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Motivation

Many statistical inference problems result in intractable computations...
e Bayesian posterior over model parameters:

proo) = P20

e Computing posterior over hidden variables (e.g. for E step of EM):

Py, o) — PYICIP(HE)

e Computing marginals in a multiply-connected graphical
models:

P(xilxj; =e) Z P(x[x; = e)
x\{xi,x;}

Solutions: l® O

Markov chain Monte Carlo, variational approximations

Ghahramani & Rasmussen (CUED) Lecture 10, 11: Variational Approximations February 17th, 18th, 2010 2/20



Example: Binary latent factor model

Model with K binary latent variables, s; € {0, 1},

organised into a vector s = (Sq,...,Sk)
real-valued observation vector y
parameters 0 = {{p, 1 }X |, 02}

s ~ Bernoulli
yls ~ Gaussian

K K
p(s|7'[) = p(Sl, .. .,SK‘T[) = Hp(5i|7(i) — Hﬁf‘(l —7'[1)(175‘)
i=1

K
N (Z Sili, 021>
i=1

EM optimizes bound on likelihood: ~ F(q,0) = (logp(s,yl0))q(s) — (log q(s))q¢s)

where () 4 is expectation under q: (f(s)q def > f(s)q(s)

p(Y|51, <oy SKH Uy 0-2)

Exact E step: q(s) = p(sly, ©) distribution over 2K states: intractable for large K
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Example: Binary latent factor model

organised into a vector s = (Sq,...,Sk)
real-valued observation vector y
parameters 0 = {{p, 1 }X |, 02}

s ~ Bernoulli
yls ~ Gaussian

Figure 2: Left panel: Original source images used to generate data. Middle panel: Observed images
resulting from mixture of sources. Right panel: Recovered sources

from Lu et al (2004)
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Review: The EM algorithm

Given a set of observed (visible) variables V, a set of unobserved (hidden / latent /
missing) variables H, and model parameters 0, optimize the log likelihood:

£(6) = log p(VI6) = logjp(H, VIe)dH,

Using Jensen’s inequality, for any distribution of hidden variables q(H) we have:

p(H,V|0)
q(H)

p(H,VI0)

T dH = (q,0),

£(6) =logjq(H) dH > Jq(H)log

defining the F(q, 0) functional, which is a lower bound on the log likelihood.
In the EM algorithm, we alternately optimize F(q, 0) wrt q and 8, and we can
prove that this will never decrease £.
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The E and M steps of EM

The lower bound on the log likelihood:

p(H,VI0)

7(0,0) = | q(r)log P an = | qr) logp(H, Vie)aH +91(q)

where H(q) = — J q(H) log q(H)dH is the entropy of q. We iteratively alternate:

E step: maximize F(q, 0) wrt the distribution over hidden variables given
the parameters:

q[k](H) = argmax ff"(q(H),G[k 1 ) p(HIV, plk—1)),
q(H)

M step: maximize F(q, 0) wrt the parameters given the hidden distribution:

0 := argmax F(q"/(H),0) = argmax qu (H)logp(H, V|e)dH
0 0

which is equivalent to optimizing the expected complete-data log

likelihood log p(H, V|6), since the entropy of q(H) does not depend

on 0.
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Variational Approximations to the EM algorithm

Often p(H|V, 0) is computationally intractable, so an exact E step is out of the
question.

Assume some simpler form for q(H), e.g. q e Q, the set of fully—factorized
distributions over the hidden variables: q(H) =[], q(H

E step (approximate): maximize F(q,0) wrt the distribution over hidden
variables given the parameters:

q[k} (H) := argmax ?(q(H), 9“‘7”).
q(H)eQ

M step : maximize F(q,0) wrt the parameters given the hidden
distribution:

0! = argmax ?(q[k] (H), 9) = argmax Jq[k] (H) logp(H, V|B)dH,
0 0
This maximizes a lower bound on the log likelihood.

