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Learning parameters
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Assume each variable xi is discrete and can take on Ki values.

The parameters of this model can be represented as 4 tables: θ1 has K1 entries, θ2

has K1 × K2 entries, etc.

These are called conditional probability tables (CPTs) with the following
semantics:

P(x1 = k) = θ1,k P(x2 = k ′|x1 = k) = θ2,k,k′

If node i has M parents, θi can be represented either as an M+ 1 dimensional

table, or as a 2-dimensional table with
(∏

j∈pa(i) Kj

)
× Ki entries by collapsing

all the states of the parents of node i. Note that
∑
k′ θi,k,k′ = 1.

Assume a data set D = {x(n)}Nn=1. How do we learn θ from D?
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Learning parameters

Assume a data set D = {x(n)}Nn=1. How do we learn θ from D?

P(x|θ) = P(x1|θ1)P(x2|x1, θ2)P(x3|x1, θ3)P(x4|x2, θ4)

x1

x2

x3
x4

Likelihood:
P(D|θ) =

N∏
n=1

P(x(n)|θ)

Log Likelihood:

logP(D|θ) =

N∑
n=1

∑
i

logP(x(n)i |x
(n)
pa(i), θi)

This decomposes into sum of functions of θi. Each θi can be optimized
separately:

θ̂i,k,k′ =
ni,k,k′∑
k′′ ni,k,k′′

where ni,k,k′ is the number of times in D where xi = k ′ and xpa(i) = k, and
where k represents a joint configuration of all the parents of i (i.e. takes on one of∏
j∈pa(i) Kj values)

ML solution: Simply calculate frequencies!
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Deriving the Maximum Likelihood Estimate

p(y|x, θ) =
∏
k,`

θ
δ(x,k)δ(y,`)
k,`

x

y
θ

Dataset D = {(x(n),y(n)) : n = 1 . . . ,N}

L(θ) = log
∏
n

p(y(n)|x(n), θ)

= log
∏
n

∏
k,`

θ
δ(x(n),k)δ(y(n),`)
k,`

=
∑
n,k,`

δ(x(n),k)δ(y(n), `) log θk,`

=
∑
k,`

(∑
n

δ(x(n),k)δ(y(n), `)

)
log θk,` =

∑
k,`

nk,` log θk,`

Maximize L(θ) w.r.t. θ subject to
∑
` θk,` = 1 for all k.
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Maximum Likelihood Learning with Hidden Variables:
The EM Algorithm
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Assume a model parameterised by θ with ob-
servable variables Y and hidden variables X

Goal: maximize parameter log likelihood given observed data.

L(θ) = logp(Y|θ) = log
∑
X

p(Y,X|θ)
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Maximum Likelihood Learning with Hidden Variables:
The EM Algorithm
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Goal: maximise parameter log likelihood given observables.

L(θ) = logp(Y|θ) = log
∑
X

p(Y,X|θ)

The EM algorithm (intuition):

Iterate between applying the following two steps:

• The E step: fill-in the hidden/missing variables
• The M step: apply complete data learning to filled-in data.
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Maximum Likelihood Learning with Hidden Variables:
The EM Algorithm

Goal: maximise parameter log likelihood given observables.

L(θ) = logp(Y|θ) = log
∑
X

p(Y,X|θ)

The EM algorithm (derivation):

L(θ) = log
∑
X

q(X)
p(Y,X|θ)
q(X)

>
∑
X

q(X) log
p(Y,X|θ)
q(X)

= F(q(X), θ)

• The E step: maximize F(q(X), θ[t]) wrt q(X) holding θ[t] fixed:
q(X) = P(X|Y, θ[t])

• The M step: maximize F(q(X), θ) wrt θ holding q(X) fixed:

θ[t+1] ← argmaxθ
∑
X

q(X) logp(Y,X|θ)

The E-step requires solving the inference problem, finding the distribution over
the hidden variables p(X|Y, θ[t]) given the current model parameters. This can be
done using belief propagation or the junction tree algorithm.
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Maximum Likelihood Learning with Hidden Variables:
The EM Algorithm

ML Learning with Complete Data (No Hidden Variables)

Log likelihood decomposes into sum of functions of θi. Each θi can be optimized
separately:

θ̂ijk ←
nijk∑
k′ nijk′

where nijk is the number of times in D where xi = k and xpa(i) = j.
Maximum likelihood solution: Simply calculate frequencies!

