Lecture 6: Graphical Models: Learning
 4F13: Machine Learning

Zoubin Ghahramani and Carl Edward Rasmussen

Department of Engineering, University of Cambridge

February 3rd, 2010

Learning parameters

$$
P\left(x_{1}\right) P\left(x_{2} \mid x_{1}\right) P\left(x_{3} \mid x_{1}\right) P\left(x_{4} \mid x_{2}\right)
$$

Assume each variable x_{i} is discrete and can take on K_{i} values.
The parameters of this model can be represented as 4 tables: θ_{1} has K_{1} entries, θ_{2} has $K_{1} \times K_{2}$ entries, etc.

These are called conditional probability tables (CPTs) with the following semantics:

$$
P\left(x_{1}=k\right)=\theta_{1, k} \quad P\left(x_{2}=k^{\prime} \mid x_{1}=k\right)=\theta_{2, k, k^{\prime}}
$$

If node i has M parents, θ_{i} can be represented either as an $M+1$ dimensional table, or as a 2 -dimensional table with $\left(\prod_{j \in p a(i)} K_{j}\right) \times K_{i}$ entries by collapsing all the states of the parents of node i. Note that $\sum_{k^{\prime}} \theta_{i, k, k^{\prime}}=1$.

Assume a data set $\mathcal{D}=\left\{\mathbf{x}^{(n)}\right\}_{n=1}^{N}$.
How do we learn θ from \mathcal{D} ?

Learning parameters

Assume a data set $\mathcal{D}=\left\{\mathbf{x}^{(n)}\right\}_{\mathfrak{n}=1}^{N}$. How do we learn θ from \mathcal{D} ?

$$
\mathrm{P}(\mathbf{x} \mid \boldsymbol{\theta})=\mathrm{P}\left(\mathrm{x}_{1} \mid \theta_{1}\right) \mathrm{P}\left(\mathrm{x}_{2} \mid \mathrm{x}_{1}, \theta_{2}\right) \mathrm{P}\left(\mathrm{x}_{3} \mid \mathrm{x}_{1}, \theta_{3}\right) \mathrm{P}\left(\mathrm{x}_{4} \mid \mathrm{x}_{2}, \theta_{4}\right)
$$

Likelihood:

Log Likelihood:

$$
\mathrm{P}(\mathcal{D} \mid \boldsymbol{\theta})=\prod_{\boldsymbol{n}=1}^{\mathrm{N}} \mathrm{P}\left(\mathbf{x}^{(\mathfrak{n})} \mid \boldsymbol{\theta}\right)
$$

$$
\log \mathrm{P}(\mathcal{D} \mid \theta)=\sum_{n=1}^{N} \sum_{i} \log P\left(x_{i}^{(n)} \mid x_{\mathrm{pa}(i)}^{(n)}, \theta_{i}\right)
$$

This decomposes into sum of functions of θ_{i}. Each θ_{i} can be optimized separately:

$$
\hat{\theta}_{i, k, k^{\prime}}=\frac{n_{i, k, k^{\prime}}}{\sum_{k^{\prime \prime}} n_{i, k, k^{\prime \prime}}}
$$

where $n_{i, k, k^{\prime}}$ is the number of times in \mathcal{D} where $x_{i}=k^{\prime}$ and $x_{p a(i)}=k$, and where k represents a joint configuration of all the parents of i (i.e. takes on one of $\prod_{j \in \operatorname{pa}(i)} \mathrm{K}_{\mathrm{j}}$ values)

ML solution: Simply calculate frequencies!

n	x_{2}			$\theta 2$	x_{2}		
	2	3	0		0.4	0.6	0
x_{1}	3	1	6	$\rightarrow x_{1}$	0.3	0.1	0.6

Deriving the Maximum Likelihood Estimate

$$
p(y \mid x, \theta)=\prod_{k, \ell} \theta_{k, \ell}^{\delta(x, k) \delta(y, \ell)}
$$

