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Learning parameters
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Assume each variable x; is discrete and can take on K; values.

The parameters of this model can be represented as 4 tables: 01 has K entries, 0,
has K; x K, entries, etc.

These are called conditional probability tables (CPTs) with the following
semantics:

Pix1 =k) =01 Plxa =k'Ix1 =Kk) =01/
If node i has M parents, 8; can be represented either as an M + 1 dimensional
table, or as a 2-dimensional table with (Hjepa(i) Kj) x K entries by collapsing
all the states of the parents of node i. Note that } ,, 0k = 1.

N

Assume a data set D = {x(MN_ . How do we learn 0 from D?
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Learning parameters s

Assume a data set D = {x(™}N_ . How do we learn © from D? ()
O ®
P(x]8) = P(x1/61)P(x2[x1, ez)P(X3|X1, 03)P(x4lx2, 04)
Likelihood:

P(D]0) = HP
log P(D|6) = ZZlogP (n) 1) 00)

n=1 i

Log Likelihood:

This decomposes into sum of functions of 0;. Each 0; can be optimized

separately: A N kK’
O = =
Zk” ni k k’’
where 1y i is the number of times in D where x; =k’ and x =k, and

where k represents a joint configuration of all the parents of i (P Le. takes on one of
[Tjcpari) Kj values)

201310 0406 0

ML solution: Simply calculate frequencies! S o3| or]os
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Deriving the Maximum Likelihood Estimate

plyx,0) = Hei,(ex’k)é(y’“

Dataset D = {(x(™

£(0)

K,

Jbym)y:in=1...,N}

long(y(“)lx(“’,G)
logH H 0! X(n

n k\t

Z §(x™

n,k,l

> (Z 6(x<’”,k)6(y(“>,m> log B¢

K,

y(m,e

5(y'™, ) log Ok,

Maximize £(0) w.r.t. 0 subject to >, 0y ¢ = 1 for all k.
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Maximum Likelihood Learning with Hidden Variables:

The EM Algorithm

o)
92 93
@ Assume a model parameterised by 8 with ob-
servable variables Y and hidden variables X
10,

Goal: maximize parameter log likelihood given observed data.

£(8) =logp(Yle) =log }_p(Y,X[6)
X
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Maximum Likelihood Learning with Hidden Variables:
The EM Algorithm

9,

Goal: maximise parameter log likelihood given observables.
5

0,
£(0) =logp(Y]0) =log ) p(Y,X|6) Q ()
X
)
©

The EM algorithm (intuition):

Iterate between applying the following two steps:

* The E step: fill-in the hidden/missing variables
* The M step: apply complete data learning to filled-in data.
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Maximum Likelihood Learning with Hidden Variables:
The EM Algorithm

Goal: maximise parameter log likelihood given observables.
£(8) =logp(e) =log Y _p(Y,X|6)
X

The EM algorithm (derivation):

) = g Y alx) ﬂ/z og P2 — (a(x),0)

e The E step: maximize F(q(X),0™) wrt q(X) holding 8/ fixed:
q(X) = P(X|y,8"))

)
* The M step: maximize F(q(X),0) wrt 0 holding q(X) fixed:

o+ « argmax, Z q(X) logp(Y, X|0)
X

The E-step requires solving the inference problem, finding the distribution over
the hidden variables p(X|Y, 8!*)) given the current model parameters. This can be
done using belief propagation or the junction tree algorithm.
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Maximum Likelihood Learning with Hidden Variables:

The EM Algorithm

ML Learning with Complete Data (No Hidden Variables)

Log likelihood decomposes into sum of functions of 8;. Each 0; can be optimized

separately:
bup o Tk
2 M
where nji is the number of times in D where x; =k and xp,(1) = j.
Maximum likelihood solution: Simply calculate frequencies!