Using the fully-factorized q is sometimes called a mean-field approximation.
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Example: Binary latent factor model

Model with K binary latent variables, s; € {0, 1},

organised into a vector s = (Sq,...,Sk)
real-valued observation vector y
parameters 0 = {{p, 1 }X |, 02}

s ~ Bernoulli
yls ~ Gaussian

K K
p(s|7'[) = p(Sl, .. .,SK‘T[) = Hp(5i|7(i) — Hﬁf‘(l —7'[1)(175‘)
i=1

K
N (Z Sili, 021>
i=1

EM optimizes bound on likelihood: ~ F(q,0) = (logp(s,yl0))q(s) — (log q(s))q¢s)

where () 4 is expectation under q: (f(s)q def > f(s)q(s)

p(Y|51, <oy SKH Uy 0-2)

Exact E step: q(s) = p(sly, ©) distribution over 2K states: intractable for large K
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Example: Binary latent factors model (cont.)

St(qa e) = <logp(ss Y\9)>q(s)*<10g q(s)>q(s)

log  pls,yl0) +¢
S K silogm 4(1—s;)log(1 —m) —Dlogo — Zs w) ' —Zsip.i)

Z!f:lsilogm +(1 —si)log(1 —m;) —Dlogo
252 (YTYZZSiUiTYJFZZSiSjPHTUj>
i i

we therefore need (s;) and (sis;) to compute F.
These are the expected sufﬁczent statistics of the hidden variables.
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Example: Binary latent factors model (cont.)

Variational approximation:

ZHCH( HAS‘ —Ay)tsd)

where A; is a parameter of the variational approximation modelling the posterior
mean of s; (compare to 7t; which models the prior mean of s;).

Under this approximation we know (s;) = A; and (sisj) = MAj + 815 (A1 — A?).

0) :Zmog% 4 (1= Ag) log
1
—Dlogo — E(Y— ZAiHi)T(Y— ZNH«L)

szZ A — log(zm
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Fixed point equations for the binary latent factor model

Taking derivatives w.r.t. A;:

o0F us i 1
Y i 1 i e As L T = . T,
a}\i og 1— T og 1—2A + 2 (y ; ]u']) by 20_2 Hi By
Setting to zero we get fixed point equations:
| s 1
Ay =f Ogl— y ZAJU] by — 2”’1 My

j#

where f(x) = 1/(1 + exp(—x)) is the logistic (sigmoid) function.

Learning algorithm:

E step: run fixed point equations until convergence of A for each data point.
M step: re-estimate 6 given As.
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KL divergence

Note that

E step maximize F(q, 0) wrt the distribution over hidden variables, given
the parameters:

q[k} (H) := argmax Sr(q(H), 6“‘7”).
q(H)eQ

is equivalent to:

E step minimize X£(q||p(H[V, 0)) wrt the distribution over hidden
variables, given the parameters:

q™(H) = argminJ q(H) log o q(H) dH

q(H)€Q H[V, olk—11)

So, in each E step, the algorithm tries to find the best approximation to p in Q.

This is related to ideas in information geometry.
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Variational Approximations to Bayesian Learning

logp(V) = log”p(V,Hle)p(G) dH de

p(V,H,0)

Constrain q € 9 s.t. q(H,0) = q(H)q(0).
This results in the variational Bayesian EM algorithm.

More about this later (when we study model selection).
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Variational Approximations and Graphical Models I

Let q(H) =11, qil

Variational approximation maximises F:

F(q) = jq(H)logp(H,V)dH—Jq(H) log q(H)dH

Focusing on one term, qj, we can write this as:

F(qy) = qu(Hj)<logp(H,V)> (Hl)de—qu(Hj)logqj(Hj)de—|—C0nst

~qj

Where (-) ) denotes averaging w.r.t. qi(H;) for all i # j

~q;(H

Optimum occurs when:

3 1
q; (Hy) = 7 exp <lng(Hrv)>~qj(Hi)
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Variational Approximations and Graphical Models II

Optimum occurs when:

e O ©
q5 (Hj) = 7 &XP (logp(H, V)>
= [ p(Xilpa;)

Assume graphical model: p(H, V)

logqj(H;) = <Zlogp(Xilpai)>N i, T onst

q; (H;

<logp(H Ipa; > . + Zh <logp Xklpak)> o)) + const
kec

This defines messages that get passed between nodes in the graph. Each node
receives messages from its Markov boundary: parents, children and parents of

children.
Variational Message Passing (Winn and Bishop, 2004)
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Expectation Propagation (EP)

Data (iid) D = {x(V ..., x(™)}, model p(x|0), with parameter prior p(8).

