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Limitations of the mixture of Multinomials model

O—HOTO

A generative view of the mixture of Multinomials model

©® Draw a Multinomial © over topics from the « Dirichlet.
® Draw K topic Multinomials 3, over words from the y Dirichlet.
©® Draw a topic z4 for document d from the 6 Multinomial.

©® Draw Ny words Wiq for this document from the $,, Multinomial.
Limitations:

e All words in each document are drawn from one specific topic Multinomial.

e This works if each document is exlusively about one topics, but if some
documents span more than one topic, then “blurred” topics must be learnt.
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NIPS dataset: LDA topics 1 to 7 out of 20.
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NIPS dataset: LDA topics 8 to 14 out of 20.
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NIPS dataset: LDA topics 15 to 20 out of 20.
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Latent Dirichlet Allocation (LDA)
Seeking Life’s Bare (Genetic) Necessities

Ouii

o0-Candela & R
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Generative model for LDA

Topics Documents Topic proportions and
assignments
gene 0.04
e oA Seeking Life’s Bare (Genetic) Necessities
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ing. Gold Spring Harbor, New York Stripping down. Computer anaysis yields an esii-
May 8 to 12 mate of the minimum moderm and ancient gencmes.
SCIENCE » VOL. 272 » 24 MAY 1996
b !
b |

* Each topic is a distribution over words.
e Each document is a mixture of corpus-wide topics.
e Each word is drawn from one of those topics.
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The posterior distribution

. Topic proportions and
Topics Documents opic p qp orions
assignments
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e In reality, we only observe the documents.
* The other structure are hidden variables.
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The posterior distribution

. Topic proportions and
Topics Documents opic p qp orions
assignments
Seeking Life’s Bare (Genetic) Necessmes
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ing, c\m Snvmg Harbor, New York. Stripping down. Computer analysis yields an esti-
May mate of the minimum modern and ancient genomes.
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|
!
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e Our goal is to infer the hidden variables.
* This means computing their distribution conditioned on the documents
p(topics, proportions, assignmentsldocuments)
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The LDA graphical model

Proportions
parameter

©

Per document Observed
topic proportions word
Per word topic ) Topic
assignment Topics  parameter
i=1:N k=1:K
d=1:D

* Nodes are random variables; edges indicate dependence.

¢ Shaded nodes indicate observed variables.
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The difference between LDA and mixture of
Multinomials

OO0 OO

A generative view of LDA

©® For each document draw a Multinomial 04 over topics from the « Dirichlet.
® Draw K topic Multinomials 3, over words from the y Dirichlet.

©® Draw a topic zi4 for the i-th word in document d from the ® Multinomial.
©® Draw word wiq from the $,, Multinomial.

Differences with the mixture of Multinomials model:

e Every word in a document can be drawn from a different topic.

* Every document has its own topic assigment Multinomial 04.
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The impossible LDA math

OO0 OO

“Always write down the probability of everything.” (Steve Gull)

p(ﬁl:Ka e1:D ) {Zid}a {Wid}h/a O()

K D Nga
=[IrB) [[r@ald (] [P(zial®0a)p(WialBix;2ia))
k=1 d=1 i=1

For example, the posterior over the parameters, 3,.x and 0.p requires the we
marginalize out the latent {z;4}. But how many configurations are there?

This computation is intractable.
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Monte Carlo and Markov Chain Monte Carlo

Instead of attempting to evaluate all possible configurations of the latent
variables, in Monte Carlo we use random samples, drawn from the distribution in
question:

Jf(X)p(X)dx =~ % > f(x,

where x(Y) are samples drawn from p(x).

This is a powerful technique, which may work well, even if x is very high
dimensional.

Usually, it is difficult to draw samples independently from p(x). In Markov Chain
Monte Carlo, one designs a Markov Chain to generate (dependent) samples from
the target distribution p(x).
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Markov Chain Monte Carlo

We want to construct a Markov Chain that explores p(x).

Markov Chain: x) ~ q(xV|x(t=1)),

MCMC gives approximate, correlated samples from p(x).

Challenge: how do we find transition probabilities q(x!)[x(*=1)), which give rise
to the correct stationary distribution p(x)?
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Discrete Markov Chains

Consider
3/5 2/3 1/2 1/2
p = 1/5 , Q = 1/6 0 1/2 5 Qij = Q(Xi(—Xj)
1/5 1/6 1/2 0

where Q is a stochastic (or transition) matrix.

1
To machine precision: Q' | 0 | =p.
0

p is called a stationary distribution of Q, since Qp = p.

Ergodicity is also a requirement.
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Continuous Spaces and Detailed Balance

In continuous spaces transitions are governed by q(x'[x).

Now, p(x) is a stationary distribution for q(x’|x) if

J q(x'X)p(x)dx = p(x’).

Detailed balance means

q(x'Ix)p(x) = q(xx")p(x).

Now, integrating both sides wrt x, we get

Jq(qu)p(x)dx - j q(xlx'Jp(x')dx =

p(x').

Thus, detailed balance implies the existence of a stationary distribution

Quifi o0-Candela & R (CUED) Lecture 9: Latent Dirichlet Allocation for Topic Modelli

16 /20



The Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm:

e propose a new state x* from q(x*|x())
e compute the acceptance probability a

) qxx)
p(x(T)) q(x*|x(7))

* if a > 1 then the proposed state is accepted,
otherwise the proposed state is accepted with probability a.

If the proposed state is accepted, then x(*™+1) = x* otherwise x(*+1)

=x(7),

This Markov chain has p(x) as a stationary distribution. This holds trivially if

x(TH1) = x(T) otherwise

p(X’)q(X\X’)>

p(x)q(x'[x)

= min (p(x)q(x/|x),p(x/)q(x|x’))
p(x)q(x'[x) )

p(x')q(xlx’)

P(XIQ(X - x) = p(x)q(x[x) min (1,

p(x)q(x/x') min (1, = p(x)Q(x  x').
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Some properties of Metropolis Hastings

e The Metropolis algorithm has p(x) as its stationary distribution
o If q(x*[x(™)) is symmetric, then
* the expression for a simplifies to a = p(x*)/p(x(™))
e the algorithm then always accepts if the proposed state has higher

probability than the current state and sometimes accepts a state with
lower probability.

* we only need the ratio of p(x)’s, so we don’t need the normalization constant.
This is important, e.g. when sampling from a posterior distribution.

The Metropolis algorithm can be widely applied, you just need to specify a
proposal distribution.

The proposal distribution must satisfy some (mild) constraints (related to
ergodicity).
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The Proposal Distribution

Often, Gaussian proposal distributions are used, centered on the current state.
You need to specify the width of the proposal distribution.

What happens if the proposal distribution is

e too wide?

® toO narrow?
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Metropolis Hastings Example

20 iterations of the Metropolis Hastings algorithm for a bivariate Gaussian

The proposal distribution was Gaussian centered on the current state.

Rejected states are indicated by dotted lines.
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