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Coin tossing

* You are presented with a coin: what is the probability of heads?
What does this question even mean?
* How much are you willing to bet p(head) > 0.5?
Do you expect this coin to come up heads more often that tails?
Wait... can you throw the coin a few times, I need data!
e Ok, you observe the following sequence of outcomes (T: tail, H: head):
H
This is not enough data!

* Now you observe the outcome of three additional throws:
HHTH
How much are you now willing to bet p(head) > 0.5?
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The Bernoulli discrete distribution
The Bernoulli discrete probability distribution over binary random variables:

* Binary random variable X: outcome x of a single coin throw.

¢ The two values x can take are
e X =0 for tail,
e X =1 for heads.

* Let the probability of heads be m=p(X = 1).
7t is the parameter of the Bernoulli distribution.

e The probability of tail is p(X = 0) = 1 — 7t. We can compactly write
pX=xln) = p(xn) = (1 —m)'*

What do we think 7t is after observing a single heads outcome?
* Maximum likelihood! Maximise p(H|m) with respect to 7t

p(Hlm) = px=1n) = m, argmax .1 70 =1

* Ok, so the answer is 7t = 1. This coin only generates heads.
Is this reasonable? How much are you willing to bet p(heads)>0.5¢
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The Binomial distribution: counts of binary outcomes

We observe a sequence of throws rather than a single throw:
HHTH

e The probability of this particular sequence is: p(HHTH) = 7®(1 — 7).
e But so is the probability of THHH, of HTHH and of HHHT.

e We don’t really care about the order of the outcomes, only about the counts.
In our example the probability of 3 heads out of 4 throws is: 47°(1 — 7).

The Binomial distribution gives the probability of observing k heads out of n
throws

plkimn) = (1)1 —m)n "

* This assumes independent throws from a Bernoulli distribution p(x|).

n . L .
. (k) = k!(:ik)! is the Binomial coefficient, also known as “n choose k”.
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Maximum likelihood under a Binomial distribution

If we observe k heads out of n throws, what do we think 7 is?
We can maximise the likelihood of parameter 7 given the observed data.

p(klm,n) o (1 —mmnk

It is convenient to take the logarithm and derivatives with respect to 7t

logp(klm,n) = klogm+ (n—k)log(1 — ) + Constant

1 _
0 logp(k|mt,n) _ k n—k L0 e |m— k
oTt n 1—m n

Is this reasonable?

* For HHTH we get m = 3/4.

* How much would you bet now that p(heads) > 0.5?
What do you think p(m > 0.5)is?
Wait! This is a probability over ... a probability?
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Prior beliefs about coins — before throwing the coin

So you have observed 3 heads out of 4 throws but are unwilling to bet £100 that
p(heads) > 0.5?

(That for example out of 10,000,000 throws at least 5,000,001 will be heads)

Why?

* You might believe that coins tend to be fair (71 ~ %)

* A finite set of observations updates your opinion about 7.
* But how to express your opinion about 7t before you see any data?

Pseudo-counts: You think the coin is fair and... you are...

* Not very sure. You act as if you had seen 2 heads and 2 tails before.
* Pretty sure. It is as if you had observed 20 heads and 20 tails before.
e Totally sure. As if you had seen 1000 heads and 1000 heads before.

Depending on the strength of your prior assumptions, it takes a different number
of actual observations to change your mind.
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The Beta distribution: distributions on probabilities

Continuous probability distribution defined on the interval (0,1)

Mo+ B) acipq B—1 _ a-1(q _,\B-1
Fwrg)” 1™ Blwp)” O™

* o« >0 and B > 0 are the shape parameters.

e the parameters correspond to ’one plus the pseudo-counts’.

* I'(«) is an extension of the factorial function. I'(n) = (n — 1)! for integer n.
* B(x, B) is the beta function, it normalises the Beta distribution.

Beta(mte, B) =

e The mean is given by E(n1) = B [Left: « = f = 1, Right: &« = p = 3]
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Posterior for coin tossing

Imagine we observe a single coin toss and it comes out heads. Our observed data

is:
D ={k=1}, where n=1.