Dataset $\mathcal{D}=\left\{\left(x^{(n)}, y^{(n)}\right): \mathfrak{n}=1 \ldots, N\right\}$

$$
\begin{aligned}
\mathcal{L}(\theta) & =\log \prod_{n} p\left(y^{(n)} \mid x^{(n)}, \theta\right) \\
& =\log \prod_{n} \prod_{k, \ell} \theta_{k, \ell}^{\delta\left(x^{(n)}, k\right) \delta\left(y^{(n)}, \ell\right)} \\
& =\sum_{n, k, \ell} \delta\left(x^{(n)}, k\right) \delta\left(y^{(n)}, \ell\right) \log \theta_{k, \ell} \\
& =\sum_{k, \ell}\left(\sum_{n} \delta\left(x^{(n)}, k\right) \delta\left(y^{(n)}, \ell\right)\right) \log \theta_{k, \ell}=\sum_{k, \ell} n_{k, \ell} \log \theta_{k, \ell}
\end{aligned}
$$

Maximize $\mathcal{L}(\theta)$ w.r.t. θ subject to $\sum_{\ell} \theta_{k, \ell}=1$ for all k.

Maximum Likelihood Learning with Hidden Variables: The EM Algorithm

Assume a model parameterised by θ with observable variables Y and hidden variables X

Goal: maximize parameter log likelihood given observed data.

$$
\mathcal{L}(\theta)=\log p(Y \mid \theta)=\log \sum_{X} p(Y, X \mid \theta)
$$

Maximum Likelihood Learning with Hidden Variables: The EM Algorithm

Goal: maximise parameter log likelihood given observables.

$$
\mathcal{L}(\theta)=\log p(Y \mid \theta)=\log \sum_{X} p(Y, X \mid \theta)
$$

The EM algorithm (intuition):
Iterate between applying the following two steps:

- The E step: fill-in the hidden/missing variables
- The M step: apply complete data learning to filled-in data.

Maximum Likelihood Learning with Hidden Variables: The EM Algorithm

Goal: maximise parameter log likelihood given observables.

$$
\mathcal{L}(\theta)=\log p(Y \mid \theta)=\log \sum_{X} p(Y, X \mid \theta)
$$

The EM algorithm (derivation):

$$
\mathcal{L}(\theta)=\log \sum_{X} q(X) \frac{p(Y, X \mid \theta)}{q(X)} \geqslant \sum_{X} q(X) \log \frac{p(Y, X \mid \theta)}{q(X)}=\mathcal{F}(q(X), \theta)
$$

- The E step: maximize $\mathcal{F}\left(q(X), \theta^{[t]}\right)$ wrt $q(X)$ holding $\theta^{[t]}$ fixed:

$$
q(X)=P\left(X \mid Y, \theta^{[t]}\right)
$$

- The M step: maximize $\mathcal{F}(q(X), \theta)$ wrt θ holding $q(X)$ fixed:

$$
\theta^{[t+1]} \leftarrow \operatorname{argmax}_{\theta} \sum_{X} q(X) \log p(Y, X \mid \theta)
$$

The E-step requires solving the inference problem, finding the distribution over the hidden variables $p\left(X \mid Y, \theta^{[t]}\right)$ given the current model parameters. This can be done using belief propagation or the junction tree algorithm.

Maximum Likelihood Learning with Hidden Variables: The EM Algorithm

ML Learning with Complete Data (No Hidden Variables)
Log likelihood decomposes into sum of functions of θ_{i}. Each θ_{i} can be optimized separately:

$$
\hat{\theta}_{i j k} \leftarrow \frac{n_{i j k}}{\sum_{k^{\prime}} n_{i j k^{\prime}}}
$$

