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Three main kinds of graphical models

factor graph undirected graph directed graph

* Nodes correspond to random variables

e Edges represent statistical dependencies between the variables
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Why do we need graphical models?

* Graphs are an intuitive way of representing and visualising the relationships
between many variables. (Examples: family trees, electric circuit diagrams,
neural networks)

* A graph allows us to abstract out the conditional independence relationships
between the variables from the details of their parametric forms. Thus we
can answer questions like: “Is A dependent on B given that we know the
value of C ?” just by looking at the graph.

e Graphical models allow us to define general message-passing algorithms that
implement probabilistic inference efficiently. Thus we can answer queries like
“What is P(A|C = ¢)?” without enumerating all settings of all variables in
the model.

Graphical models = statistics x graph theory x computer science.
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Conditional Independence

Conditional Independence:

XLYV < pX[Y,V) =p(X|V)
when p(Y,V) > 0. Also

XLYV < p(X,YV) =p(X|V)p(YV)

In general we can think of conditional independence between sets of variables:

XLYV < p(X,YV) =pX[IV)p(YIV)
Marginal Independence:

XLY & XLYD < pXY)=pX)p(Y)
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Conditional and Marginal Independence (Examples)

* Amount of Speeding Fine 1L Type of Car | Speed
* Lung Cancer L Yellow Teeth | Smoking

* (Position, Velocity)¢1 1L (Position, Velocity);_1 | (Position, Velocity):,
Acceleration;

Child’s Genes 1l Grandparents’ Genes | Parents’ Genes
Ability of Team A 1L Ability of Team B
* not ( Ability of Team A 1L Ability of Team B | Outcome of A vs B Game )
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Factor Graphs

0 Q 0 9 Two types of nodes:

® The circles in a factor graph

G‘ e represent random variables (e.g.

o The filled dots represent factors in
the joint distribution (e.g. g1 (+)).

(a) (b)
(a) P(A,B,C,D,E) = 791(A,C)ga2(B, C,D)gs3(C, D, E)

(b) P(A,B,C,D,E) = 2g1(A, C)g2(B, C)g3(C,D)g4(B,D)gs(C, E)gs(D, E)
The g; are non-negative functions of their arguments, and Z is a normalization
constant.

E.g. in (a), if all variables are discrete and take values in A x B x € x D x &:

Z=) > > > > gi(A=0a,C=c)g(B=b,C=c,D=d)g;(C=c,D=d,E=e¢)

acAbeB ceCdeD eck

Two nodes are neighbors if they share a common factor.
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Factor Graphs
4y ® (4 (8)

® i_ e‘@»‘@

(a) (b)

The circles in a factor graph represent random variables.
The filled dots represent factors in the joint distribution.

(a) P(Aa B: C, D, E) = %gl (Aa C)gl(Ba C’ D)g3(C3 D9 E)

(b) P(Aa B: Ca Da E) = %gl(A9 C)QZ(B, C)g3(ca D)g4(Ba D)QS(Cs E)g6(D’ E)
Two nodes are neighbors if they share a common factor.

Definition: A path is a sequence of neighboring nodes.

Fact: X1LY|V if every path between X and Y contains some node V € V
Corollary: Given the neighbors of X, the variable X is conditionally independent
of all other variables: X1.Y|ne(X), VY ¢ {XUne(X)}
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Proving Conditional Independence
Assume:
vV = Lavary, OO0 g

We want to show conditional independence:
XLYV < p(X[Y,V) =p(XV) (2)

Summing (1) over X we get:

1
p(Y,V) =5 [; 91X, V)| 02(Y,V) (3)
Dividing (1) by (3) we get:
_ gl(X7 V)
p(XlY,V) = T 01X V) (4)

Since the rhs. of (4) doesn’t depend on Y, it follows that X is independent of Y
given V.
Therefore factorizaton (1) implies conditional independence (2).
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Undirected Graphical Models

In an Undirected Graphical Model, the joint probability over all variables can be
written in a factored form:

Pex) = 5 [Toilxe,)
j

where x = (x1,...,%xx), and
C; C{1,...,K}
are subsets of the set of all variables, and x5 = (xi : k € S).

Graph Specification: Create a node for each variable. Connect nodes i and k if
there exists a set Cj such that both i € Cj and k € Cj. These sets form the cliques
of the graph (fully connected subgraphs).

