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Old question, new marginal likelihood view
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Should we choose a polynomial?

model structure
we will address this soon
* What degree should we choose for the polynomial? model structure
let the marginal likelihood speak
* For a given degree, how do we choose the weights? model parameters
we consider many possible weights under the posterior

For now, let find the single “best” polynomial: degree and weights.

we don’t do this sort of thing anymore
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Marginal likelihood (Evidence) of our polynomials

Marginal likelihood, or “evidence” of a finite linear model:

noise

Py = [p(ExMp(IHE = Nys 0,03 @ ®T + 02

For each polynomial degree, repeat the following infinitely many times:

@ Sample a function fs from the prior: p(flx, M).

® Compute the likelihood of that function given the data: p(ylf).

® Keep count of the number of samples so far: S.

© The marginal likelihood is the average likelihood: % Zle p(ylfs)

Luckily for Gaussian noise there is a closed-form analytical solution!

of ‘ ‘ ‘ * The evidence prefers M = 3,
not simpler, not more complex.

* Too simple models consistently

| og evidence

-50 )
miss most data.
* Too complex models frequently
100, 20 miss some data.

5 10 15 |
M Degree of the pol ynom al
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Multiple explanations of the data

Remember that a finite linear model f(x;) = ¢ (x;) "w with prior on the weights
p(w) = N(w; 0, 02,) has a posterior distribution

L = (0,2 (I)T(D—f—cr‘;z)fl

noise

(wlx,y, M) = N(w; u, £) with —1
Py p= (@@ %) 0Ty

and predictive distribution

PY«x, X, 7, M) = N(ys3 d)(x*)Tp’ (b(x*)TZ(b(X*) +Gr210ise1)
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Are polynomials a good prior over functions?
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A prior over functions view
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We have learnt that linear-in-the-parameter models with priors on the weights

indirectly specify priors over functions.
True... and those priors over functions might not be good.

... why not try to specify priors over functions directly?
What? What does a probability density over functions even look like?
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The Gaussian Distribution

The Gaussian distribution is given by
p(xln,I) = N(, £) = 2m) P2g 2exp (— dx—w) T2 ' (x—p))
where p is the mean vector and X the covariance matrix.
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Conditionals and Marginals of a Gaussian

—joint Gaussian

> —joint Gaussian
—conditional

—marginal

Both the conditionals and the marginals of a joint Gaussian are again Gaussian.
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Conditionals and Marginals of a Gaussian

In algebra, if x and y are jointly Gaussian
a A B
P(X,Y) = N(|:b:|7 |:BT C:|),

the marginal distribution of x is

a},[/\ B

pxy) = N([p]s (57 o)) = P = Na, A),

and the conditional distribution of x given y is

a},[A B

pxy) = N([p | g7 &) = plxly) = Na+BC ' (y-b), A~BC"'BT),

where x and y can be scalars or vectors.

Quifionero-Candela & Rasmussen (CUED) Lecture 3 and 4: Gaussian Processes 91/32



What is a Gaussian Process?

A Gaussian process is a generalization of a multivariate Gaussian distribution to
infinitely many variables.

Informally: infinitely long vector ~ function

Definition: a Gaussian process is a collection of random variables, any
finite number of which have (consistent) Gaussian distributions. O

A Gaussian distribution is fully specified by a mean vector, p, and covariance
matrix X:
f = (fi,....,fa)" ~ N(w,Z), indexesi=1,...,n

A Gaussian process is fully specified by a mean function m(x) and covariance
function k(x,x’):

f(x) ~ §P(m(x),k(x,x")), indexes: x
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The marginalization property

Thinking of a GP as a Gaussian distribution with an infinitely long mean vector
and an infinite by infinite covariance matrix may seem impractical. . .

... luckily we are saved by the marginalization property:
Recall:
pix) = [plxy)dy.

For Gaussians:

oy = (3] [ 2
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Random functions from a Gaussian Process

Example one dimensional Gaussian process:

p(f(x)) ~ GP(m(x) = 0, k{x,x') = exp(—} (x —x')?)).

To get an indication of what this distribution over functions looks like, focus on a
finite subset of function values f = (f(x1),f(x2),...,f(xn)) ", for which

f ~ N(0,1),

where Zij = k(Xi,Xj )

Then plot the coordinates of f as a function of the corresponding x values.
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Some values of the random function
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Joint Generation

To generate a random sample from a D dimensional joint Gaussian with
covariance matrix K and mean vector m: (in octave or matlab)

randn(D,1);
chol(K)’*z + m;

z
y

where chol is the Cholesky factor R such that RTR = K.
Thus, the covariance of y is:

El(y—¥)(y—¥%)'] = ER"2zz'R] = R'E[zz']R = RTIR = K.
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Sequential Generation

Factorize the joint distribution

n

p(fla .. .,fn|X1,. . 'XTL) - Hp(fdfifl" . .,fl,Xi, .. "Xl);
i=1

and generate function values sequentially.
What do the individual terms look like? For Gaussians:

a},[A B

pxy) = N([p | g7 ¢)) = pxly) = Na+BC ' (y-b), A~BC"'BT)

Do try this at home!
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Function drawn at random from a Gaussian Process with Gaussian covariance
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Non-parametric Gaussian process models

In our non-parametric model, the “parameters” are the function itself!

