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Coin tossing

• You are presented with a coin: what is the probability of heads?
What does this question even mean?

• How much are you willing to bet p(head) > 0.5?
Do you expect this coin to come up heads more often that tails?

Wait... can you throw the coin a few times, I need data!

• Ok, you observe the following sequence of outcomes (T : tail, H: head):
H

This is not enough data!

• Now you observe the outcome of three additional throws:
HHTH

How much are you now willing to bet p(head) > 0.5?
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The Bernoulli discrete distribution

The Bernoulli discrete probability distribution over binary random variables:

• Binary random variable X: outcome x of a single coin throw.
• The two values x can take are

• X = 0 for tail,
• X = 1 for heads.

• Let the probability of heads be π = p(X = 1).
π is the parameter of the Bernoulli distribution.

• The probability of tail is p(X = 0) = 1 − π. We can compactly write

p(X = x|π) = p(x|π) = πx(1 − π)1−x

What do we think π is after observing a single heads outcome?

• Maximum likelihood! Maximise p(H|π) with respect to π:

p(H|π) = p(x = 1|π) = π , argmaxπ∈[0,1] π = 1

• Ok, so the answer is π = 1. This coin only generates heads.
Is this reasonable? How much are you willing to bet p(heads)>0.5?
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The Binomial distribution: counts of binary outcomes

We observe a sequence of throws rather than a single throw:
HHTH

• The probability of this particular sequence is: p(HHTH) = π3(1 − π).
• But so is the probability of THHH, of HTHH and of HHHT .
• We don’t really care about the order of the outcomes, only about the counts.

In our example the probability of 3 heads out of 4 throws is: 4π3(1 − π).

The Binomial distribution gives the probability of observing k heads out of n
throws

p(k|π,n) =
(n
k

)
πk(1 − π)n−k

• This assumes independent throws from a Bernoulli distribution p(x|π).

•
(n
k

)
= n!
k!(n−k)! is the Binomial coefficient, also known as “n choose k”.
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Maximum likelihood under a Binomial distribution

If we observe k heads out of n throws, what do we think π is?

We can maximise the likelihood of parameter π given the observed data.

p(k|π,n) ∝ πk(1 − π)n−k

It is convenient to take the logarithm and derivatives with respect to π

logp(k|π,n) = k logπ+ (n− k) log(1 − π) + Constant

∂ logp(k|π,n)
∂π

=
k

π
−
n− k

1 − π
= 0 ⇐⇒ π =

k

n

Is this reasonable?

• For HHTH we get π = 3/4.
• How much would you bet now that p(heads) > 0.5?

What do you think p(π > 0.5)is?
Wait! This is a probability over ... a probability?
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Prior beliefs about coins – before throwing the coin

So you have observed 3 heads out of 4 throws but are unwilling to bet £100 that
p(heads) > 0.5?

(That for example out of 10,000,000 throws at least 5,000,001 will be heads)

Why?

• You might believe that coins tend to be fair (π ' 1
2 ).

• A finite set of observations updates your opinion about π.
• But how to express your opinion about π before you see any data?

Pseudo-counts: You think the coin is fair and... you are...

• Not very sure. You act as if you had seen 2 heads and 2 tails before.
• Pretty sure. It is as if you had observed 20 heads and 20 tails before.
• Totally sure. As if you had seen 1000 heads and 1000 heads before.

Depending on the strength of your prior assumptions, it takes a different number
of actual observations to change your mind.
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The Beta distribution: distributions on probabilities

Continuous probability distribution defined on the interval (0, 1)

Beta(π|α,β) =
Γ(α+ β)

Γ(α)Γ(β)
πα−1(1 − π)β−1 =

1
B(α,β)

πα−1(1 − π)β−1

• α > 0 and β > 0 are the shape parameters.
• the parameters correspond to ’one plus the pseudo-counts’.
• Γ(α) is an extension of the factorial function. Γ(n) = (n− 1)! for integer n.
• B(α,β) is the beta function, it normalises the Beta distribution.
• The mean is given by E(π) = α

α+β . [Left: α = β = 1, Right: α = β = 3]
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Posterior for coin tossing

Imagine we observe a single coin toss and it comes out heads. Our observed data
is:

D = {k = 1}, where n = 1.