The probability of the observed data given 7t is the likelibood:
p(Dn) = =n

We use our prior p(mle, B) = Beta(mt]«, ) to get the posterior probability:

p(mx, B)p(Dlm)

p(7D) (D)

oc 7t Beta(mt|e, B)

x V(1 —m)P®Y « Beta(ro + 1, B)

The Beta distribution is a conjugate prior to the Binomial distribution:
* The resulting posterior is also a Beta distribution.
. . &, ior = Xpri k
* The posterior parameters are given by: PO prior -
Bposterior = Bprior + (Tl - k)
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Before and after observing one head
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Making predictions - posterior mean

Under the Maximum Likelihood approach we report the value of 7 that
maximises the likelihood of 7t given the observed data.

With the Bayesian approach, average over all possible parameter settings:
px=1D) = [ p(x = 1) p(riD) dr

This corresponds to reporting the mean of the posterior distribution.

e Learner A with Beta(1, 1) predicts p(x = 1|D) =
* Learner B with Beta(3, 3) predicts p(x = 1|D) =

NI Qoo
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Making predictions - other statistics

Given the posterior distribution, we can also answer other questions such as
“what is the probability that 7t > 0.5 given the observed data?”

1 1
p(t > 0.5|D) = J p('|D)dn’ = J Beta(7t'|o/, B/)dm’
0.5 0.5

* Learner A with prior Beta(1, 1) predicts p(7t > 0.5|D) = 0.75
* Learner B with prior Beta(3, 3) predicts p(7t > 0.5|D) = 0.66

Note that for any 1 > 1 and fixed « and {3, the two posteriors Beta(7t|e, B) and
Beta(7t|le, 1B) have the same average m, but give different values for p(7t > 0.5).
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Learning about a coin, multiple models (1)

Consider two alternative models of a coin, “fair” and “bent”. A priori, we may
think that “fair” is more probable, eg:

p(fair) = 0.8, p(bent) = 0.2

For the bent coin, (a little unrealistically) all parameter values could be equally
likely, where the fair coin has a fixed probability:

1 1
=0.8 =08
o 3
206 506
504 204

0.2 0.2

% 0.5 1 % 0.5 1
parameter, q parameter, q

We make 10 tosses,and get: THTHTTTTTT
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Learning about a coin, multiple models (2)

The evidence for the fair model is: p(Dlfair) = (1/2)'° ~ 0.001
and for the bent model:

p(D|bent) = Jdn p(Dlm, bent)p(7|bent) = J'dn (1 —m)® =B(3,9) ~ 0.002

The posterior for the models, by Bayes rule:
p(fair|D) o< 0.0008, p(bent|D) « 0.0004,

ie, two thirds probability that the coin is fair.

How do we make predictions? By weighting the predictions from each model by
their probability. Probability of Head at next toss is:

372 3712 127
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The Multinomial distribution (1)

Generalisation of the Binomial distribution from 2 outcomes to m outcomes.
Useful for random variables that take one of a finite set of possible outcomes.

Throw a die n = 60 times, and count the of observed (6 possible) outcomes.

Outcome Count
X:X1:1 k1:12
X:XZZZ k2:7
X=X3=3 k3=11
X=X4=4 k4=8
X=X5=5 k5=9
X:X6:6 k6:13
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Note that we have one parameter too many. We
don’t need to know all the k; and n, because
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The Multinomial distribution (2)

Consider a discrete random variable X that can take one of m values x1,...,Xm.

Out of n independent trials, let k; be the number of times X = x; was observed.
It follows that > " ki =n.

Denote by m; the probability that X = x;, with )" %, = 1.

The probability of observing a vector of occurrences k = [kq, ...,k " is given by
the Multinomial distribution parametrised by 7 = [m,..., 7wy ":

p(k|7‘[,n) = ‘p(kl,...,km|7t]’...,7rm,n) = k]’kz HT[

* Note that we can write p(k|7t) since n is redundant.

. . . . o n
* The multinomial coefficient W’k, is a generalisation of ( K ).
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Example: word counts in text

Consider describing a text document by the frequency of occurrence of every
distinct word.

The UCI Bag of Words dataset from the University of California, Irvine. !

Thttp://archive.ics.uci.edu/ml/machine-learning-databases/bag-of-words/
Quifionero-Candela & Rasmussen (CUED) Lecture 6: Discrete Distributions 16/16