ML Learning with Incomplete Data (i.e. with Hidden Variables)

Iterative EM algorithm

E step: compute expected counts given previous settings of parameters
E[nijilD, 0],
M step: re-estimate parameters using these expected counts
[t+1] Elniic|D, 0]
O 0
>« Emyjir 1D, 0]
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Bayesian Learning

Apply the basic rules of probability to learning from data.

Data set: D ={x1,...,Xn} Models: m, m’ etc. Model parameters: 0

Prior probability of models: P(m), P(m’) etc.
Prior probabilities of model parameters: P(6|m)
Model of data given parameters (likelihood model): P(x|0, m)

If the data are independently and identically distributed then:

P(D|O, m) HP xi|0, m)

Posterior probability of model parameters:

(D\e mJP(8jm)
Posterior probability of models:
_ P(m)P(Djm)
PP =" my
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Bayesian parameter learning with no hidden variables

Let nyjx be the number of times (x; (™) _ ¥k and x =j)in D.

For each i and j, 65;. is a probability vector of length Ki x 1.

Since x; is a discrete variable with probabilities given by 63 ; ., the likelihood is:

P(oie) =] [T [Pes™ HHHGE‘k’k
If we choose a prior on 0 of the form:

o) = [TITITe0

where c is a normalization constant, and } , 6ijx = 1 Vi, j, then the posterior
distribution also has the same form:

_ Xijk— 1
P(OID) =c HHH%
where &ijk = Xijk + Mijk.

This distribution is called the Dirichlet distribution.
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Dirichlet Distribution

The Dirichlet distribution is a distribution over the K- d1m probability simplex.

Let © be a K-dimensional vector s.t. Vj : 65 > 0 and Z 1 6;=1

ry A
P(6lat) = Dir(axs, ..., ak) d:ef | [o5"
J=1

where the first term is a normalization constant! and E(6;) = og/(> o)
The Dirichlet is conjugate to the multinomial dlstrlbutlon. Let

x|0 ~ Multinomial(-|0)

That is, P(x = j|0) = 6;. Then the posterior is also Dirichlet:

P(x =j|0)P(6]x)

Px—jlog D&

P(Olx =j, &) =

where &; = o5 + 1, and VE #j : &¢ = ¢

Ir(x) = (x— 1T (x—1) = [57 t* Tetdt. Forinteger n, T'(n) = (n —1)!
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Dirichlet Distributions

Examples of Dirichlet distributions over © = (61, 0,, 03) which can be plotted in
2D since 03 = 1 — 01 — 6,. Here are plots of p(0) as a function of 6, and 6, for

Dirichlets with different choices of &g, 0y, x3:

Dirichlet(1,1,1) Dirichlet(2,2,2) Dirichlet(10,10,10)
Dirichlet(2,10,2) Dirichlet(2,2,10) Dirichlet(0.9,0.9,0.9)

\
[ 3 |
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Example

Dirichlet(1,1,1)

Assume i = 1 Vi, j, k.

This corresponds to a uniform prior distribution over parame-
ters 0. This is not a very strong/dogmatic prior, since any pa-
rameter setting is assumed a priori possible.

After observed data D, what are the parameter posterior distributions?
P(Gij.lfD) = Dir(ni]-. +1)
This distribution predicts, for future data:

Nijk + 1

Plxi = Kixpa(iy =3, D) = T nge 1)

Adding 1 to each of the counts is a form of smoothing called “Laplace’s Rule”.
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Bayesian parameter learning with hidden variables

Notation: let D be the observed data set, X be hidden variables, and © be model
parameters. Assume discrete variables and Dirichlet priors on 0

Goal: to infer P(6|D) = Y« P(X, 0|D)

Problem: since (a)
P(6[D) ZP 01X, D)P(X|D),

and (b) for every way of filling in the missing data, P(0[X, D) is a Dirichlet
distribution, and (c) there are exponentially many ways of filling in X, it follows
that P(0|D) is a mixture of Dirichlets with exponentially many terms!