The probability of the observed data given π is the likelihood:

p(D|π) = π

We use our prior p(π|α,β) = Beta(π|α,β) to get the posterior probability:

p(π|D) =
p(π|α,β)p(D|π)

p(D)
∝ π Beta(π|α,β)

∝ π π(α−1)(1 − π)(β−1) ∝ Beta(π|α+ 1,β)

The Beta distribution is a conjugate prior to the Binomial distribution:

• The resulting posterior is also a Beta distribution.

• The posterior parameters are given by:
αposterior = αprior + k
βposterior = βprior + (n− k)
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Before and after observing one head

Prior
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Making predictions - posterior mean

Under the Maximum Likelihood approach we report the value of π that
maximises the likelihood of π given the observed data.

With the Bayesian approach, average over all possible parameter settings:

p(x = 1|D) =

∫
p(x = 1|π)p(π|D) dπ

This corresponds to reporting the mean of the posterior distribution.

• Learner A with Beta(1, 1) predicts p(x = 1|D) = 2
3

• Learner B with Beta(3, 3) predicts p(x = 1|D) = 4
7
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Making predictions - other statistics

Given the posterior distribution, we can also answer other questions such as
“what is the probability that π > 0.5 given the observed data?”

p(π > 0.5|D) =

∫1

0.5
p(π ′|D) dπ ′ =

∫1

0.5
Beta(π ′|α ′,β ′)dπ ′

• Learner A with prior Beta(1, 1) predicts p(π > 0.5|D) = 0.75
• Learner B with prior Beta(3, 3) predicts p(π > 0.5|D) = 0.66

Note that for any l > 1 and fixed α and β, the two posteriors Beta(π|α,β) and
Beta(π|lα, lβ) have the same average π, but give different values for p(π > 0.5).
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Learning about a coin, multiple models (1)

Consider two alternative models of a coin, “fair” and “bent”. A priori, we may
think that “fair” is more probable, eg:

p(fair) = 0.8, p(bent) = 0.2

For the bent coin, (a little unrealistically) all parameter values could be equally
likely, where the fair coin has a fixed probability:
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We make 10 tosses, and get: T H T H T T T T T T
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Learning about a coin, multiple models (2)

The evidence for the fair model is: p(D|fair) = (1/2)10 ' 0.001
and for the bent model:

p(D|bent) =
∫
dπ p(D|π, bent)p(π|bent) =

∫
dπ π2(1 − π)8 = B(3, 9) ' 0.002

The posterior for the models, by Bayes rule:

p(fair|D) ∝ 0.0008, p(bent|D) ∝ 0.0004,

ie, two thirds probability that the coin is fair.

How do we make predictions? By weighting the predictions from each model by
their probability. Probability of Head at next toss is:

2
3
× 1

2
+

1
3
× 3

12
=

5
12

.
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The Multinomial distribution (1)

Generalisation of the Binomial distribution from 2 outcomes to m outcomes.
Useful for random variables that take one of a finite set of possible outcomes.

Throw a die n = 60 times, and count the of observed (6 possible) outcomes.

Outcome Count
X = x1 = 1 k1 = 12
X = x2 = 2 k2 = 7
X = x3 = 3 k3 = 11
X = x4 = 4 k4 = 8
X = x5 = 5 k5 = 9
X = x6 = 6 k6 = 13

Note that we have one parameter too many. We
don’t need to know all the ki and n, because∑6
i=1 ki = n.
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The Multinomial distribution (2)

Consider a discrete random variable X that can take one of m values x1, . . . , xm.

Out of n independent trials, let ki be the number of times X = xi was observed.
It follows that

∑m
i=1 ki = n.

Denote by πi the probability that X = xi, with
∑m
i=1 πi = 1.

The probability of observing a vector of occurrences k = [k1, . . . ,km]> is given by
the Multinomial distribution parametrised by π = [π1, . . . ,πm]>:

p(k|π,n) = p(k1, . . . ,km|π1, . . . ,πm,n) =
n!

k1!k2! . . .km!

∏
i=1

πki

i

• Note that we can write p(k|π) since n is redundant.

• The multinomial coefficient n!
k1!k2!...km! is a generalisation of

(n
k

)
.
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Example: word counts in text

Consider describing a text document by the frequency of occurrence of every
distinct word.

The UCI Bag of Words dataset from the University of California, Irvine. 1

1http://archive.ics.uci.edu/ml/machine-learning-databases/bag-of-words/
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