where $n_{i j k}$ is the number of times in \mathcal{D} where $x_{i}=k$ and $x_{p a(i)}=\mathfrak{j}$.
Maximum likelihood solution: Simply calculate frequencies!
ML Learning with Incomplete Data (i.e. with Hidden Variables)
Iterative EM algorithm
E step: compute expected counts given previous settings of parameters $E\left[n_{i j k} \mid \mathcal{D}, \theta^{[t]}\right]$.
M step: re-estimate parameters using these expected counts

$$
\theta_{i j k}^{[t+1]} \leftarrow \frac{\mathrm{E}\left[n_{i j k} \mid \mathcal{D}, \theta^{[t]}\right]}{\sum_{k^{\prime}} \mathrm{E}\left[n_{i j k^{\prime}} \mid \mathcal{D}, \theta^{[\mathrm{t}]}\right]}
$$

Bayesian Learning

Apply the basic rules of probability to learning from data.
Data set: $\mathcal{D}=\left\{x_{1}, \ldots, x_{n}\right\} \quad$ Models: m, m^{\prime} etc. Model parameters: θ
Prior probability of models: $\mathrm{P}(\mathrm{m}), \mathrm{P}\left(\mathrm{m}^{\prime}\right)$ etc.
Prior probabilities of model parameters: $P(\theta \mid m)$
Model of data given parameters (likelihood model): $\mathrm{P}(\mathrm{x} \mid \theta, \mathrm{m})$
If the data are independently and identically distributed then:

$$
\mathrm{P}(\mathcal{D} \mid \theta, \mathfrak{m})=\prod_{i=1}^{n} P\left(x_{i} \mid \theta, m\right)
$$

Posterior probability of model parameters:

$$
\mathrm{P}(\theta \mid \mathcal{D}, \mathrm{m})=\frac{\mathrm{P}(\mathcal{D} \mid \theta, \mathrm{m}) \mathrm{P}(\theta \mid \mathrm{m})}{\mathrm{P}(\mathcal{D} \mid \mathrm{m})}
$$

Posterior probability of models:

$$
P(m \mid \mathcal{D})=\frac{P(m) P(\mathcal{D} \mid m)}{P(\mathcal{D})}
$$

Bayesian parameter learning with no hidden variables

Let $n_{i j k}$ be the number of times $\left(x_{i}^{(\mathfrak{n})}=k\right.$ and $\left.x_{p a(i)}^{(\mathfrak{n})}=\mathfrak{j}\right)$ in \mathcal{D}.
For each i and $\mathfrak{j}, \theta_{i j}$. is a probability vector of length $K_{i} \times 1$.
Since x_{i} is a discrete variable with probabilities given by $\theta_{i, j, j}$, the likelihood is:

$$
P(\mathcal{D} \mid \boldsymbol{\theta})=\prod_{n} \prod_{i} P\left(x_{i}^{(n)} \mid x_{p a(i)}^{(n)}, \theta\right)=\prod_{i} \prod_{j} \prod_{k} \theta_{i j k}^{n_{i j k}}
$$

If we choose a prior on θ of the form:

$$
P(\boldsymbol{\theta})=c \prod_{i} \prod_{j} \prod_{k} \theta_{i j k}^{\alpha_{i j k}-1}
$$

where c is a normalization constant, and $\sum_{k} \theta_{i j k}=1 \forall i, j$, then the posterior distribution also has the same form:

$$
P(\theta \mid \mathcal{D})=c^{\prime} \prod_{i} \prod_{j} \prod_{k} \theta_{i j k}^{\tilde{\alpha}_{i j k}-1}
$$

where $\tilde{\alpha}_{i j k}=\alpha_{i j k}+n_{i j k}$.
This distribution is called the Dirichlet distribution.