ML Learning with Incomplete Data (i.e. with Hidden Variables)

Iterative EM algorithm

E step: compute expected counts given previous settings of parameters
E[nijk|D,θ[t]].
M step: re-estimate parameters using these expected counts

θ
[t+1]
ijk ← E[nijk|D,θ[t]]∑

k′ E[nijk′ |D,θ[t]]
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Bayesian Learning
Apply the basic rules of probability to learning from data.

Data set: D = {x1, . . . , xn} Models: m, m ′ etc. Model parameters: θ

Prior probability of models: P(m), P(m ′) etc.
Prior probabilities of model parameters: P(θ|m)
Model of data given parameters (likelihood model): P(x|θ,m)

If the data are independently and identically distributed then:

P(D|θ,m) =

n∏
i=1

P(xi|θ,m)

Posterior probability of model parameters:

P(θ|D,m) =
P(D|θ,m)P(θ|m)

P(D|m)

Posterior probability of models:

P(m|D) =
P(m)P(D|m)

P(D)
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Bayesian parameter learning with no hidden variables

Let nijk be the number of times (x(n)i = k and x(n)pa(i) = j) in D.

For each i and j, θij· is a probability vector of length Ki × 1.
Since xi is a discrete variable with probabilities given by θi,j,·, the likelihood is:

P(D|θ) =
∏
n

∏
i

P(x
(n)
i |x

(n)
pa(i),θ) =

∏
i

∏
j

∏
k

θ
nijk

ijk

If we choose a prior on θ of the form:

P(θ) = c
∏
i

∏
j

∏
k

θ
αijk−1
ijk

where c is a normalization constant, and
∑
k θijk = 1 ∀i, j, then the posterior

distribution also has the same form:

P(θ|D) = c ′
∏
i

∏
j

∏
k

θ
α̃ijk−1
ijk

where α̃ijk = αijk + nijk.

This distribution is called the Dirichlet distribution.
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Dirichlet Distribution

The Dirichlet distribution is a distribution over the K-dim probability simplex.
Let θ be a K-dimensional vector s.t. ∀j : θj > 0 and

∑K
j=1 θj = 1

P(θ|α) = Dir(α1, . . . ,αK)
def
=
Γ(
∑
j αj)∏

j Γ(αj)

K∏
j=1

θ
αj−1
j

where the first term is a normalization constant1 and E(θj) = αj/(
∑
k αk)

The Dirichlet is conjugate to the multinomial distribution. Let

x|θ ∼ Multinomial(·|θ)

That is, P(x = j|θ) = θj. Then the posterior is also Dirichlet:

P(θ|x = j,α) =
P(x = j|θ)P(θ|α)

P(x = j|α)
= Dir(α̃)

where α̃j = αj + 1, and ∀` 6= j : α̃` = α`

1Γ(x) = (x− 1)Γ(x− 1) =
∫∞

0 t
x−1e−tdt. For integer n, Γ(n) = (n− 1)!
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Dirichlet Distributions
Examples of Dirichlet distributions over θ = (θ1, θ2, θ3) which can be plotted in
2D since θ3 = 1 − θ1 − θ2. Here are plots of p(θ) as a function of θ1 and θ2 for
Dirichlets with different choices of α1, α2, α3:
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Example

Assume αijk = 1 ∀i, j,k.

This corresponds to a uniform prior distribution over parame-
ters θ. This is not a very strong/dogmatic prior, since any pa-
rameter setting is assumed a priori possible.

After observed data D, what are the parameter posterior distributions?

P(θij·|D) = Dir(nij· + 1)

This distribution predicts, for future data:

P(xi = k|xpa(i) = j,D) =
nijk + 1∑
k′(nijk′ + 1)

Adding 1 to each of the counts is a form of smoothing called “Laplace’s Rule”.
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Bayesian parameter learning with hidden variables

Notation: let D be the observed data set, X be hidden variables, and θ be model
parameters. Assume discrete variables and Dirichlet priors on θ

Goal: to infer P(θ|D) =
∑
X P(X,θ|D)

Problem: since (a)
P(θ|D) =

∑
X

P(θ|X,D)P(X|D),

and (b) for every way of filling in the missing data, P(θ|X,D) is a Dirichlet
distribution, and (c) there are exponentially many ways of filling in X, it follows
that P(θ|D) is a mixture of Dirichlets with exponentially many terms!