Gaussian likelihood:
Y‘Xa f(X),Mi ~ N(f9 Gz I)

noise
(Zero mean) Gaussian process prior:

f(x)IM; ~ §P(m(x) =0, k(x,x"))

Leads to a Gaussian process posterior

f(X)‘X, Y, Mi. ~ 9?(mpost(x) — k(Xa X)[K(Xa X) + G%oiseﬂil}a
Kpost (X, x") = k(x,x") — k(x, x)[K(x,x) + Gﬁoiscl}*lk(x,x’)).

And a Gaussian predictive distribution:

y*|x*9X,YaMi ~ N(k(X*,X)T[K-f—O'Z Hily;

noise

K(%ss %) + Ongice — k(X X) T [K + 071 I Tk (x4, X))
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Prior and Posterior
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Predictive distribution:

P(y*|X*, X, Y) ~ N(k(X*a X)T[K + O%oiseﬂilyg
k(x*a X*) + O-ﬁoise - k(X*, X)T [K + o-ﬁoiseﬂilk(x*’x))
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Some interpretation

Recall our main result:
b, X,y ~ N(K(xa, ) [K(X, %) 4+ 0pgic 11y,
K (% %) — K (s X) [K(%, %) + 0nie 1T K(X,%40)).

The mean is linear in two ways:
n n
n(x) = k(o X)KEX) + 0ngi Iy = ) Biyi = ) aik(xa, i)
i=1 i=1

The last form is most commonly encountered in the kernel literature.

The variance is the difference between two terms:
V(%) = k(X4 %) — k(x4, X)[K(x, %) + 02.: 1 Tk(x, %),

the first term is the prior variance, from which we subtract a (positive) term,
telling how much the data x has explained.
Note, that the variance is independent of the observed outputs y.
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The marginal likelihood

Log marginal likelihood:
logp(yhx,Mi) = —3y K~y — 5 log|K| — ~ log(2r)

is the combination of a data fit term and complexity penalty. Occam’s Razor is
automatic.

Learning in Gaussian process models involves finding

e the form of the covariance function, and
* any unknown (hyper-) parameters 6.

This can be done by optimizing the marginal likelihood:

alng(Y|X,e’Mi) _ 1 TK—l oK

1 1 0K
26, 5y 26, K~ ly — = trace(K~

2 26,
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Example: Fitting the length scale parameter

. . . x —x')?
Parameterized covariance function: k(x,x’) = v exp ( — %) + OpoiseOxx’-
1.5 I I
+ observations
— too short
1 —— good length scale | |
—— too long

0.5

-0.5 : : :

“10 -8 -6 -4 -2 0 2 4 6 8 10
The mean posterior predictive function is plotted for 3 different length scales (the
green curve corresponds to optimizing the marginal likelihood). Notice, that an
almost exact fit to the data can be achieved by reducing the length scale — but the
marginal likelihood does not favour this!
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Why, in principle, does Bayesian Inference work?
Occam’s Razor

A

=
z
ol
"just right"
. ...'
Y
All possible data sets
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An illustrative analogous example

Imagine the simple task of fitting the variance, o2, of a zero-mean Gaussian to a
set of 1 scalar observations.

X HKRKHHKXK X

XXX R IOORK X

X XXXEIORK X X

The log likelihood is log p(yl, 0%) = —3y " Iy/0>— 1 log[lo*| — & log(2m)

Quifi o0-Candela & R (CUED) Lecture 3 and 4: Gaussian Processes 23/32




From finite linear models to Gaussian processes (1)

Finite linear model with Gaussian priors on the weights:

M
fxi) = ) wi drlxi) p(w) = N(w; 0,A)
k=1

T

The joint distribution of any f = [f(x1),...,f(xn)]' is a multivariate Gaussian.

The prior p(f) is fully characterized by the mean and covariance functions.

