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Limitations of the mixture of Multinomials model

A generative view of the mixture of Multinomials model

1 Draw a Multinomial θ over topics from the α Dirichlet.

2 Draw K topic Multinomials βk over words from the γ Dirichlet.

3 Draw a topic zd for document d from the θ Multinomial.

4 Draw Nd words Wid for this document from the βzd Multinomial.

Limitations:

• All words in each document are drawn from one specific topic Multinomial.
• This works if each document is exlusively about one topics, but if some

documents span more than one topic, then “blurred” topics must be learnt.
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NIPS dataset: LDA topics 1 to 7 out of 20.

network network model problem neuron network cell
unit node data constraint cell neural model
training representation distribution distance input system visual
weight input probability cluster model model direction
input unit parameter point synaptic control motion
hidden learning set algorithm firing output field
output activation gaussian tangent response recurrent eye
learning nodes error energy activity input unit
layer pattern method clustering potential signal cortex
error level likelihood optimization current controller orientation
set string prediction cost synapses forward map
neural structure function graph membrane error receptive
net grammar mean method pattern dynamic neuron
number symbol density neural output problem input
performance recurrent prior transformation inhibitory training head
pattern system estimate matching effect nonlinear spatial
problem connectionist estimation code system prediction velocity
trained sequence neural objective neural adaptive stimulus
generalization order expert entropy function memory activity
result context bayesian set network algorithm cortical
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NIPS dataset: LDA topics 8 to 14 out of 20.

circuit learning speech classifier network data function
chip algorithm word classification neuron memory linear
network error recognition pattern dynamic performance vector
neural gradient system training system genetic input
analog weight training character neural system space
output function network set pattern set matrix
neuron convergence hmm vector phase features component
current vector speaker class point model dimensional
input rate context algorithm equation problem point
system parameter model recognition model task data
vlsi optimal set data function patient basis
weight problem mlp performance field human output
implementation method neural error attractor target set
voltage order acoustic number connection similarity approximation
processor descent phoneme digit parameter algorithm order
bit equation output feature oscillation number method
hardware term input network fixed population gaussian
data result letter neural oscillator probability network
digital noise performance nearest states item algorithm
transistor solution segment problem activity result dimension
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NIPS dataset: LDA topics 15 to 20 out of 20.

function learning model image rules signal
network action object images algorithm frequency
bound task movement system learning noise
neural function motor features tree spike
threshold reinforcement point feature rule information
theorem algorithm view recognition examples filter
result control position pixel set channel
number system field network neural auditory
size path arm object prediction temporal
weight robot trajectory visual concept model
probability policy learning map knowledge sound
set problem control neural trees rate
proof step dynamic vision information train
net environment hand layer query system
input optimal joint level label processing
class goal surface information structure analysis
dimension method subject set model peak
case states data segmentation method response
complexity space human task data correlation
distribution sutton inverse location system neuron
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Latent Dirichlet Allocation (LDA)

Simple intuition (from David Blei): Documents exhibit multiple topics.
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Generative model for LDA

• Each topic is a distribution over words.
• Each document is a mixture of corpus-wide topics.
• Each word is drawn from one of those topics.

from David Blei
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The posterior distribution

• In reality, we only observe the documents.
• The other structure are hidden variables.

from David Blei
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The posterior distribution

• Our goal is to infer the hidden variables.
• This means computing their distribution conditioned on the documents

p(topics, proportions, assignments|documents)

from David Blei
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The LDA graphical model

• Nodes are random variables; edges indicate dependence.
• Shaded nodes indicate observed variables.
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The difference between LDA and mixture of
Multinomials

A generative view of LDA

1 For each document draw a Multinomial θd over topics from the α Dirichlet.

2 Draw K topic Multinomials βk over words from the γ Dirichlet.

3 Draw a topic zid for the i-th word in document d from the θ Multinomial.

4 Draw word wid from the βzd Multinomial.

Differences with the mixture of Multinomials model:

• Every word in a document can be drawn from a different topic.
• Every document has its own topic assigment Multinomial θd.
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The impossible LDA math

“Always write down the probability of everything.” (Steve Gull)

p(β1:K,θ1:D, {zid}, {wid}|γ,α)

=

K∏
k=1

p(βk|γ)

D∏
d=1

p(θd|α)
( Nd∏
i=1

p(zid|θd)p(wid|β1:K, zid)
)

For example, the posterior over the parameters, β1:K and θ1:D requires the we
marginalize out the latent {zid}. But how many configurations are there?