Solutions:

• Find a single best (“Viterbi”) completion of X (Stolcke and Omohundro,
1993)

• Markov chain Monte Carlo methods
• Variational Bayesian (VB) methods (Beal and Ghahramani, 2003)
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Summary of parameter learning

Complete (fully observed) data Incomplete/hidden/missing data

ML calculate frequencies EM

Bayesian update Dirichlet distributions MCMC / Viterbi / VB

• For complete data, Bayesian learning is not more costly than ML
• For incomplete data, VB ≈ EM time complexity
• Other parameter priors are possible but Dirichlet is flexible and intuitive.
• For non-discrete data, similar ideas but generally harder inference and

learning.
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Structure learning

Given a data set of observations of (A,B,C,D,E) can we learn the structure of
the graphical model?

A

D

C

B

E

A

D

C

B

E

A

D

C

B

E

A

D

C

B

E

Let m denote the graph structure = the set of edges.
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Structure learning
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Constraint-Based Learning: Use statistical tests of marginal and conditional
independence. Find the set of DAGs whose d-separation relations match the
results of conditional independence tests.

Score-Based Learning: Use a global score such as the BIC score or Bayesian
marginal likelihood. Find the structures that maximize this score.
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Score-based structure learning for complete data

Consider a graphical model with structure m, discrete observed data D, and
parameters θ. Assume Dirichlet priors.

The Bayesian marginal likelihood score is easy to compute:

score(m) = logP(D|m) = log
∫
P(D|θ,m)P(θ|m)dθ

score(m) =
∑
i

∑
j

[
log Γ(

∑
k

αijk) −
∑
k

log Γ(αijk) − log Γ(
∑
k

α̃ijk) +
∑
k

log Γ(α̃ijk)

]
where α̃ijk = αijk + nijk. Note that the score decomposes over i.

One can incorporate structure prior information P(m) as well:

score(m) = logP(D|m) + logP(m)

Greedy search algorithm: Start with m. Consider modifications m→ m ′ (edge
deletions, additions, reversals). Accept m ′ if score(m ′) > score(m). Repeat.

Bayesian inference of model structure: Run MCMC on m.
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Bayesian Structural EM for incomplete data

Consider a graphical model with structure m, observed data D, hidden variables
X and parameters θ

The Bayesian score is generally intractable to compute:

score(m) = P(D|m) =

∫ ∑
X

P(X, θ,D|m)dθ

Bayesian Structure EM (Friedman, 1998):

1 compute MAP parameters θ̂ for current model m using EM

2 find hidden variable distribution P(X|D, θ̂)

3 for a small set of candidate structures compute or approximate

score(m ′) =
∑
X

P(X|D, θ̂) logP(D,X|m ′)

4 m← m ′ with highest score
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Directed Graphical Models and Causality

Causal relationships are a fundamental component of cognition and scientific discovery.

Even though the independence relations are identical, there is a causal difference
between:

• “smoking”→ “yellow teeth”
• “yellow teeth”→ “smoking”

Key idea: interventions and the do-calculus:

P(S|Y = y) 6= P(S|do(Y = y))

P(Y|S = s) = P(Y|do(S = s))

Causal relationships are robust to interventions on the parents.

The key difficulty in learning causal relationships from observational data is the
presence of hidden common causes:

A
H

B A BA B
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Learning parameters and structure in undirected graphs
A

D

C

B

E

A

D

C

B

E

P(x|θ) = 1
Z(θ)

∏
j gj(xCj

;θj) where Z(θ) =
∑

x
∏
j gj(xCj

;θj).

Problem: computing Z(θ) is computationally intractable for general
(non-tree-structured) undirected models. Therefore, maximum-likelihood
learning of parameters is generally intractable, Bayesian scoring of structures is
intractable, etc.

Solutions:
• directly approximate Z(θ) and/or its derivatives (cf. Boltzmann machine

learning; contrastive divergence; pseudo-likelihood)
• use approx inference methods (e.g. loopy belief propagation, bounding

methods, EP).

(Murray & Ghahramani, 2004; Murray et al, 2006) for Bayesian learning in undirected models.
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Summary

• Parameter learning in directed models:
• complete and incomplete data;
• ML and Bayesian methods

• Structure learning in directed models: complete and incomplete data
• Causality
• Parameter and Structure learning in undirected models
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