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A really simple document model

Consider a collection of D documents with dictionary of M unique words.

• Nd: number of (non-unique) words in document d.
• wid: i-th word in document d (wid ∈ {1 :M}).
• β = [β1, . . . ,βM]>: parameters of a Multinomial

distribution over the dictionary of M unique words.

We can fit β by maximising the likelihood:

β̂ = argmax
D∏
d=1

Mult(c1d, . . . , cMd|β,Nd)

= argmax Mult(c1, . . . , cM|β,N) β̂j =
cj∑M
l=1 cl

• N =
∑D
d=1Nd: total number of (non-unique) words in the collection.

• cjd: count of occurrences of unique word j in document d.
• cj =

∑D
d=1 cjd: count of total occurrences of unique word j in the collection.
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Limitations of the really simple document model

• Document d is the result of sampling Nd words from the Multinomial β.
• β estimated by maximum likelihood reflects the aggregation of all

documents.
• All documents are therefore modelled by the global word frequency

distribution.
• The generative model wastes mass, because it cannot specialize.
• All unique words do not necessarily co-occur in a given document.
• It possible that documents might be about different topics.
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A mixture of Multinomials model

We want to allow for a mixture of K Multinomials parametrised by β1, . . . ,βK.
Each of those Multinomials corresponds to a document category.

• zd ∈ {1 : K} assigns all words in document d to one of the K categories.
• θj = p(zd = j) is the probability any document d is assigned to category j.
• θ = [θ1, . . . , θK] is also the parameter of a Multinomial over the K categories.

We have introduced a new set of hidden variables zd.

• How do we fit those variables? What do we do with them?
• We are actually not interested in them: We are only interested in θ and β.
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Jensen’s Inequality

For any concave function, such as log(x)
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For αi > 0,
∑
αi = 1 and any {xi > 0}

log
(∑
i

αixi
)

>
∑
i

αi log(xi)

Equality if and only if αi = 1 for some i (and therefore all others are 0).
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The Expectation Maximization (EM) algorithm

Given a set of observed (visible) variables V, a set of unobserved (hidden / latent /
missing) variables H, and model parameters θ, optimize the log likelihood:

L(θ) = logp(V |θ) = log
∫
p(H,V |θ)dH, (1)

where we have written the marginal for the visibles in terms of an integral over
the joint distribution for hidden and visible variables.

Using Jensen’s inequality for any distribution of hidden states q(H) we have:

L = log
∫
q(H)

p(H,V |θ)
q(H)

dH >
∫
q(H) log

p(H,V |θ)
q(H)

dH = F(q, θ), (2)

defining the F(q, θ) functional, which is a lower bound on the log likelihood.

In the EM algorithm, we alternately optimize F(q, θ) wrt q and θ, and we can
prove that this will never decrease L.
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The E and M steps of EM

The lower bound on the log likelihood:

F(q, θ) =

∫
q(H) log

p(H,V |θ)
q(H)

dH =

∫
q(H) logp(H,V |θ)dH+H(q), (3)

where H(q) = −

∫
q(H) logq(H)dH is the entropy of q. We iteratively alternate:

E step: optimize F(q, θ) wrt the distribution over hidden variables given the
parameters:

q(k)(H) := argmax
q(H)

F
(
q(H), θ(k−1)). (4)

M step: maximize F(q, θ) wrt the parameters given the hidden distribution:

θ(k) := argmax
θ

F
(
q(k)(H), θ

)
= argmax

θ

∫
q(k)(H) logp(H,V |θ)dH, (5)

which is equivalent to optimizing the expected complete-data likelihood
p(H,V |θ), since the entropy of q(H) does not depend on θ.
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EM as Coordinate Ascent in F
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The EM algorithm never decreases the log likelihood

The difference between the cost functions:

L(θ) − F(q, θ) = logp(V |θ) −
∫
q(H) log

p(H,V |θ)
q(H)

dH

= logp(V |θ) −
∫
q(H) log

p(H|V, θ)p(V |θ)
q(H)

dH

= −

∫
q(H) log

p(H|V, θ)
q(H)

dH = KL
(
q(H),p(H|V, θ)

)
,

is called the Kullback-Liebler divergence; it is non-negative and only zero if and
only if q(H) = p(H|V, θ) (thus this is the E step). Although we are working with
the wrong cost function, the likelihood is still increased in every iteration:

L
(
θ(k−1)) =

E step
F
(
q(k), θ(k−1)) 6

M step
F
(
q(k), θ(k)

)
6

Jensen
L
(
θ(k)

)
,

where the first equality holds because of the E step, and the first inequality comes
from the M step and the final inequality from Jensen. Usually EM converges to a
local optimum of L (although there are exceptions).
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EM and Mixtures of Multinomials

The the Mixture model for text, the latent variables are

zd ∈ {1, . . . ,K}, where d = 1, . . . ,D

which for each document encodes which mixture component generated it.

E-step: for each document d, set q to the posterior

qd(zd) ∝ p(zd = k|θ)

Nd∏
i=1

p(wi|βwik) = θkMult(c1d, . . . , cMd|βk,Nd) = rkd

M-step: Maximize
K∑
k=1

qd(zd = k) logp({wid}, zd) =
∑
k

rkd log
D∏
d=1

Nd∏
i=1

p(wi|βwik)p(zd = k)

=
∑
k

rkd

( D∑
d=1

log
M∏
j=1

β
cjd
jk + log θk

)

=
∑
k,d

rkd(

M∑
j=1

cjd logβjk + log θk) = F(θ,β)
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EM: M step for mixture model

Need Lagrange multipliers to constrain the maximization and ensure proper
distributions.

θk = argmax F(θ,β) + λ(1 −

K∑
k=1

θk)

=

∑D
d=1 rkd∑K

k′=1

∑D
d=1 rk′d

βjk = argmax F(θ,β) +
K∑
j=k

λk(1 −

M∑
j=1

βjk)

=

∑D
d=1 rkdcjd∑M

j′=1

∑D
d=1 rkdcj′d
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A Bayesian mixture of Multinomials model

With the EM algorithm we have essentially estimated α and β by maximum
likelihood. An alternative, Bayesian treatment is to introduce hyperpriors.

• θ ∼ Dir(α) is a symmetric Dirichlet over category probabilities.
• βk ∼ Dir(γ) is a symmetric Dirichlet over unique word probabilities.

What is different?

• We no longer want to compute a point estimate of θ or β.
• We are now interested in computing the posterior distributions.
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