This computation is intractable.
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Monte Carlo and Markov Chain Monte Carlo

Instead of attempting to evaluate all possible configurations of the latent
variables, in Monte Carlo we use random samples, drawn from the distribution in
question: ∫

f(x)p(x)dx ' 1
T

T∑
t=1

f(x(t)),

where x(t) are samples drawn from p(x).

This is a powerful technique, which may work well, even if x is very high
dimensional.

Usually, it is difficult to draw samples independently from p(x). In Markov Chain
Monte Carlo, one designs a Markov Chain to generate (dependent) samples from
the target distribution p(x).
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Markov Chain Monte Carlo

We want to construct a Markov Chain that explores p(x).

Markov Chain: x(t) ∼ q(x(t)|x(t−1)).

MCMC gives approximate, correlated samples from p(x).

Challenge: how do we find transition probabilities q(x(t)|x(t−1)), which give rise
to the correct stationary distribution p(x)?
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Discrete Markov Chains

Consider

p =

 3/5
1/5
1/5

 , Q =

 2/3 1/2 1/2
1/6 0 1/2
1/6 1/2 0

 , Qij = Q(xi ← xj)

where Q is a stochastic (or transition) matrix.

To machine precision: Q100

 1
0
0

 = p.

p is called a stationary distribution of Q, since Qp = p.

Ergodicity is also a requirement.
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Continuous Spaces and Detailed Balance

In continuous spaces transitions are governed by q(x ′|x).

Now, p(x) is a stationary distribution for q(x ′|x) if∫
q(x ′|x)p(x)dx = p(x ′).

Detailed balance means

q(x ′|x)p(x) = q(x|x ′)p(x ′).

Now, integrating both sides wrt x, we get∫
q(x ′|x)p(x)dx =

∫
q(x|x ′)p(x ′)dx = p(x ′).

Thus, detailed balance implies the existence of a stationary distribution
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The Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm:

• propose a new state x∗ from q(x∗|x(τ))
• compute the acceptance probability a

a =
p(x∗)
p(x(τ))

q(x(τ)|x∗)
q(x∗|x(τ))

• if a > 1 then the proposed state is accepted,
otherwise the proposed state is accepted with probability a.
If the proposed state is accepted, then x(τ+1) = x∗ otherwise x(τ+1) = x(τ).

This Markov chain has p(x) as a stationary distribution. This holds trivially if
x(τ+1) = x(τ), otherwise

p(x)Q(x ′ ← x) = p(x)q(x ′|x)min
(

1,
p(x ′)q(x|x ′)
p(x)q(x ′|x)

)
= min

(
p(x)q(x ′|x),p(x ′)q(x|x ′)

)
= p(x ′)q(x|x ′)min

(
1,
p(x)q(x ′|x)
p(x ′)q(x|x ′)

)
= p(x ′)Q(x← x ′).
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Some properties of Metropolis Hastings

• The Metropolis algorithm has p(x) as its stationary distribution
• If q(x∗|x(τ)) is symmetric, then

• the expression for a simplifies to a = p(x∗)/p(x(τ))
• the algorithm then always accepts if the proposed state has higher

probability than the current state and sometimes accepts a state with
lower probability.

• we only need the ratio of p(x)’s, so we don’t need the normalization constant.
This is important, e.g. when sampling from a posterior distribution.

The Metropolis algorithm can be widely applied, you just need to specify a
proposal distribution.

The proposal distribution must satisfy some (mild) constraints (related to
ergodicity).
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The Proposal Distribution

Often, Gaussian proposal distributions are used, centered on the current state.
You need to specify the width of the proposal distribution.

What happens if the proposal distribution is

• too wide?
• too narrow?
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Metropolis Hastings Example

20 iterations of the Metropolis Hastings algorithm for a bivariate Gaussian

The proposal distribution was Gaussian centered on the current state.

Rejected states are indicated by dotted lines.
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