(e−x1→x3
|x1) =

[
0.1
1.0

]
message x3 → x1

3 BEL(x1|x3 = 1) = 1
Z

[
0.99
0.01

]
�
[

0.1
1.0

]
=

[
0.91
0.09

]
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4. Propagating Evidence

x1 x2

x4x3 x5

x6

Moby is dead

���������
y ate Moby

���������
y's food 

bowl is full

���������
y has flu

���������
y is

hungry

���������
y has high 

temperature

π  (     )
x

4 x
1

x 4
x 2

4 Send πx4(x1) ≡ p(x1|e
+
x1→x4

) =

[
0.91
0.09

]
5 Send πx4(x2) ≡ p(x2|e

+
x2→x4

) = p(x2) =

[
0.99
0.01

]
from x2 → x4.

6 Compute π(x4) ≡ p(x4|e
+
x4
) =

∑
x1,x2

p(x4|x1, x2)πx4(x1)πx4(x2) =

[
0.18
0.82

]
7 BEL(x4|x3 = 1) =

[
0.18
0.82

]
, whereas before observing x3 = 1, BEL(x4) =

[
0.1
0.9

]
.
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5. Propagating Evidence

x1 x2

x4x3 x5

x6

Moby is dead

���������
y ate Moby

���������
y's food 

bowl is full

���������
y has flu

���������
y is

hungry

���������
y has high 

temperature

λ 
 ( 

   
 )

x 6
x 4

λ  (     )
x

4 x
1

P(x6=1|x4=0)=0.9
P(x6=1|x4=1)=0.1

  P(x4=1|x1,x2)
  x1, x2    x4=1
  0    0     0.9
  0    1     0.1
  1    0     0.1
  1    1     0.01

8 Observe “Fluffy’s Food Bowl is Full” x6 = 1 !

9 Send λx6(x4) =

[
0.9
0.1

]
message x6 → x4

10 BEL(x4|x3 = 1, x6 = 1) = 1
Z

[
0.18
0.82

]
�
[

0.9
0.1

]
=

[
0.66
0.34

]
11 Send λx4(x1) =

∑
x4
λx6(x4)

∑
x2
p(x4|x1, x2)πx4(x2) =

[
0.19
0.82

]
12 BEL(x1|x3 = 1, x6 = 1) = 1

Z

[
0.99
0.01

]
�
[

0.1
1.0

]
�
[

0.19
0.82

]
=

[
0.70
0.30

]
⇒ Fluffy still

innocent!
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