Note: Undirected Graphical Models are also called Markov Networks.

Very similar to factor graphs.
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Undirected Graphical Models
P(A,B,C,D,E) = %gl(A,C)gz(B, C,D)g3(C, D, E)

Fact: X 1LY|V if every path between X and Y contains some node V € V

Corollary: Given the neighbors of X, the variable X is conditionally independent
of all other variables: X1L.Y|ne(X), VY ¢ {XUne(X)}

Markov Blanket: V is a Markov Blanket for X iff X1LY|V for all Y € {X U V1.
Markov Boundary: minimal Markov Blanket = ne(X) for undirected graphs and
factor graphs

Ghahramani & Rasmussen (CUED) Lecture 4: Graphical Models 10/26



Comparing Undirected Graphs and Factor Graphs
@ B W B A
@‘ - @‘@ G
()
(a) (b) (c)

All nodes in (a), (b), and (c) have exactly the same neighbors and therefore these
three graphs represent exactly the same conditional independence relationships.
(c) also represents the fact that the probability factors into a product of pairwise
functions.

Consider the case where each variables is discrete and can take on K possible
values. Then the functions in (a) and (b) are tables with O(K?) cells, whereas in
(c) they are O(K?).
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Problems with Undirected Graphs and Factor Graphs

In UGs and FGs, many useful independencies are unrepresented—two variables
are connected merely because some other variable depends on them:

This highlights the difference between marginal independence and conditional
independence.

R and S are marginally independent (i.e. given nothing), but they are
conditionally dependent given G.

“Explaining Away”: Observing that the spinkler is on, would explain away the
observation that the ground was wet, making it less probable that it rained.

Ghahramani & Rasmussen (CUED) Lecture 4: Graphical Models 12/26



Directed Acyclic Graphs (Bayesian Networks)

A DAG Model / Bayesian network! corresponds to a factorization of the joint
probability distribution:

p(A,B,C,D,E) =p(A)p(B)p(CIA,B)p(DIB, C)p(E|C, D)

In general: n
p(X1,..,Xn) = [ [P(XilXpa())
i=1

where pa(i) are the parents of node i.

1«Bayesian networks” can and often are learned using non-Bayesian (i.e. frequentist) methods;
Bayesian networks (i.e. DAGs) do not require that parameter or structure learning use Bayesian
methods.
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Moralisation test for conditional independence

®\ ()
(Lauritzen et al, 1990; Cowell et al, 1999) @‘
®
&

The basic idea is to turn the directed acyclic graph (DAG) into an undirected
graph (UG) and then do a simple test on the UG.

Consider determining if X1 Y|V??

* Ancestral graph: Remove from the DAG any node which is neither in
X UY UV nor an ancestor of a node in this set, together with any edges in or
out of such nodes.

* Moralisation: Add a line between any two nodes which have a common child
but are not already connected by an arrow. Remove remaining arrowheads.

* Separation: Apply the separation criterion for undirected graphs to
determine if all paths from X to Y are blocked by V. If so, then X 1LY|V.

Corollary: Markov Boundary for X: {parents(X) U children(X) U parents-of-children(X)}.

2Text paraphrased from (Dawid 2001)
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Directed Graphs for Statistical Models:
Plate Notation

A data set of N points generated from a Gaussian:

N
p(Xb- <53 XNs M, G) = P(H)P(U) HP(Xn|H, 0-)

n=1

Ghahramani & Rasmussen (CUED) Lecture 4: Graphical Models 15/26



Summary

Three kinds of graphical models: directed, undirected, factor
(there are other important classes, e.g. directed mixed graphs)

* Marginal and conditional independence
e Markov boundaries and separation tests for independence
* Plate notation
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From Directed Trees to Undirected Trees

@W@i@

o O
P(x1,%2,...5,%7) = p(x3)p(x1/x3)p(x2lx3)P(xalx3)P(x5/x4) P (X6]x4 )P (X7]%4)

Px1,x3)P(x2,%3)P (X3, X4 )P (X4, X5)P (X4, X6 )P (X4, X7)
P(x3)p(x3)p(xa)p(x4)P(x4)

product of cliques

~ product of clique intersections

= g1(x1,%3)92(x2,%3)93(%3, X4) 94 (X4, X5) g5 (X4, X6 ) 96 (X4, X7) =

= [JoilCo)

Any directed tree can be converted into an undirected tree representing the same
conditional independence relationships, and viceversa.
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Expressive Power of Directed and Undirected Graphs

\ No Directed Graph (Bayesian
network) can represent these
and only these independencies

No matter how we direct the arrows there will always be two non-adjacent
parents sharing a common child = dependence in Directed Graph but
independence in Undirected Graph.