Solutions:

* Find a single best (“Viterbi”) completion of X (Stolcke and Omohundro,
1993)

¢ Markov chain Monte Carlo methods
e Variational Bayesian (VB) methods (Beal and Ghahramani, 2003)
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Summary of parameter learning

Complete (fully observed) data  Incomplete/hidden/missing data

ML calculate frequencies EM

Bayesian | update Dirichlet distributions MCMC / Viterbi / VB

* For complete data, Bayesian learning is not more costly than ML
* For incomplete data, VB =~ EM time complexity
e Other parameter priors are possible but Dirichlet is flexible and intuitive.

* For non-discrete data, similar ideas but generally harder inference and
learning.
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Structure learning

Given a data set of observations of (A, B, C,D, E) can we learn the structure of
the graphical model?

@

Let m denote the graph structure = the set of edges.
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Structure learning

W ® @ (s

Constraint-Based Learning: Use statistical tests of marginal and conditional
independence. Find the set of DAGs whose d-separation relations match the
results of conditional independence tests.

Score-Based Learning: Use a global score such as the BIC score or Bayesian
marginal likelihood. Find the structures that maximize this score.
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Score-based structure learning for complete data

Consider a graphical model with structure m, discrete observed data D, and
parameters 0. Assume Dirichlet priors.

The Bayesian marginal likelihood score is easy to compute:

score(m) = log P(Dim) = logJP(D\G,m)P(Bhn)dG

score(m) = Z Z log F(Z Aijr) — Z log M 45k ) — log F(Z &ijx) + Z log I'( &%)
i k k k k
where &iji = &4k + niji. Note that the score decomposes over i.
One can incorporate structure prior information P(m) as well:
score(m) = log P(D|m) + log P(m)

Greedy search algorithm: Start with m. Consider modifications m — m’ (edge
deletions, additions, reversals). Accept m’ if score(m’) > score(m). Repeat.

Bayesian inference of model structure: Run MCMC on m.
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Bayesian Structural EM for incomplete data

Consider a graphical model with structure m, observed data D, hidden variables

X and parameters 6

The Bayesian score is generally intractable to compute:

score(m) = P(D|m) = JZP (X,0,Dlm)do
X

Bayesian Structure EM (Friedman, 1998):

©® compute MAP parameters 6 for current model m using EM
® find hidden variable distribution P(X|D, 6)
© for a small set of candidate structures compute or approximate

score(m’) = Z P(X|D, 6) log P(D, X|m")

® m < m’ with highest score
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Directed Graphical Models and Causality

Causal relationships are a fundamental component of cognition and scientific discovery.

Even though the independence relations are identical, there is a causal difference
between:
* “smoking” — “yellow teeth”

o “yellow teeth” — “smoking”

Key idea: interventions and the do-calculus:
P(SIY =y) # P(S|do(Y = y))

P(Y|S =s) = P(Y|do(S = s))
Causal relationships are robust to interventions on the parents.

The key difficulty in learning causal relationships from observational data is the
presence of hidden common causes:

@—»@@*@@t@\@
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Learning parameters and structure in undirected graphs
4 (8)
o

—

(Xle 1_[ g] XC ) )Wherez Z H g] XC)a )

Problem: computing Z(0) is computatlonally intractable for general
(non-tree-structured) undirected models. Therefore, maximum-likelihood
learning of parameters is generally intractable, Bayesian scoring of structures is
intractable, etc.

Solutions:
e directly approximate Z(0) and/or its derivatives (cf. Boltzmann machine
learning; contrastive divergence; pseudo-likelihood)

* use approx inference methods (e.g. loopy belief propagation, bounding
methods, EP).

(Murray & Ghahramani, 2004; Murray et al, 2006) for Bayesian learning in undirected models.
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Summary

e Parameter learning in directed models:

e complete and incomplete data;
e ML and Bayesian methods

e Structure learning in directed models: complete and incomplete data
* Causality

* Parameter and Structure learning in undirected models
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