Dirichlet Distribution

The Dirichlet distribution is a distribution over the K-dim probability simplex. Let θ be a K-dimensional vector s.t. $\forall j: \theta_{j} \geqslant 0$ and $\sum_{j=1}^{K} \theta_{j}=1$

$$
P(\theta \mid \boldsymbol{\alpha})=\operatorname{Dir}\left(\alpha_{1}, \ldots, \alpha_{k}\right) \stackrel{\text { def }}{=} \frac{\Gamma\left(\sum_{j} \alpha_{j}\right)}{\prod_{j} \Gamma\left(\alpha_{j}\right)} \prod_{j=1}^{K} \theta_{j}^{\alpha_{j}-1}
$$

where the first term is a normalization constant ${ }^{1}$ and $E\left(\theta_{j}\right)=\alpha_{j} /\left(\sum_{k} \alpha_{k}\right)$ The Dirichlet is conjugate to the multinomial distribution. Let

$$
x \mid \theta \sim \operatorname{Multinomial}(\cdot \mid \theta)
$$

That is, $P(x=j \mid \boldsymbol{\theta})=\theta_{j}$. Then the posterior is also Dirichlet:

$$
P(\boldsymbol{\theta} \mid x=\mathfrak{j}, \boldsymbol{\alpha})=\frac{P(x=\mathfrak{j} \mid \boldsymbol{\theta}) P(\boldsymbol{\theta} \mid \boldsymbol{\alpha})}{P(x=\mathfrak{j} \mid \boldsymbol{\alpha})}=\operatorname{Dir}(\tilde{\boldsymbol{\alpha}})
$$

where $\tilde{\alpha}_{j}=\alpha_{j}+1$, and $\forall \ell \neq j: \tilde{\alpha}_{\ell}=\alpha_{\ell}$
${ }^{1} \Gamma(x)=(x-1) \Gamma(x-1)=\int_{0}^{\infty} t^{x-1} e^{-t} d t$. For integer $n, \Gamma(n)=(n-1)!$

Dirichlet Distributions

Examples of Dirichlet distributions over $\boldsymbol{\theta}=\left(\theta_{1}, \theta_{2}, \theta_{3}\right)$ which can be plotted in 2D since $\theta_{3}=1-\theta_{1}-\theta_{2}$. Here are plots of $p(\boldsymbol{\theta})$ as a function of θ_{1} and θ_{2} for Dirichlets with different choices of $\alpha_{1}, \alpha_{2}, \alpha_{3}$:

Example

Assume $\alpha_{i j k}=1 \forall i, j, k$.
This corresponds to a uniform prior distribution over parameters θ. This is not a very strong/dogmatic prior, since any parameter setting is assumed a priori possible.

After observed data \mathcal{D}, what are the parameter posterior distributions?

$$
P\left(\theta_{i j} \cdot \mid \mathcal{D}\right)=\operatorname{Dir}\left(n_{i j} .+1\right)
$$

This distribution predicts, for future data:

$$
P\left(x_{i}=k \mid x_{p a(i)}=j, \mathcal{D}\right)=\frac{n_{i j k}+1}{\sum_{k^{\prime}}\left(n_{i j k^{\prime}}+1\right)}
$$

Adding 1 to each of the counts is a form of smoothing called "Laplace's Rule".

Bayesian parameter learning with hidden variables

Notation: let \mathcal{D} be the observed data set, X be hidden variables, and θ be model parameters. Assume discrete variables and Dirichlet priors on θ
Goal: to infer $\mathrm{P}(\boldsymbol{\theta} \mid \mathcal{D})=\sum_{X} \mathrm{P}(\mathrm{X}, \boldsymbol{\theta} \mid \mathcal{D})$
Problem: since (a)

$$
P(\theta \mid \mathcal{D})=\sum_{X} P(\theta \mid X, \mathcal{D}) P(X \mid \mathcal{D}),
$$

and (b) for every way of filling in the missing data, $P(\theta \mid X, \mathcal{D})$ is a Dirichlet distribution, and (c) there are exponentially many ways of filling in X, it follows that $P(\theta \mid \mathcal{D})$ is a mixture of Dirichlets with exponentially many terms!