No Undirected Graph or Fac-
tor Graph can represent these
and only these independencies

Directed graphs are better at expressing causal generative models, undirected
graphs are better at representing soft constraints between variables.
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Appendix: Some Examples of Directed Graphical
Models

factor analysis
probabilistic PCA

hidden Markov models
linear dynamical systems

switching state-space models
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Appendix: Examples of Undirected Graphical Models

* Markov Random Fields (used in Computer Vision) %

* Exponential Language Models (used in Speech and Language Modelling)

p(s) = —po exp{ZH }

* Products of Experts (widely applicable)
1
=< [[rix05)
j

* Boltzmann Machines (a kind of Neural Network/Ising Model)

&
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Appendix: Clique Potentials and Undirected Graphs

Definition: a clique is a fully connected subgraph. By clique we usually mean
maximal clique (i.e. not contained within another clique)

C; denotes the set of variables in the it" clique.
(1) = = [T ot(xc.)
PIX1,.005XK =7 i gilXc;

where Z =5 . TIigi(xc,) is the normalization.

Associated with each clique C; is a non-negative func-
tion gi(xc,) which measures “compatibility” between
settings of the variables.

Example: Let C; ={A,C},A €{0,1},C €{0,1}

What does this mean?
o)

>
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Appendix: Hammersley—Clifford Theorem (1971)

Theorem: A probability function p formed by a normalized product of positive
functions on cliques of G is a Markov Field relative to G.

Definition: The distribution p is a Markov Field relative to G if all conditional
independence relations represented by G are true of p.

G represents the following CI relations: If V € V lies on all paths between X and
Y in G, then X1LY|V.

Proof: We need to show that if p is a product of functions on cliques of G then a
variable is conditionally independent of its non-neighbors in G given its neighbors
in G. That is: ne(x¢) is a Markov Blanket for x;. Let xm, & {x¢ Une(xg)}

P(Xe, Xms .- - Hgl xc,) H gilxe,) T gilxc))

1€€C j g Cy

Lt (xesne(xe)) 2 (nelxe)yxm) =

=7 p(xelne(xe)) p(xm|ne(xe))

1
ZI/
It follows that:

Pxe, xmlne(xe)) = plxelne(xe)) plxmlne(x)) & xpllxm|ne(xe).
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Appendix: D-Separation for DAGs
OO
(o)

e
Semantics: XLY|V if V d-separates X from Y3,
Definition: V d-separates X from Y if every undirected path* between X and Y is
blocked by V. A path is blocked by V if there is a node W on the path such that

either:

©® W has converging arrows along the path (— W «) and neither W nor its
descendants are observed (in V), or

® W does not have converging arrows along the path (— W — or «— W —)
and W is observed (W € V).

Corollary: Markov Boundary for X:
{parents(X) U children(X) U parents-of-children(X)}.

3See also the “Bayes Ball” algorithm in the Appendix
#An undirected path ignores the direction of the edges.
SNote that converging arrows along the path only refers to what happens on that path.
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Examples of D-Separation in DAGs

R

Examples:

e A LB since A — C + Bis blocked; by C, A — C — D « B is blocked; by
D, etc.

e not (A1LB|C ) since A — C « B is not blocked.

* AILD{B,C}since A — C — D is blocked) by C A—-C+« B —Dis
blocked, by B, and A — C — E « D is blocked, by C.

e not (A ILBJE) since A — C « B is not blocked.

Note that it is the absence of edges that conveys conditional independence.

Ghahramani & Rasmussen (CUED) Lecture 4: Graphical Models 25/26



Appendix: The “Bayes-ball” algorithm
Game: can you get a ball from X to Y without being blocked by V?
Depending on the direction the ball came from and the type of node, the ball can

pass through (from a parent to all children, from a child to all parents), bounce
back (from any parent to all parents, or from any child to all children), or be

blocked.

* An unobserved (hidden) node (W ¢ V) passes balls through but also bounces
back balls from children.

* An observed (given) node (W € V) bounces back balls from parents but
blocks balls from children.
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