M M
[ (X wettxor)ptwiaw = 3 o) [ [ wip(wiaw
k=1 k=1

m(xi) = Ew(f(x1))

M
S i) JWkp(wk)dwk _0
k=1

Using the marginalization property of Gaussians |...[ p(x,y)dy = p(x):

J---JWkP(W)dW = JWk(J---JP(Wk,W/k)dW/k)de = JWkP(Wk)de
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From finite linear models to Gaussian processes (2)

Covariance function of a finite linear model

fx) = XM wiedlxi) =wl d(xi)  dxi) = 1%y s dmx)] T (v
p(w) =N(w; 0,A) D =[Pp(x1),...,D(xn)] (NXM)

M M 0
= [ (3 3 wominxa)nxp) ) piw) a
k=111
M M
=) > b)) ”WkWLP(Wk,WL dwydw, = Z ZAu(bk xi)di(x;)
k=111 k=111
Akl

k(xi, %) = d(xi) TAd(x;)

Note: If A = 021 then k(xi,%j) = %vzlt/lzl Pr(x)dr(x5) = 02, (x1) T P (x5)
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From the function space view ...

GP with finite linear model covariance function k(xi,%j) = ¢ (xi) T Ad(x;).

The predictive distribution of f(x.) given the data has mean and variance:

m(x.) = k(x., x) T (K+ o7 D7y K=®AD"
with  k(x.,x) = DAG(x,)
V(X*) = Ko — k(x*’ ) (K + 0-nolse )71k(X*,X) Kis = (b(x*)TA(b(X*)

Some algebra (uses the matrix identities given on a separate slide):

mx.) = dp(x.) A®T(PAD + 02, 1)y

=d(x) (@D + oy AT DTy = d(x) T
\)(X*) = k’** - k(X*a ) (K + Gnmse )_1k(x*’x)
= d(x)T (1= AQT(@ADT + 02y )) ' @TA) d(x.)

:d)(x*) ( gozlse(DT(I)+A )d)(X*): (I)(X*)TZ(D(X*)

whereZ = (02 @' ®+A ) landp=(® ' ®+c2. A ) D'y,

noise noise
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. to the weight space view

Remember that a finite linear model f(x;) = d(x;) "

p(w) =N(w; 0,A) has a posterior distribution

w with prior on the weights

L= (2@ @+A )"

wix,y, M) = N(w; u, £) with nome 1
p(wlx,y, M) = N(w; u, X) u:<® O+ A 1) DTy
The predictive distribution is given by

P X X, ¥, M) = N(f(x.)3 (b(x*)TP'a (I)(X*)TZ(I)(X*))

e Same predictive distribution as a GP with linear model covariance function.
e But cheaper to compute: O(M) and O(M?) for predictive mean and variance.

The marginal likelihood of the linear model is identical to that of a GP with linear
model covariance

POy M) = Nly; 0, RAD T + 075
T 1T
but the identity (PAD® ' + 02, 1) =02, I— 02 P '@ allows reducing

the computational cost from O(N3) to O(NM?).
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From infinite linear models to Gaussian processes

Consider the class of functions (sums of squared exponentials):

n—oo N

f(x) = lim EZ% exp(—(x —1i/n)?), where y; ~N(0,1), Vi

= Joo v(u) exp(—(x —u)?)du, where y(u)~N(0,1), Var.

—00

The mean function is:

u(x) = E[f(x)] = Joo exp(—(x—u)z)ro vp(y)dydu = 0,

—00

and the covariance function:

E[f(x)f(x")] = Jexp (—(x— u)? — (x’ —u)z) du

X+ x/ x+x')? x—x'
= |exp (—2(u— + )?+ (x+x) —x* —x?)du o exp (— !)
2 2 2
Thus, the squared exponential covariance function is equivalent to regression
using infinitely many Gaussian shaped basis functions placed everywhere, not just
at your training points!
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Using finitely many basis functions may be dangerous!(1)

Finite linear model with 5 localized basis functions)
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Gaussian process with infinitely many localized basis functions
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Using finitely many basis functions may be dangerous!(2)

Finite linear model with 5 localized basis functions)
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Gaussian process with infinitely many localized basis functions
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Using finitely many basis functions may be dangerous!(3)

Finite linear model with 5 localized basis functions)
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Matrix and Gaussian identities cheat sheet
Matrix identities
* Matrix inversion lemma (Woodbury, Sherman & Morrison formula)
(Z+uwvh)t=z1—zluw ' +viz-luytviz!
* A similar equation exists for determinants
1Z+uwVvT =z W] W +VTz 'y
The product of two Gaussian density functions

N(x]a, A) N(Px|b, B) =z, N(x]c, C)

* is proportional to a Gaussian density function with covariance and mean
C=(A"+PBIPT)"" ¢c=C (A 'a+PBb)

* and has a normalizing constant z. that is Gaussian both in a and in b

ze=(27) FB+PTAP| Texp(— %(b —Pa)T (B+PTAP) ' (b—Pa))
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