Solutions:

- Find a single best ("Viterbi") completion of X (Stolcke and Omohundro, 1993)
- Markov chain Monte Carlo methods
- Variational Bayesian (VB) methods (Beal and Ghahramani, 2003)

Summary of parameter learning

	Complete (fully observed) data	Incomplete/hidden/missing data
ML	calculate frequencies	EM
Bayesian	update Dirichlet distributions	MCMC / Viterbi / VB

- For complete data, Bayesian learning is not more costly than ML
- For incomplete data, VB \approx EM time complexity
- Other parameter priors are possible but Dirichlet is flexible and intuitive.
- For non-discrete data, similar ideas but generally harder inference and learning.

Structure learning

Given a data set of observations of (A, B, C, D, E) can we learn the structure of the graphical model?

Let m denote the graph structure $=$ the set of edges .

Structure learning

Constraint-Based Learning: Use statistical tests of marginal and conditional independence. Find the set of DAGs whose d-separation relations match the results of conditional independence tests.
Score-Based Learning: Use a global score such as the BIC score or Bayesian marginal likelihood. Find the structures that maximize this score.

Score-based structure learning for complete data

Consider a graphical model with structure \mathfrak{m}, discrete observed data \mathcal{D}, and parameters θ. Assume Dirichlet priors.

The Bayesian marginal likelihood score is easy to compute:

$$
\begin{gathered}
\operatorname{score}(m)=\log P(\mathcal{D} \mid m)=\log \int P(\mathcal{D} \mid \theta, m) P(\theta \mid m) d \theta \\
\operatorname{score}(m)=\sum_{i} \sum_{j}\left[\log \Gamma\left(\sum_{k} \alpha_{i j k}\right)-\sum_{k} \log \Gamma\left(\alpha_{i j k}\right)-\log \Gamma\left(\sum_{k} \tilde{\alpha}_{i j k}\right)+\sum_{k} \log \Gamma\left(\tilde{\alpha}_{i j k}\right)\right]
\end{gathered}
$$

where $\tilde{\alpha}_{i j k}=\alpha_{i j k}+n_{i j k}$. Note that the score decomposes over i.
One can incorporate structure prior information $\mathrm{P}(\mathrm{m})$ as well:

$$
\operatorname{score}(m)=\log P(\mathcal{D} \mid m)+\log P(m)
$$

Greedy search algorithm: Start with m. Consider modifications $m \rightarrow m^{\prime}$ (edge deletions, additions, reversals). Accept m^{\prime} if $\operatorname{score}\left(m^{\prime}\right)>\operatorname{score}(m)$. Repeat.

Bayesian inference of model structure: Run MCMC on m.

Bayesian Structural EM for incomplete data

Consider a graphical model with structure \mathfrak{m}, observed data \mathcal{D}, hidden variables X and parameters θ

The Bayesian score is generally intractable to compute:

$$
\operatorname{score}(\mathfrak{m})=P(\mathcal{D} \mid m)=\int \sum_{X} P(X, \theta, \mathcal{D} \mid m) d \theta
$$

Bayesian Structure EM (Friedman, 1998):
(1) compute MAP parameters $\hat{\theta}$ for current model m using EM
(2) find hidden variable distribution $\mathrm{P}(\mathrm{X} \mid \mathcal{D}, \hat{\theta})$
(3) for a small set of candidate structures compute or approximate

$$
\operatorname{score}\left(m^{\prime}\right)=\sum_{X} P(X \mid \mathcal{D}, \hat{\theta}) \log P\left(\mathcal{D}, X \mid m^{\prime}\right)
$$

(4) $\mathfrak{m} \leftarrow \mathrm{m}^{\prime}$ with highest score

Directed Graphical Models and Causality

Causal relationships are a fundamental component of cognition and scientific discovery. Even though the independence relations are identical, there is a causal difference between:

- "smoking" \rightarrow "yellow teeth"
- "yellow teeth" \rightarrow "smoking"

Key idea: interventions and the do-calculus:

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~S} \mid \mathrm{Y}=\mathrm{y}) \neq \mathrm{P}(\mathrm{~S} \mid \operatorname{do}(\mathrm{Y}=\mathrm{y})) \\
& \mathrm{P}(\mathrm{Y} \mid \mathrm{S}=\mathrm{s})=\mathrm{P}(\mathrm{Y} \mid \operatorname{do}(\mathrm{S}=\mathrm{s}))
\end{aligned}
$$

Causal relationships are robust to interventions on the parents.
The key difficulty in learning causal relationships from observational data is the presence of hidden common causes:

Learning parameters and structure in undirected graphs

$$
P(\mathbf{x} \mid \boldsymbol{\theta})=\frac{1}{Z(\boldsymbol{\theta})} \prod_{j} g_{j}\left(\mathbf{x}_{C_{j}} ; \theta_{j}\right) \text { where } Z(\theta)=\sum_{x} \Pi_{j} g_{j}\left(\mathbf{x}_{C_{j}} ; \theta_{j}\right) .
$$

Problem: computing $Z(\theta)$ is computationally intractable for general (non-tree-structured) undirected models. Therefore, maximum-likelihood learning of parameters is generally intractable, Bayesian scoring of structures is intractable, etc.

Solutions:

- directly approximate $Z(\boldsymbol{\theta})$ and/or its derivatives (cf. Boltzmann machine learning; contrastive divergence; pseudo-likelihood)
- use approx inference methods (e.g. loopy belief propagation, bounding methods, EP).
(Murray \& Ghahramani, 2004; Murray et al, 2006) for Bayesian learning in undirected models.

Summary

- Parameter learning in directed models:
- complete and incomplete data;
- ML and Bayesian methods
- Structure learning in directed models: complete and incomplete data
- Causality
- Parameter and Structure learning in undirected models

Advanced Readings and References

- Beal, M.J. and Ghahramani, Z. (2006) Variational Bayesian learning of directed graphical models with hidden variables. Bayesian Analysis 1(4):793-832.
http://learning.eng.cam.ac.uk/zoubin/papers/BeaGha06.pdf
- Friedman, N. (1998) The Bayesian structural EM algorithm. In Uncertainty in Artificial Intelligence (UAI-1998). http://robotics.stanford.edu/~nir/Papers/Fr2.pdf
- Friedman, N. and Koller, D. (2003) Being Bayesian about network structure. A Bayesian approach to structure discovery in Bayesian networks. Machine Learning. 50(1): 95-125. http://www.springerlink.com/index/NQ13817217667435.pdf
- Ghahramani, Z. (2004) Unsupervised Learning. In Bousquet, O., von Luxburg, U. and Raetsch, G. Advanced Lectures in Machine Learning. 72-112.
http://learning.eng.cam.ac.uk/zoubin/papers/ul.pdf
- Heckerman, D. (1995) A tutorial on learning with Bayesian networks. In Learning in Graphical Models. http://research.microsoft.com/pubs/69588/tr-95-06.pdf
- Murray, I.A., Ghahramani, Z., and MacKay, D.J.C. (2006) MCMC for doubly-intractable distributions. In Uncertainty in Artificial Intelligence (UAI-2006). http://learning.eng.cam.ac.uk/zoubin/papers/doubly_intractable.pdf
- Murray, I.A. and Ghahramani, Z. (2004) Bayesian Learning in Undirected Graphical Models: Approximate MCMC algorithms. In Uncertainty in Artificial Intelligence (UAI-2004). http://learning.eng.cam.ac.uk/zoubin/papers/uai04murray.pdf
- Stolcke, A. and Omohundro, S. (1993) Hidden Markov model induction by Bayesian model merging. In Advances in Neural Information Processing Systems (NIPS).

[^0]
[^0]: http://omohundro.files.wordpress.com/2009/03/stolcke_omohundro93_hmm_induction_bayesian_model_merging.pdf