N
1 .
The parameter posterior is: 0|D) = 0 xV|o
P P P(8ID) =~ )Ep( )
_ N
We can write this as product of factors over ©: p(0) Hp(xmle) = H fi(0)
=0

def

where f((0) dof p(0) and f;(0) = p(x(V|0) and we will ignore the constants.
N

We wish to approximate this by a product of simpler terms: q(0) def H f1(0)

N N
minﬂCL( fi(0 H fi 9) intractable
min gmgl() ( )
min XL ( 1(0) Hﬂ(G)) (simple, non-iterative, inaccurate)
fi(0)
min XL ( (0 i ( fi( simple, iterative, accurate) < EP
min (r@[TH@)|f@ TF©) (simp )

j#AL jAL
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Expectation Propagation II

Input fo(e)...fN(e)
Initialize fo(0) = fo(0), fi(0) = 1 fori >0, q(0) = [, fi(0)
repeat

fori=0...Ndo

Deletion: q.;(0)

=]]fe
. j#t
Projection: f{*V(0) <—argrfr(119r)1 KL(fi(0)q.u(0)]|f(0)qu(0))

Inclusion: q(0) « f2¥(0) q.i(0)
end for
until convergence

The EP algorithm. Some variations are possible: here we assumed that fy is in the
exponential family, and we updated sequentially over 1.

e Tries to minimize the opposite KL to variational methods
e fi(0) in exponential family — projection step is moment matching
* No convergence guarantee (although convergent forms can be developed)
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Some Further Readings

® MacKay, D.]J.C. (2003) Information Theory, Inference, and Learning Algorithms.
Chapter 33.

* Bishop, C.M. (2006) Pattern Recognition and Machine Learning.

® Winn, J. and Bishop, C.M. (2005) Variational Message Passing. J]. Machine Learning
Research. http://johnwinn.org/Publications/papers/VMP2005. pdf

® Lu, X., Hauskrecht, M., and Day, R.S. (2004) Modeling cellular processes with
variational Bayesian cooperative vector quantizer. In the Proceedings of the Pacific
Symposium on Biocomputing (PSB) 9:533-544.
http://psb.stanford.edu/psb-online/proceedings/psb04/1lu.pdf

® Minka, T.P. (2004) Roadmap to EP:
http://research.microsoft.com/~minka/papers/ep/roadmap.html

® Ghahramani, Z. (1995) Factorial learning and the EM algorithm. In Adv Neur Info
Proc Syst 7.
http://learning.eng.cam.ac.uk/zoubin/zoubin/factorial.abstract.html

® Jordan, M.I., Ghahramani, Z., Jaakkola, T.S. and Saul, L.K. (1999) An Introduction
to Variational Methods for Graphical Models. Machine Learning 37:183-233.
Awvailable at: http://learning.eng.cam.ac.uk/zoubin/papers/varintro.pdf
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Appendix: Binary latent factor model for i.i.d. data

Assume data set D ={y) ... y(N)} of N points and params 0 = {{u;, m:}¥ ,, 0%}

Use a factorised distribution:
N K
(n) ()
$)= [Tants™) =T TTants™) =TT T (1 a7t
n=1 1i=1 noi

’:]z

n

p(y'™e)

S
=

Il
::]z

n=1
p(y™e) = > ply™ls,u o)p(sin)
F(q(s),8) = D Faldn(s™),0) < logp(DI6)
(n) — (n) ¢(n) _ (n)
Talans™),0) = (logps™y™le)) -~ (loganls™))

We need to optimise w.r.t. qn(s™)) for each data point, so
E step: optimize qn (s™)) (i.e. AM)) for each n.
M step: re-estimate 0 given qn (s™)’s.
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Appendix: How tight is the lower bound?

It is hard to compute a nontrivial general upper bound.

To determine how tight the bound is, one can approximate the true likelihood by
a variety of other methods.

One approach is to use the variational approximation as as a proposal
distribution for importance sampling.

—pw)
[
—q(x)

-1

But this will generally not work well. See exercise 33.6 in David MacKay’s
textbook.

Ghahramani & Rasmussen (CUED) Lecture 10, 11: Variational Approximations February 17th, 18th, 2010 20/20



